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Abstract: This paper reports the problem of prescribed-time stabilization (PTS) for a kind of uncertain nonholonomic
systems (NSs) in chained form with time-varying output constraints. To handle the obstacle caused by the output constraints,
a tan-type barrier lyapunov function (BLF) is exploited. By suitably introducing the time-varying function into the virtual
(actual) controllers, a non-scaling transformation design scheme for state feedback is developed, which forces the states
of the closed-loop system (CLS) to zero in any prescribed finite time without disobeying the constraints. In comparison
with the traditional scaling transformation design, the advantages of the proposed control strategy are that it both solves the
computationally singular problem effectively and leads to a simpler controller by reducing the computation burden of the
time-varying scaling function. Finally, the effectiveness of the proposed scheme is confirmed by the simulation results.
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1 Introduction

As a type of special nonlinear systems, nonholo-
nomic systems (NSs) have received much attention in
the last decades due to their widespread applications
in practice, such as wheeled mobile robot, space robot,
and underactuated satellites [1]. However, the existence
of nonintegrable velocity constraint (i.e., nonholonom-
ic constraint), makes such systems not to meet the fa-
mous Brockett necessary condition and their stabiliza-

tion challenging [2]. Thanks to several constructive

Received 28 December 2021; accepted 15 August 2022.
fCorresponding author. E-mail: gaofz@ 126.com.
Recommended by Associate Editor: LONG Li-jun.

method mainly including discontinuous time-invariant
feedback [3], smooth time-varying feedback [4] and hy-
brid feedback [5], lots of significant results have been
gained, for instance, refer to [6—13] and the references
therein.

From the point of view of convergence rate, the ex-
isting stabilization results can be divided into infinite-
time stabilization (e.g., asymptotic or exponential stabi-
lization) and finite-time stabilization. By comparison,
the latter is more desired because it exhibits the appeal-
ing features of fast convergence and good disturbance
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rejection [14—16]. However, the existing finite-time sta-
bilization results suffer from two shortcomings: one is
that convergence rate is relatively slow when the sys-
tem states are far away from the equilibrium points, and
the other is that the settling time heavily relies on initial
system conditions. To address these two shortcomings,
Andrieu et al. in [17] put forward the idea of fixed-time
stability that the involved settling time function is irre-
spective of initial system conditions. Soon afterwards,
the research on fixed-time control has become a popu-
lar topic [18-23]. Roughly speaking, the existing meth-
ods on the topic of fixed-time control come down to t-
wo kinds: the bi-limit homogeneous-based one [17-18]
and the Lyapunov-based one [19-23]. It is emphasized
that the both methods suffer from some inherent defect-
s, that is, the upper bound of the settling time (UBST) in
the former exists but is unknown, and the UBST in the
latter is bounded and adjustable, but it is so hard to be
prespecified discretionarily in the light of requirements
because the derived settling time functions currently de-
pend on a few design parameters, whose selections are
laborious to meet the prespecified settling time require-
ments [24].

However, prespecifiable settling time is indeed ex-
pected by some practical applications [25]. This fact
urges that the prescribed-time stability [26](also called
predefined-time stability [27]), where the UBST can be
selected by the user, has been drew into to study the sta-
bilization problem of the considered systems [28-34].
Especially, drawing support from scaling the system s-
tates by a function that grows unboundedly tending to
the terminal time, a state-scaling design method to solve
the prescribed-time stabilization (PTS) of Brunovsky
systems in [26]. To reduce the computation burden of
[26] which uses the time varying function to scale the
states in all the transformations, a new non-scaling de-
sign framework was put forward in [33] by only scaling
the virtual (scaling) controllers. However, the controller
proposed in [33] is subject to the computationally singu-
lar problem at the terminal time. To address this trouble,
a switching mechanism is recently introduced to study
the PTS of parametric nonlinear systems in [34]. But
the requirement that the nonlinear function must be s-
mooth, renders the proposed technique [34] difficult to
apply to nonsmooth nonlinear systems. Moreover, an-
other common drawback of the above-mentioned work-
s [26-34] is that the effect of state/output constraints is
ignored. As we know, suffering from state/output con-
straints is ineluctable in many actual systems as a result
of physical limitations and safe requirements. Violation
of these constraints might impel system performance
degradation even danger [35-38]. However, the pres-
ence of state/output constraints makes it difficult to deal
with the PTS of nonlinear/nonholonomic systems using
state-scaling-based control design, to date there is no

related results about the PTS of constrained NSs.

Motivated by the above considerations, in this paper
we concentrate on studying the PTS problem for a kind
of uncertain NSs in chained form with time-varying out-
put constraints. The significant contributions are as fol-
lows.

1) A novel switched scaling function whose switch-
ing rule dependent on both state and time is introduced
to effectively overcome the computationally singular
problem of the conventional scaling function-based de-
sign in [26].

2) Inspired the recent studies of [33] and [34], a
nonsmooth framework of non-scaling transformation-
based design is presented for constrained NSs. Differ-
ent from the scaling design of [26], in which the time-
varying function is adopted to scale the states in all the
transformations, the proposed method employs the giv-
en switched time-varying function scaling the virtual (s-
caling) controllers to achieve the PTS. In this way, the
BLF can be directly applied and the computation bur-
den of the time-varying scaling function is reduced to a
large extent, leading to a simpler controller.

3) Different from the PTS results in [28-34] where
the effect of the state/output constraints is ignored, this
paper includes output constraints in the considered sys-
tem, making the developed control scheme more practi-
cal in engineering application.

The rest of this paper is organised as follows. Sec-
tion 2 elaborates the problem to be investigated. Section
3 gives the design and analysis. Section 4 where the
simulation study of the presented scheme is provided.
Finally, some concluding remarks are given in Section
5.

Notations. The notations adopted in this paper are
fairly standard. Specifically, for a vector z = (2
zp)TER™ denote z; = (21 -+ z;)TERI, j=1,---,
n, and define [2]° as [2]° = sgn(z)|z|°.

2 Problem formulation and preliminaries
2.1 Problem formulation

Consider the following kind of uncertain NSs in
chained form:

G = uoGa + P1(Co, C1_,U0)7
G = Girrto + i (o, Gis uo),
C:n =u; + @n(407<n7u0)a
Co=1up, 2=2,---,n—1,

where (¢o )" = (¢ G Gt ERML =
(wp uw)t € R%L y = ({ )" €R? are the sys-
tem state, control input and output, respectively. @, :
RxRixR —R,i=1,---,n are continuous nonlin-
ear functions satisfying @;((o, 0, ug) = 0. Due to phys-
ical or performance limitations, this paper supposes the
output y suffering from the following time-varying con-

6]
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straints
Q; ={G(t) : —ki(t) < Gi(t) < kia(t)}, i=0,1,
(2)
with some pre-specified positive functions k;;(t) and
kio(t).
Remark 1

common in practice. For instance, a mobile robot working in

As reported by [37], such constraints are

a restricted area can be modeled as the system (1) with n =2,
@1 = &2 = 0 and the output constraints (2) are equal to the
space constraints of such robot. The appearance of the time-
varying constraints makes the unconstrained control techniques
not applicable to constrained system (1), for which new control
techniques should be developed.

The control goal of this paper is to present a
switched, non-scaling, state feedback control mechanis-
m which stabilizes system (1) within prescribed finite
time 7},, while fulfilling the time-varying constraints
2).

The following assumptions are needed in this paper.

Assumption 1 The time-varying output con-
straints k;;(t) (: = 0, 1, j = 1, 2) are continuous differ-
entiable and there are positive constants k;,, k., k3 and
ki such that ki < Eka(t), ks < kin(t), kil (t)] < ki3
and ‘kzg(t)’ < ki4-

Assumption 2  There are smooth functions ¢; >
0 and a constant 7 € (0, 1/n) such that

i

1D (Cos Gy u0)| < (o, Civ o) il €] .A;T, 3)

where \, =1—-(i—1)7>0,i=1,--- ,n.

Remark 2  Assumption 1 is similar to these used in
[37], which slightly relaxes the corresponding assumptions in
[35-36] by removing the upper bound restrictions. Assumption
2 is a generalized homogeneous-growth-like condition and can
include the frequently-used ones on the practical systems (e.g.,
the Holder-like growth condition and the Lipschitz-like growth
condition) as special cases [15,20].

2.2 Preliminary results
Consider the nonlinear system

z=pu(t,z), 2(0) = 2o, p(t,0) =0, )
where i : RT x U — R™ is a (discontinuous) nonlinear
vector field on an open neighborhood U of the origin.

Definition 1 ([14]) The origin of system (4)
is named finite-time stable if it is asymptotically sta-
ble and for any 2z, € U, a settling time function
T : U\{0} — (0, 00) exists such that every solution
z(t, z9) of (4) satisfies z(t, z9) = 0,Vt = T'(zo).

Definition 2 ([34,38]) The origin of system (4)
is named prescribed-time stable if it is finite-time stable
and a tunable designing parameter 1} € R exists to en-
sure T'(zy) < T, for any prescribed finite time 7}, > 0
and any 2y € U.

Lemma 1 ([14]) For system (4), if there exist a
C" and positive definite function V() defined U with
0C U C U, somereal numbersc > 0and 0 < o« < 1
such that
V(z) < —cVe(z), Vz e U.
Then, the origin of system (4) is finite-time stable with
ViTe(0)
c(l—a)
Lemma 2 ([39]) For(; € R, (, € R, and a
constant m > 1, one has 1) [(1+Ca|™ < 2™ | +(5s
2) (|G [+ GDY™ <G+ G < 2t (G | +
|Gal) .
Lemma 3 ((39])

v(¢1,¢2) > 0O are real-valued function, then one has

d —e
G][G]t < (G, Q)G + m’YT(Ch
G2)[ G|t

Lemma 4 ([37]) For (; € R, (3 € R and con-
stant 0 < m < 1 and @ > 0, one has |[(;]*™ —

[Gl™™ < 276" = 1] ™

3 Prescribed-time stabilization

T(z) <  Vzel.

If ¢, d are positive constant and

c
c—kalfy

In this section, a non-scaling control strategy is de-
signed to achieve the stabilization task of system (1)
within any given prescribed finite time 7, > 0, while
preventing the violation of the time-varying constraints
2.

3.1 Scaling function and tan-type BLF

For the object of this paper, we introduce the

switched scaling function as in [38]

Fl:{Fl, CE{Rn—Sl}&t<Tsl, (5)

1, otherwise,

where = is a small closed neighborhood of origin and

Tsl
F 1 — T51 _ ta (6)
with the positive design parameter 7, satisfying 0 <
Ty < T,
Remark 3  Itis clearly that I'; monotonically increas-

eson [0,Ts1) with I (0) = 1 and I;(Ts1) = +oo. To address
the incapability of ensuring the closed-loop viability and sta-
bility behind 7’51, a new switched scaling function (5) is intro-
duced in this paper. In comparision with the one used in [26],
its novelty is that the switching rule dependent on both state
and time, i.e, it uses a small closed neighborhood of origin =
to replaces the origin, which renders the system trajectory ((t)
to the switching set = at some moment before 751 can effec-
tively overcome the computationally singular problem (co x 0

type) of the resulting controller as t — 1.

To avoid the state (; violating the constraints (2), an
asymmetric BLF function Vj; : {2, — R is given as
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follows: 12 ) (Ts1 < Ty < €T),) by the recursive idea.
. (7 .
Vi () = 2 tan(mf; ), (7) Step 1 Select V; = V},; as the Lyapunov function
n bi

where ky; = ko, if (; > 0, otherwise ky; = k;1.

From (16), it is clear that the function V};((;) is pos-
itive definite on (2; and satisfies V};({;) — oo as ¢; —
—k;1 or (; — k;o. Besides, differentiating the function
Vii(z;) obtains that

MWV (G
s
Ok,  w k2 kN z
with Ay;(¢;) defined as
2
sec (2152 ), G >0,
Api(G) = c22 ©)
sec?(er), ¢ <0
il

Remark 4 What needs to be emphasized is that
Vi () has an attractive property that

lm Vis(G)= lim M an(7S ) =
k}ijlgloo bl((l) k?ijlgloo ™ an (2k’b2j)
1 .
3G i=12 (10)

which implies that when no constraints is required on the low-
er and/or upper bounds of (;, by setting k;; — oo and/or
kio — o0, V4;(¢;) in (7) becomes the equivalent Lyapunov
function which is widely used in the unconstrained control de-
sign. As a consequence, the presented asymmetric BLF V},;({;)
can serve as a unified tool to address the control problem si-
multaneously with asymmetric constraint or without constraint
requirements.

3.2 PTS of the {-subsystem
For the (y-subsystem, we pick up the control ug as

uo = (| sgn(¢o(0))] —sgn(Co(0)) = 1) g, (1D
where ¢ > 0 is a design constant satisfying ¢, <
ko1/(eT,) with € € (0, 1). For simplicity, without loss
of generality, in later use we assume (o(0) < 0, that
is, the sign of wq is positive. Then, the (-subsystem is
rewritten as

C1 = hips + D1(Co: Cn),
Cl - hlpz+1 + P (COan)7 i=2,---,n—1,
Cn = hyu; + @, (CO’Cn)

(12)
with h;(t) = ¢j,i=1,--- ,n—land h,(t) = 1. As
a consequence, the following result is reaped by simple
mathematical derivations.

Proposition1  Under (11), the solution of the (-
subsystem (o(t) is well-defined on [0,¢7},) provided
that |(o(0)] < k.

Next a state feedback controller ©; will be devel-
oped to stabilize system (12) within a settling time 77

for this step. Based on (3) and (8), the derivative of V;
arrives

o OV OV
Vi= yg + Oy k?bl =
2k,
A ()G (G + P1) + =2 tan (;T]le Ve —
b1

?Abl(CQCfi{:bl <
b1

A ()G (o + @1) + ,fblAm(cl)c%rkm <
A1 (G) (MGG = G) + MGG + G 7¢)
(13)

where @, > p; + (2K, |¢;|7)/ K, with K, = min{k,,,
ky,} and K; = max{ks, k14} is a smooth function
and (J is the virtual controller of (5.

Take
G =—F1/ [Cl—|)\2a (14)
where
l4+c+ ¢
B=—", (15)
1

with ¢ being a positive constant. Then, by substituting
(14) into (13), one has

Vl —(1 +C)F1Abl($1)’C1’2 4
A1 ()G (G — G3) - (16)

Step 2 Define 25 = [(2] s — (¢ ] »: and take the

Lyapunov function Vo, = V| + W, with

C2 1 1
W, = L* [[s]% =[G 17 ds. (A7)

2

From
oW, B 2
o, 1
Wy 500G ]) (18)
5o — 2o )T g

[s1% — [¢3]%7 ] =ds,
where § = t or § = (3, a direct calculation gives
Va<=(1+ )F 14 (Q)IG 7 +

A1 ()76 (G = 63) + [22]* *2hals +
aWQ 8W2
- h D)+ ——.
[22] ac, (PG t+P1)+
Based on the fact f; > 1 forall ¢ > 0, we give the
following estimates for some terms of (19). First, from

[N

2

19)

the definitions of z; and ¢ and Lemma 4, one has

|G = GI<272[G]% = [G17 |2 =
21722 7| A2, (20)
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Thus, from (20) and Lemma 3, it is obtained that
A (G217 Mho (G — () <
1 2—T 2—T1
Z|21‘ + |22/ " 021, (21)

where 057 > 0 is a smooth function.
Secondly, from Assumption 2 and Lemma 2, one
gets

Aog—T A2—T
P2 < a(|G| > 4 |G| 27) <
pa(|G T |z TR B G (22)
Using (22) and Lemma 3 yields

[ZQP_)\Z@Z X |§1|2 T+F1+T|22|2_TQ227 (23)

where 055 > Ois a smooth function.

Finally, notice that

5

| mw%),

1% — [ [2ds < 2172z, (24)

G F1 Wat, 2
R 20

where w9, and ws, are some nonnegative smooth func-
tions.
Then, from (24)—(26) and Lemma 3, one arrives

oW 655, s

Be, (G +®) < G S G PA G
@7)

oW, _ 1 e ar

o < G HFTT el e, (28)

where o3 > 0 and go4 > 0 are smooth functions.

As aresult, by letting g2 = 021 + 022 + 023 + 024
and

_ 2—7 (2—71)2
Y2 = max{l,mam}, (29)
one has
oW.
A1 (GG (G — G) + [Zﬂz Ay + 8t2
oW.
B, G+ @) <IGPT+ 7Pl 7o G0

Substituting (30) into (19) yields

Vs < —cF 1 A1 (G)|GIPT + [22]7 2 hals +

R (31
Hence, one can design the virtual controller
G = —F (2], (32)

with 85 = (¢ + 02), which together with the fact that
F1>1and A;;(¢1) > 1forall t > 0 is such that

Vs < —cF 1 Ay ()G —eF 1]z +
(2512 2ha(G — G5). (33)

Following the same arguments of Step 2, for Step ¢

(i =2,---,n), we can find a C! and positive definite
Lyapunov function V; = V;,, + > W, with
j=2
€] 1 I IR
Wy = [ =[G es, o9

and a group of continuous virtual controllers (7., =
_F’1Yj [ijAjiTBj’j = 17 to

‘./} < —cF 1 A (G)|GIPTT — ek Z 2> +

=
(2127 hy (G — G )- (35)

= (,,+1. Consequently, the following result is

,mn, such that

where u
obtained.

Theorem 1  Considering system (12) under As-
sumptions 1-2, the state feedback controller u; = (7,
with a properly selection of the design parameters ren-
ders the following conclusions hold.

1) The state (; keeps in the set £2; for all t > 0
without violating the constraints.

2) The equilibrium at the origin is prescribed-time

stable within any given settling time 77.

Proof The main proof is divided into three parts.
Part 1 Prescribed-time attractive without violat-
ing constraints: Since for all 6 € (0,1),
0 0 0 0 0
%) < %SGC(%) < %se(@(%) (36)
holds, and then we have
k2 w(?
—L tan (ngl ) < Abl(Cl)’CﬂQ (37)
b1

Moreover, by Lemma 4, W; can be calculated as
G 1
W= [T~ 16191 s <

2,77 ¢ — ¢ <
2174 |z 2. (38)

tan(

Vi = —

Therefore the following estimation is obtained.

=V + > Wi)QgT <
=2

2—7
V.=

MG+ 5P (9)
j=2

which together with (33) leads to
V, < —cF 1V T (40)
When F; = I}, (40) indicates the domain = is

prescribed-time attractive and the convergence time sat-

isfies

2,2 (0)
ctTs

Ta < Tsl(]- - CXp(— )) < Tsl' (41)

Since V,, is a non-increasing function, it is easy to
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deduce from (40) that Theorem 2  For the (y-subsystem of (1) satisfy-

2
kbl

2
s
‘/bl = 7138,1'1( Cl
™

2k2
for all ( € (21 x R. By a simple calculation, we can
obtain
7TC12 1, 7
— < tan” (—-
%, %
and thereby the state (; remains in the set |[(;]| < ky,
(i.e., —k11 < (4 < ky2) and never violates the con-
straints.
Part 2 Local Prescribed/finite-time stable with-

out violating constraints: When f, = 1, let C' =
max V,.(¢). Then (40) indicates the origin of the CLS
€5,

) <V, <V,(0), (42

V,(0)) < g VE=0,  (43)

is locally finite-time stable in the attraction domain =}
and the convergence time satisfies

-

5 z
< 2V,2(0) < 2C'= . (a4)
cT cT
Therefore, by selecting ¢ > (2C%)/(7T, — 7T, ), one
has T; < 1)} — Ty;. Furthermore, similar to the ar-
gument in Part 2, it can be shown that the constraints
—k11 < p1 < ki is not violated as well.

Part 3 Stability analysis: The equation (40) indi-
cates that the CLS is Lyapunov asymptotically conver-
gent (stable) in both operational domains. Thanks to the
properties of existence and continuation of the solution-
s, it is sure that the whole system is Lyapunov asymp-
totically stable. As a result, based on this and the results
of Parts I and II, one has that the origin of the CLS is
prescribed-time stable within 7, + 7; < T} without
violating the constraints. Thus, the proof is completed.
g

T,

3.3 PTS of the (p-subsystem

Since ((t) = 0, then we have that ((t) keeps ze-
ro for all ¢ > T). As a result, to achieve the PST task
of system (1), we next only need to stabilize the (y-
subsystem in a prescribed time 75 < (1—¢)7),. Similar
as that in Subsection 3.1, introduce
FQZ{FZ’ COG{R_E2}&t<Tsz, 45)

1, otherwise,
where = is a small closed neighborhood of origin and
Ty

Ty —t’
with the positive design parameter T, satisfying 0 <
Tso < Ts.

Take the candidate Lyapunov function Vj as V =
Vo and select

I = (46)

uo = —F 2580 ¢] 7, (47)

with By = o + k and w € (0,1), k being positive
constants, one obtains

Vo < —kKF 2 4u0(Co)[Col> 2. (48)

ing Assumption 1, the state feedback controller (47)
drives the state (; to zero within the prescribed finite
time 75 without violating the constraints.

Proof This proof follows the same line of that of
Theorem 1. O

Till now, the state feedback design for PTS of the
system (1) is completed. Accordingly, the following
theorem is stated to sum up the result.

Theorem 3  Consider the system (1) satisfying
Assumptions 1-2. If the switching control strategy

{’LLO|(11)7 t < 5Tp,

Uy =

Uo|(ary, t = €T,
Uy = Gy (50
with a properly selection of the design parameters is ap-
plied, then the states of the CLS are driven to zero with-

in any prescribed finite time 7},. while, at the same the
constraints (2) are satisfied.

(49)

Proof The result holds readily from the results of
Theorems 1-2. U

Remark 5

summarized as:

The idea of design procedure can be as

1) For given prescribed-time T), > 0, take 77 = T} and
Ty = (1 —¢€)Tp withe € (0,1).

2) The designed controller ug = uo\(u) ensures that the
Co-subsystem is well-defined in [0,77). In this situation, by
letting 751 < 71, the designed controller u; = CH with
F1 = I7 to a (small) pre-specified attraction domain =7 at
some T, < Ts1 without violating the constraints. In such
way, the computational singularity of designed controller when
t — Ts1 is solved.

3) Appropriately selected parameter ¢ guarantees that un-
der designed controller u; = Cj"rl with 1 = 1, the system s-
tate ¢ (¢) once enters the attraction domain = then it converges
to and stays at the origin { = O forall ¢t > Ty > T, + T, at the
same time satisfying the constraints.

4) Switch the controller ug to ug = ug| (47)> which renders
the state ¢ to zero within the prescribed finite time 7% without
violating the constraints.

4 Simulation Example

Consider the following nonholonomic chained-
form system:

C:O = Uy,
§1 = (2, (5D
Co=ur + |G,

with 1/2 < 6 < 1. Such system can be viewed as a per-
turbed version of unicycle-type mobile robot model [6].
When the robot works in a limited area, how to park the
robot in a prescribed time turns into the problem of PTS
of system (51) with output constraints (2).

Itis clear that |;|? renders that the system (51) is an
essential nonsmooth system, to which the existing PTS
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designs of [33] and [34] are inapplicable. But, if the pre-
scribed time T}, = 5's, kg1 = k11 = 1 + 0.55sin(10¢)
and ko = k12 = 1 + 0.4sin(6t) is taken, it is not
hard to check that such system satisfies the assump-
tions with k), = k;;, = 045, ky, = k, = 0.6,
Eog = E]_g == 055, :I;I04 = E14 == 04, T = 1/3,
wys = 0.54/1+4 (¢ and ¢; = 0. Therefore the
prescribed-time controller designed as (32) and (47)
with by = 0.1, 93 = /14 (}, e = 3/5, ¢* = 0.1,
Ta =2, Ty =4, 5, = {¢: 2+ ¢ <001},
Sy = {{ : ¢ < 001}, v = 625, k = 1,
w = 0.5, go1 = 4.7216A32, 055 = 0.7566(3%,
093 =2.5198(1+ 22) +12.1592(1 +(?)%3 3% and 0,4
= 1.6133(1 + ¢?)*3B%2 can achieve the PTS of con-
strained system (51). For different initial condition-
s: (a) (CO(O)v G (0)’ C?(O)) = (_0‘17 0.1, _1) and (b)
(€0(0),€1(0),¢2(0)) = (—0.4,0.9,—5), the simula-
tion results depicted in Figs. 1-5 exhibit the appeal-
ing performance of the proposed prescribed-time con-
trol scheme.
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S Conclusions

By introducing the time-varying function into the
virtual/actual controllers, a non-scaling design is de-
veloped for a kind of uncertain NSs with time-varying
output constraints. The suitable switching mechanis-
m makes the proposed control scheme achieving the
prescribed-time stabilization, while solving the compu-
tationally singular problem effectively and leading to a
simpler controller. Extension of this result with incom-
plete state information is one of our future research top-
ics.
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