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摘要:近年来,对于具有未知动态的非零和微分博弈系统的跟踪问题,已经得到了讨论,然而这些方法是时间触发的,
在传输带宽和计算资源有限的环境下并不适用. 针对具有未知动态的连续时间非线性非零和微分博弈系统,本文提出了
一种基于积分强化学习的事件触发自适应动态规划方法. 该策略受梯度下降法和经验重放技术的启发,利用历史和当前
数据更新神经网络权值.该方法提高了神经网络权值的收敛速度,消除了一般文献设计中常用的初始容许控制假设. 同
时,该算法提出了一种易于在线检查的持续激励条件(通常称为PE),避免了传统的不容易检查的持续激励条件.基于李
亚普诺夫理论,证明了跟踪误差和评价神经网络估计误差的一致最终有界性. 最后,通过一个数值仿真实例验证了该方
法的可行性.
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Abstract: Recently, for the tracking problem of nonzero-sum differential game systems with unknown dynamics, it has
been discussed that these methods are time-triggered, which is not ideal in an environment with limited transmission band-
width and computing resources. In this paper, an integral reinforcement learning based event-triggered adaptive dynamic
programming scheme is developed for continuous-time nonlinear nonzero-sum differential game systems with unknown
dynamics. The strategy is inspired by the gradient descent method and the experience replay technique and uses the histori-
cal and current data to update the neural network weight. This method can improve the convergence speed of neural network
weight and remove the assumption of initial admissible control often used in general literature design. In the meantime,
the algorithm proposes a persistent excitation condition (commonly called PE) that is easy to check online, which avoids
the traditional PE condition that is not easy to check. Based on the Lyapunov theory, the uniform ultimate boundedness
(UUB) properties of the tracking error and the critic neural network estimation error have been proved. Finally, a numerical
simulation example is given to verify the feasibility of the proposed method.
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1 Introduction
Optimal control is to design a control law to guaran-

tee the stability of the system while minimizing the pre-
determined performance index function. In some prac-
tical applications, a large number of systems are con-
trolled by multiple controllers, each of which can be
regarded as a player, and each player minimizes its own
cost function by influencing the state of the system, such

as power system in [1], military in [2], and automatic
driving in [3]. In this case, the optimal control problem
of each player is coupled with the optimal control prob-
lem of other players. Therefore, such an optimal solu-
tion may not exist in the general case, which prompts
researchers to find a new alternative form of the opti-
mal standard. Game theory provides a solution to the
optimal control problem with multiple players, named
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Nash equilibrium. A Nash equilibrium is a combina-
tion of strategies that contains the optimal strategy for
all players. That is, given the strategies of other players,
no individual has an incentive to choose another control
strategy, so no one will try to break the balance. Such a
set of strategies is called a Nash equilibrium.

Differential game theory is an important part of the
game theory which has received a lot of research atten-
tion in various fields. Differential games can be divided
into fully cooperative games in [4], zero-sum games in
[2, 5–6] and nonzero-sum (NZS) games in [7–11] ac-
cording to the relationships between the players. In a
fully cooperative game, all players complete an overall
task and pursue team interests through complete coop-
eration. In a two-player zero-sum game, players com-
pete with each other to pursue their own interests, one
player’s gain is the other’s loss, and their control strate-
gies are independent of each other. For the problem of
H∞ control, many scholars treat it as a zero-sum game.
For a NZS game, players can minimize their cost func-
tion by cooperating or competing. Solving the Nash e-
quilibrium of a NZS game ultimately comes down to
solving a coupled Hamilton-Jacobi (HJ) equation, but
because the coupled HJ equation is a nonlinear partial
differential equation, the problem of “dimension disas-
ter” will occur as the dimension increases.

Therefore, lots of scholars used the adaptive dy-
namic programming (ADP) based on the neural net-
works (NNs) to approximate the Nash equilibrium of
NZS game. Vamvoudakis and Lewis in [8] used the
critic-actor NNs based on policy iteration to solve the
Nash equilibrium for NZS game systems, where the
critic NNs and the actor NNs were used to approxi-
mate value functions and control strategies, respective-
ly. Zhang et al. in [9] used the critic NNs to solve
the Nash equilibrium of the NZS game system, which
reduced one layer of NN compared with [8], reduced
the calculation cost and without need the initial admis-
sible control. However, both [8] and [9] require com-
plete knowledge of system dynamics, which is not ap-
plicable to partially unknown systems. Kamalapurkar,
Klotz and Dixon in [10] used identifier NNs to iden-
tify unknown system knowledge with partial unknown
NZS game systems. However, the training of identi-
fiers is often time-consuming and inevitably introduces
detrimental identification errors. Zhang and Zhao in
[11] used the data-driven integral reinforcement learn-
ing (IRL) method to solve partial unknown optimal con-
trol problems, avoiding the identification process, that
is, avoiding the identification error.

The optimal control problems discussed above are
all time-triggered, that is, the sampled data needs to
be transmitted to the controller at every moment, and
the control input needs to be updated at every moment.
Generally speaking, the higher the sampling frequen-

cy of the controlled object, the more information can
be collected to design the control input, and the cor-
responding control can work on the controlled objec-
t in time, so as to obtain better control performance.
However, in some specific applications, such as net-
worked control systems with geographically distributed
sensors, controllers, and actuators, transmission band-
width and computing resources are always limited. In
this case, a higher sampling frequency may lead to net-
work congestion and even more task delay. Therefore, it
is of great significance to realize less control actions and
less communication while ensuring the system perfor-
mance. Therefore, a non-periodic event-triggered strat-
egy is proposed to replace the traditional time-triggered
strategy. Unlike time-triggered systems, the control in-
put of an event-triggered system is updated only at trig-
ger times determined by appropriately designed trigger
conditions. In this way, event-triggered can significant-
ly reduce the network bandwidth and computing bur-
den.

For multi-player NZS games, event-based ADP has
become the most common method used to approxi-
mate the control input of each player in [12–16]. An
event-triggered ADP algorithm for solving discrete time
multi-player game is proposed based on a model NN
and critic NN in [12]. Su et al. in [13] proposed an
actor-critic structure to solve the discrete time NZS
games, which avoids unnecessary information transmis-
sion and computation. [12] and [13] have their re-
spective advantages. Wang et al. [12] proved that
the state of the closed-loop system is asymptotical-
ly stable, while the state of the closed-loop system in
[13] is UUB. However, compared with [12–13] consid-
er the saturation of control input more and only need
to use local state measurement information. These
are all about discrete time. Su et al. in [14] used the
identifier-critic NN to solve continuous time for partial-
ly unknown NZS games. Su et al. in [15] used IRL to
solve the optimal control for the partially unknown NZS
game. Compared with [14], the introduction of identi-
fier NN was avoided, i.e., the identification error was
avoided. These are all about optimal regulation prob-
lems, but there are few studies on optimal tracking con-
trol problem (OTCP) in NZS games. However, in a real
system, it is necessary to design a control input to track
the state or output of the system to an ideal reference
signal. There’s a part of this research that is about op-
timal tracking control for the NZS games in [17–18],
but it’s all about time triggered. In the limited band-
width constraints, these methods will not be applicable.
For the above motivation, we study the OTCP for par-
tially unknown NZS game event-triggered without the
requirement of initial stabilizing control policies.

The main contributions of this paper are listed as
follows.
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1) In this paper, the OTCP based on event trig-
gered is successfully extended from one control in-
put[19–21] to N control inputs. Therefore, the problems
and models considered in this paper are more general
and more widely applicable than those in these litera-
tures [19–21].

2) Compared with the critic NNs weight updating
rules in [19–21], which only use the current data to up-
date, this paper adopts the experience replay (ER) tech-
nology, that is, using the current data and historical data
to update the weight. The traditional PE condition can
be removed by using the ER technique, and the PE con-
dition that is easier to check online can be obtained, and
the convergence rate of weight is faster. Compared with
[20], this paper does not need the assumption of initial
admissible control.

3) Under the same model and problem, references
[17] and [18] are time-triggered, which are not appli-
cable in the environment with limited bandwidth and
computing resources. However, this paper is event-
triggered, which is not only applicable in the environ-
ment with limited bandwidth and computing resources,
but also can significantly reduce the bandwidth occupa-
tion and computing burden.

The rest of this paper is organized as follows. In
section 2, some basic knowledge of optimal control and
event triggered mechanism are introduced. A single-
critic network structure is proposed to approximate the
optimal value function in Section 3. In Section 4, an
online iterative algorithm is proposed and the stability
of the closed-loop system is analyzed. In Section 5, a
simulation example is given. Sections 6 concludes the
paper.

Notions: R is the set of real numbers. R+ is
all nonnegative real numbers. Rn and Rn×m denote
the set of the real n-vectors and the n × m matri-
ces, respectively. Let N = {1, 2, · · · , N} and u−i =

{u1, u2, · · · , ui−1, ui+1, · · · , uN}. T is the transposi-
tion symbol. ∇ is the gradient operator. λmin(·) denotes
the minimal eigenvalue of a matrix. ξ is a vector or
a matrix, ∥ξ∥ represents the Euclidean norm or the 2-
norm of ξ. Ω is a compact set, and f(·) ∈ C1(Ω)

means f(·) is continuous first derivatives on Ω. A
continuous function α will be of class-K if it strict-
ly increasing with initial value being α(0) = 0; in
addition, a class-K function α can be viewed as the
class-K∞ if it satisfies α(r) → ∞ as r → ∞. De-
fine β(ξ−) as the left limit of a function β(r) when
r → ξ from the left, i.e., β(ξ−) = lim

ε→0
β(ξ − ε). The

function f(x) is Lipschitz continuous on Ω if the re-
lation ∥f(x1) − f(x2)∥ 6 D∥x1 − x2∥ exists for all
x1, x2 ∈ Ω with the constant D > 0.

2 Preliminary
2.1 Problem statement

Consider the general N -player NZS differential
games[8, 17–18]

ẋ(t) = f(x(t)) +
N∑
j=1

gj(x(t))uj(t), (1)

where x ∈ Rn is system state, uj ∈ Rmj is control for
player j. f(x) ∈ Rn and gj(x) ∈ Rn×mj represen-
t the drift dynamics and input dynamics of the system
respectively. In this paper, we assume that f(x) is un-
known and gj(x) is known.

Assumption 1[22] f(x) and gj(x) are Lipschitz
continuous on a compact set Ω̄ ⊂ Rn with f(0) = 0,
f(·) 6 bf∥x∥, and ∥gj(x)∥ 6 bg,j , where bf and bg,j
are positive constants.

Remark 1 The Lipschitz continuity of f(x) and
gj(x) is to ensure that system (1) has a unique solution for any
initial state x0. Although the boundedness of gj(x) is a little
harsh, in practice there are still many systems that satisfy this
condition, for example: aircraft systems.

The reference signal r(t) is generated by a com-
mand generator

ṙ(t) = fd(r(t)), (2)

where fd(r(t)) is the Lipschitz continuous with fd(0)
= 0 and r(t) ∈ Rn is bounded. Note that the reference
dynamics only need to be stable in the Lyapunov sense
and are not necessarily asymptotically stable. Sine and
cosine waves are some examples of such signals.

The tracking error is defined as

er(t) = x(t)− r(t). (3)

Using Eq. (3), the tracking error dynamic can be d-
educed as

ėr(t) = f(er(t) + r(t)) +
N∑
j=1

gj(er(t) + r(t))uj(t)− fd(r(t)). (4)

Then, construct an augmented system expressed as
ℓ(t) = [eTr (t) rT(t)]T ∈ R2n. According to Eq. (2)
and Eq. (4), the following augmented system can be ob-
tained

ℓ̇(t) = F (ℓ(t)) +
N∑
j=1

Gj(ℓ(t))uj(t), (5)

where

F (ℓ(t)) =

[
f(r(t) + er(t))− fd(r(t))

fd(r(t))

]
,

Gj(ℓ(t)) =

[
gj(r(t) + er(t))

0n×mj

]
.

According to Assumption 1 and the definition of
Gj , one has ∥Gj∥ 6 λj,G, where λj,G is a positive
constant.
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The cost function of system (5) is defined as fol-
lows:

J̄i(ℓ(t), u1, u2, · · · , uN) =w ∞

t
e−λ(τ−t)(ℓT(τ)Q̄iℓ(τ) +

N∑
j=1

uT
j (τ)Rijuj(τ))dτ, (6)

where

Q̄i =

[
Qi 0n×n

0n×n 0n×n

]
,

Qi = QT
i > 0, Rii = RT

ii > 0, Rij = RT
ij > 0, λ > 0

is a discount factor.

Definition 1 (Admissible Control)[22] The feed-
back control policy ui = ui(ℓ(t)) ∈ Φ(Ω) is admis-
sible on with respect to Eq. (6) on a set Ω ⊂ R2n, if
ui(ℓ(t)) is continuous on Ω, ui(0) = 0, ui(ℓ(t)) stabi-
lizes the tracking error dynamics (4) on Ω, and Eq. (6)
is finite ∀ℓ(t) ∈ Ω.

For the sake of description, let ui = ui(ℓ(t)). For
a given set of control input {u1, · · · , ui, · · · , uN}, the
value function for player i can be expressed as

Vi(ℓ(t)) =w ∞

t
e−λ(τ−t)(ℓT(τ)Q̄iℓ(τ)+

N∑
j=1

uT
j Rijuj) dτ, i∈N.

(7)

The purpose of OTCP is to design a set of control
{u∗

1, u
∗
2, · · · , u∗

N} so that the tracking error converges
to zero while minimizing the value function (7). This
control combination {u∗

1, u
∗
2, · · · , u∗

N} corresponds to
the Nash equilibrium of NZS games.

Definition 2 (Nash Equilibrium Strategies)[23]

An N -tuple of control policies {u∗
1, u

∗
2, · · · , u∗

N}, i ∈
N is said to constitute a Nash equilibrium solution for
an N -player game, if the following N inequalities are
satisfied

J̄i(u
∗
1, u

∗
2, · · · , u∗

N) 6 J̄i(u
∗
1, u

∗
2, · · · , ui, · · · , u∗

N).
(8)

Remark 2 [22, 24] The reason for the discount factor
in the value function (7) is that r(t) in this paper is not asymp-
totically stable, that is, when t → ∞, r(t) ̸≡ 0, so ui ̸≡ 0 at this
time, which leads to the unbounded value function. Therefore,
a discount factor should be added to the value function.

Assume that the value function Vi(ℓ(t)) ∈ C1(Ω).
By differentiating Vi along the system trajectories (5),
we can write Eq. (7) as

0 = Ui(ℓ(t), u1, u2, · · · , uN)− λVi(ℓ(t)) +

∇V T
i (ℓ(t))(F (ℓ(t)) +

N∑
j=1

Gj(ℓ(t))uj), i ∈ N,

(9)

where

Ui

(
ℓ(t), u1, u2, · · · , uN

)
=

ℓTQ̄iℓ(t) +
N∑
j=1

uT
j Rijuj, ∇Vi =

∂Vi

∂ℓ
.

The optimal value function V ∗
i can be expressed as

V ∗
i (ℓ(t)) = min

ui

w ∞

t
e−λ(τ−t)(ℓ(τ)TQ̄iℓ(τ) +

N∑
j=1

uT
j Rijuj)dτ, i ∈ N. (10)

V ∗
i (ℓ(t)) is the solution of the Hamilton-Jacobi-

Bellman (HJB) equation

min
ui

Hi(ℓ,∇V ∗
i (ℓ(t)), u1, · · · , ui, · · · , uN) = 0.

(11)
where

Hi(ℓ,∇V ∗
i (ℓ(t)), u1, · · · , ui, · · · , uN) =

Ui(ℓ(t), u1, u2, · · · , uN)− λV ∗
i (ℓ(t)) +

(∇V ∗
i (ℓ(t)))

T(F (ℓ(t)) +
N∑
j=1

Gj(ℓ(t))uj).

Using the stationarity conditions
∂Hi

∂ui

= 0, the op-

timal control input for player i is

u∗
i (ℓ(t)) = −1

2
R−1

ii GT
i (ℓ(t))∇V ∗

i (ℓ(t)), i ∈ N.
(12)

The equivalent transformation of Eq. (7) is

Vi(ℓ(t−∆t)) =

e−λ∆tVi(ℓ(t)) +w t

t−∆t
e−λ(τ−t+∆t)Ui(ℓ(τ), ui, u−i)dτ , (13)

where ∆t > 0 is a time interval.
According to Eq. (13), we have

V ∗
i (ℓ(t−∆t))− e−λ∆tV ∗

i (ℓ(t)) =w t

t−∆t
e−λ(τ−t+∆t)Ui(ℓ(τ), u

∗
i , u

∗
−i)dτ . (14)

It is easy to see from Eq. (14) that there are no more
unknown dynamics. Therefore, the identification pro-
cess of unknown dynamics f(x) is no longer needed,
that is, identification error is avoided.

In the above description, the control of the system
needs to be updated in real time, and in some limit-
ed bandwidth environments, this approach is not suit-
able, and the calculation cost is too high. Therefore, to
save communication and computing resources, this pa-
per adopts a control method based on event triggered,
which is sampled and updated by defined events.
2.2 Event-triggered control method

In time-triggered control, the N -tuple control input
{u1, · · · , uN} is a feedback form of system state up-
dated at each sample time. In event-triggered control,
the N -tuple control input {u1, · · · , uN} is updated on-
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ly if the state of the system breaks a preset threshold.
In this case, a zero-order holder (ZOH) can be used to
ensure that the control input is continuous at the trig-
ger time. Define the triggering instants of events as τk,
where {τk}∞k=0 is a monotonically increasing sequence
of time instants with τ0 = 0. Define the event-triggered
error as

ek(t) = ℓ̆k − ℓ(t), t ∈ [τk, τk+1), (15)

where ℓ̆k = ℓ(τk) is the event-trigged state.
According to ek(t) in Eq. (15), we elaborate the

event-triggered mechanism as follows. When the even-
t does not trigger, i.e., t ̸= τk, and ek(t) ̸= 0. In this
case, the control input will remain constant for two adja-
cent trigger instants. When the event triggers at trigger
time τk, i.e., t = τk and ek(τk) = 0. In this case, the
control input will be updated.

In the framework of event triggered, the optimal
control input Eq. (12) can be written as

u∗
i (ℓ̆k) = −1

2
R−1

ii GT
i (ℓ̆k)∇V ∗

i (ℓ̆k), (16)

where ∇V ∗
i (ℓ̆k) =

∂V ∗
i

∂ℓ
|ℓ=ℓ̆k

, i ∈ N.

The piecewise continuous control signal can be ex-
pressed by a ZOH

u∗
i (t) =


u∗
i (ℓ̆k), t∈

[
τk, τk+1),

−1

2
R−1

ii GT
i (ℓ̆k+1)∇V ∗

i (ℓ̆k+1),

t = τk+1.

(17)

In this part, we mainly introduce the research ques-
tions and the basic knowledge of event triggered. In the
next part of this article, we will use the critic NNs to
learn value functions.

3 Single-critic structure
In the above analysis, we have concluded that the

solution of optimal control (16) ultimately comes down
to the HJ equation, so this section will use a critic NN
to approximate the solution of Eq. (14). According to
the Weierstrass high-order approximation theorem, we
can get

V ∗
i (ℓ) = ω∗T

i ϕi(ℓ) + εi(ℓ), (18)

∇V ∗
i (ℓ) = ∇ϕT

i (ℓ)ω
∗
i +∇εi(ℓ), (19)

where ω∗
i ∈ RKi is the unknown ideal weight, ϕi :

R2n → RKi are linearly independent activation func-
tions, Ki denotes the number of neurons, and εi is the
approximation error.

Assumption 2[25] 1) The approximation error
εi(ℓ) and its gradient ∇εi(ℓ) are bounded on Ω, i.e.,
∥εi(ℓ)∥ 6 bi,ε and ∥∇εi(ℓ)∥ 6 bi,∇ε, with bi,ε, bi,∇ε,
being positive constants. 2) The activation function
ϕi(ℓ) and its gradient ∇ϕi(ℓ) are bounded on Ω, i.e.,
∥ϕi(ℓ)∥ 6 bi,ϕ and ∥∇ϕi(ℓ)∥ 6 bi,∇ϕ, with bi,ϕ, bi,∇ϕ,
being positive constants.

Remark 3 For Assumption 2 2), this condition is
mild in practice since many activation functions, such as the
sigmoid function and tanh function, satisfy Assumption 2 2).

Substituting Eq. (18) into Eq. (14), the Bellman
equation (14) can be written

ei(t) =

ω∗T
i

[
e−λ∆tϕi(ℓ(t))− ϕi(ℓ(t−∆t))

]
+w t

t−∆t
e−λ(τ−t+∆t)Ui(ℓ(τ), u

∗
i (ℓ̆k), u

∗
−i(ℓ̆k))dτ ,

(20)

where ei(t) = εi(ℓ(t −∆t)) − e−λ∆tεi(ℓ(t)) is error
from the NN approximation error. According to As-
sumption 2, ei(t) is bound on Ω, i.e., ∥ei(t)∥ 6 be,imax

where be,imax is a positive constant.
Denote ω̂i as the estimations of ω∗

i . Then the value
function can be approximated as

V̂i(ℓ) = ω̂T
i ϕi(ℓ). (21)

Based on Eq. (16), the approximate control inputs
are

ûi(ℓ̆k) = −1

2
R−1

ii GT
i (ℓ̆k)∇ϕT

i (ℓ̆k)ω̂i, i ∈ N. (22)

Using V̂i(ℓ) to replace Vi(ℓ) in Eq. (13). Therefore,
the Bellman equation (13) can be written

êi(t) =

ω̂T
i

[
e−λ∆tϕi(ℓ(t)− ϕi(ℓ(t−∆t))

]
+w t

t−∆t
e−λ(τ−t+∆t)Ui(ℓ(τ), ûi(ℓ̆k), û−i(ℓ̆k))dτ .

(23)

Eq. (23) can be written as

êi(t) = ω̂T
i ρi(t) + si(t), (24)

where

ρi(t)=e−λ∆tϕi(ℓ(t))− ϕi(ℓ(t−∆t)), (25)

si(t)=
w t

t−∆t
e−λ(τ−t+∆t)Ui(ℓ(τ), ûi(ℓ̆k), û−i(ℓ̆k))dτ .

(26)

It is worth noting that Eq. (24) is highly important
for the proposed IRL method. From Eq. (24), it is clear
that adjusting ω̂i will directly affect êi(t). Therefore,
the problem of solving the value function is transformed
to adjusting the weight ω̂i to minimize the error êi(t).
Consider the objective function

Ei(t) =
1

2
êTi (t)êi(t). (27)

In the following section, an online iterative learning
scheme is proposed to update ω̂i by minimizing Ei(t).

4 Online iterative learning
4.1 Online iterative learning algorithm

In this section, the gradient descent method is used
for updating the estimated critic weight. This article



No. 2 SHI Yi-bo et al: Event-triggered optimal tracking control for nonzero-sum differential game systems 225

uses the ER technique to update weight. This method
uses both historical and current data to update weight.
Compared with traditional gradient descent using only
the current data, the method adopted in this paper con-
verges faster and obtains a PE condition that is easier to
check.

Note d ∈ {1, · · · , l} is the index of the marked
historical state ℓ(td), td ∈ [τk, τk+1), l is the number of
marked historical states.

ω̂i is updated by minimizing the following error:

Ei(t) =
1

2
êTi (t)êi(t) +

1

2

l∑
d=1

êTi (td)êi(td). (28)

Condition 1 Let Zi = [ρi(t1), · · · , ρi(tl)] for
player i. Then, Zi in the recorded data contains as many
linearly independent elements as the number of neurons
in Eq. (18), i.e., rank(Zi)=Ki.

Remark 4 Condition 1 is actually like a PE condition,
but unlike the PE condition, it is easier to check in engineering
practice[25]. It should be noted that in condition 1, the num-
ber of historical data to be collected l is greater than Ki. The
amount of historical data l is constant, which means that as new
data are added, old data are removed.

According to the gradient descent method and ER,
the update rule of ω̂i can be obtained as
˙̂ωi(t) =

−αi

ρi(t)

(1 + ρTi ρi(t))
2

(
si(t) + ρTi (t)ω̂i(t)

)
−

αi

l∑
d=1

ρi(td)

(1 + ρTi (td)ρi(td))
2 (si(td) + ρTi (td)ω̂i(t)) ,

(29)

where αi is the learning rate.
However, this learning rule also needs a prerequi-

site, that is, the initial admissible control. This condi-
tion prevents us from using update rule (29) directly.
Therefore, the rest of this article discusses how to avoid
this condition. The following assumption is general-
ly employed in the study of the stability of closed-loop
systems.

Assumption 3 [9, 26] It is assumed that there ex-
ists a continuously differentiable radially unbounded
Lyapunov candidate Ji(ℓ) such that J̇i = ∇JT

i ℓ̇ =

∇JT
i (F (ℓ)+

N∑
j=1

Gj(ℓ)uj(ℓ)) < 0 with ∇Ji being the

partial derivative of Ji(ℓ) with respect to ℓ. In addition,
it holds that

∇JT
i (F (ℓ) +

N∑
j=1

Gj(ℓ)u
∗
j (ℓ̆k)) = −∇JT

i M̄i(ℓ)∇Ji,

(30)
where the matrix M̄i(ℓ) ∈ R2n×2n is symmetric and
positive definite.

Define an index of stability as

P (ℓ, û1, · · · , ûN) =

{
0, when Ji < 0,

1, else.
(31)

where Ji = (∇Ji(ℓ))
T(F (ℓ) +

N∑
j=1

Gj(ℓ)ûj(ℓ̆k)).

Let P (ℓ, Û) = P (ℓ, û1, · · · , ûN). According to
Eq. (29), the proposed updating rule for ω̂i is given by
˙̂ωi(t) =

−αi

ρi(t)

(1 + ρTi ρi(t))
2

(
si(t) + ρTi (t)ω̂i(t)

)
−

αi

l∑
d=1

ρi(td)

(1 + ρTi (td)ρi(td))
2 (si(td) + ρTi (td)ω̂i(t)) +

qi
2
P (ℓ, Û)∇ϕi(ℓ̆k)Gi(ℓ̆k)R

−1
ii GT

i (ℓ)(
N∑
j=1

∇Jj),

(32)

where qi is the learning rate.

Remark 5 The first term in Eq. (32) was obtained by
the standard gradient descent method. The second term in E-
q. (32) is the recorded data based on the ER technique. Accord-
ing to [11, 25], the gradient descent method based on the ER
technique has a faster weight convergence speed than the tra-
ditional gradient descent method. The last term in Eq. (32) is
derived from the Lyapunov stability analysis and is used to en-
sure the stability of the system during value function learning.
The choice of P (ℓ, Û) depends on the stability of the system in
the learning process. When system Eq. (5) is stable, the oper-
ator P (ℓ, Û) = 0, and it will not work. When the system (5)
is unstable, the operator P (ℓ, Û) = 1, and it will be activated.
It is worth noting that P (ℓ, Û) = 0 holds only if the condition
Ji < 0 is met for all the players. Therefore, by introducing
operator P (ℓ, Û), the requirement of initial admissible control
in the learning process is eliminated.

4.2 Main results
Denote ω̃i = ω∗

i − ω̂i is the critic weight estimation
error and find that ˙̃ωi = − ˙̂ωi.
˙̃ωi(t) =

− αiρi(t)ρ
T
i (t)ω̃i(t)

(1 + ρTi ρi(t))
2 − αi

l∑
d=1

ρi(td)ρ
T
i (td)ω̃i(t)

(1 + ρTi (td)ρi(td))
2+

αi

ρi(t)

(1 + ρTi ρi(t))
2 (si(t) + ρTi (t)ω

∗
i (t)) + αi×

l∑
d=1

ρi(td)

(1 + ρTi (td)ρi(td))
2 (si(td) + ρTi (td)ω

∗
i (t))−

qi
2
P (ℓ, Û)∇ϕi(ℓ̆k)Gi(ℓ̆k)R

−1
ii GT

i (ℓ)(
N∑
j=1

∇Jj).

(33)
Before we discuss the stability of closed-loop sys-

tems, we introduce the following assumptions in [15,
27].
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Assumption 4 For ∀i ∈ N, the control input u∗
i

is locally Lipschitz with respect to ek(t). That is, there
exists a constant Lu,i > 0 satisfying that

∥u∗
i (ℓ)− u∗

i (ℓ̆k)∥2 6 Lu,i∥ek(t)∥2.
Theorem 1 For the augmented system (5), sup-

pose that Assumptions 1–4 and Condition 1 holds. Let
the critic NN is updating by Eq. (32) and the following
event-triggered condition

∥ek(t)∥ 6

√
(1− η2)λmin(Q)∥er(t)∥2 + U(ℓ̆k)

L
(34)

is adopted. Then, the tracking error er(t) and the critic
NN weight estimation error ω̃i are all UUB, where 0 <

η < 1, Q =
N∑
i=1

Qi, L =
N∑
i=1

λmax(Rii)Lu,i +
1

2
(N −

1)
N∑
i=1

λ2
i,GLu,i, U(ℓ̆k) =

N∑
i=1

λmin(Rii)∥ûi(ℓ̆k)∥2.

Proof. The Lyapunov function is defined as fol-
lows:

L(X) = L1 + L2 + L3 + L4, (35)

where 
L1 =

N∑
i=1

V ∗
i (ℓ), L2 =

N∑
i=1

V ∗
i (ℓ̆k),

L3 =
N∑
i=1

1

2
ω̃T
i ω̃i, L4 =

N∑
i=1

qiJi(ℓ).

(36)

For the convenience of description and analysis, in
the following, Li

m is denoted as the i-th term of Lm,
where m = 1, 2, 3, 4. The whole proof is divided into
two cases according to whether the events are triggered
or not.

Case 1
(
t ∈ [τk, τk+1)

)
When the event is not

triggered, the derivative of the Lyapunov function with
respect to t can be derived and obtained first

L̇1 =
N∑
i=1

V̇ ∗
i (ℓ) =

N∑
i=1

(∇V ∗
i (ℓ))

T[F (ℓ) +
N∑
j=1

Gj(ℓ)ûj(ℓ̆k)]. (37)

The derivative of the second term is L̇2 = 0 while
the derivative of the third term for player i is

L̇i
3 =

−αiω̃
T
i ρi(t)ρ

T
i ω̃i

(1 + ρTi ρi(t))
2 − αi

l∑
d=1

ω̃T
i ρi(td)ρ

T
i (td)ω̃i

(1 + ρTi (td)ρi(td))
2 +

αi

ω̃T
i ρi(t)

(1 + ρTi ρi(t))
2 (si(t) + ρTi ω

∗
i (t)) + αi ×

l∑
d=1

ω̃T
i ρi(td)

(1 + ρTi (td)ρi(td))
2 (si(td) + ρTi (td)ω

∗
i (t))−

qiω̃
T
i

2
P (ℓ, Û)∇ϕi(ℓ̆k)Gi(ℓ̆k)R

−1
ii GT

i (ℓ)(
N∑
j=1

∇Jj).

(38)

Besides, the derivative of the last term is

L̇4 =
N∑
i=1

qi(∇Ji(ℓ))
T[F (ℓ) +

N∑
j=1

Gj(ℓ)ûj(ℓ̆k)].

(39)
For the sake of clarity, we analyze i-th term in

Eq. (37) individually, and the transformation of the rest
of the terms are analogous. According to Eq. (9) and
Eq. (12), we can get

L̇i
1 = (∇V ∗

i (ℓ))
T[F (ℓ) +

N∑
j=1

Gj(ℓ)ûj(ℓ̆k)] =

(∇V ∗
i (ℓ))

TF (ℓ) + (∇V ∗
i (ℓ))

TGi(ℓ)ûi(ℓ̆k) +

(∇V ∗
i (ℓ))

T
N∑
j ̸=i

Gj(ℓ)ûj(ℓ̆k) =

λV ∗
i (ℓ)− ℓTQ̄iℓ−

N∑
j=1

(u∗
j (ℓ))

TRiju
∗
j (ℓ)−

(∇V ∗
i (ℓ))

T
N∑
j=1

Gju
∗
j (ℓ)+(∇V ∗

i (ℓ))
TGi(ℓ)ûi(ℓ̆k)+

(∇V ∗
i (ℓ))

T
N∑
j ̸=i

Gj(ℓ)ûj(ℓ̆k) 6

λV ∗
i (ℓ)+(∇V ∗

i (ℓ))
T

N∑
j ̸=i

Gj(ℓ)(ûj(ℓ̆k)−u∗
j (ℓ))−

2(u∗
i (ℓ))

TRiiûi(ℓ̆k)− eTr Qier +

(u∗
i (ℓ))

TRiiu
∗
i (ℓ) 6

λV ∗
i (ℓ)+(∇V ∗

i (ℓ))
T

N∑
j ̸=i

Gj(ℓ)(ûj(ℓ̆k)−u∗
j (ℓ)) +

(u∗
i (ℓ)− ûi(ℓ̆k))

TRii(u
∗
i (ℓ)− ûi(ℓ̆k))− eTr Qier −

ûT
i (ℓ̆k)Riiûi(ℓ̆k). (40)

Thus, for the term L̇1, one can obtain

L̇1 6
N∑
i=1

[λV ∗
i (ℓ)− eTr Qier + λmax(Rii)∥u∗

i (ℓ)−

ûi(ℓ̆k)∥2 − λmin(Rii)∥ûi(ℓ̆k)∥2 +
1

2
∥∇V ∗

i (ℓ)∥2 +

1

2
∥

N∑
j ̸=i

Gj(ℓ)(u
∗
j (ℓ)− uj(ℓ̆k))∥2] 6

N∑
i=1

(λV ∗
i (ℓ) +

1

2
∥∇V ∗

i (ℓ)∥2)− η2eTr Qer −

(1− η2)eTr Qer + L∥ek(t)∥2 − U(ℓ̆k). (41)

According to Assumption 2 and Eq. (18), the opti-
mal value function V ∗

i (ℓ) is bound by a positive con-
stant bi,V ∗

i
and its gradient ∇V ∗

i (ℓ) also is bound by a
positive constant bi,∇V ∗

i
.

For L̇i
3, we apply Young’s inequality to the third and

fourth terms on the right of Eq. (39)

L̇i
3 6

−αiλmin(Φi)∥ω̃i∥2 + αi

ω̃T
i ρi(t)ρ

T
i ω̃i

2
+
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αi

eTi ei(t)

2
+ αi

l∑
d=1

ω̃T
i ρi(td)ρ

T
i (td)ω̃i

2
+

αi

l∑
d=1

eTi (td)ei(td)

2
− qiω̃

T
i

2
P (ℓ, Û)∇ϕi(ℓ̆k)×

Gi(ℓ̆k)R
−1
ii GT

i (ℓ)(
N∑
j=1

∇Jj) 6

−αi

2
λmin(Φi)∥ω̃i∥2 +

αi

2
(1 + l)b2e,imax −

qiω̃
T
i

2
P (ℓ, Û)∇ϕi(ℓ̆k)Gi(ℓ̆k)R

−1
ii GT

i (ℓ)×

(
N∑
j=1

∇Jj), (42)

where

Φi(ρi, ρi(td)) =
ρi(t)ρ

T
i (t)

(1 + ρTi ρi(t))
2
+

l∑
d=1

ρi(td)ρ
T
i (td)

(1 + ρTi (td)ρi(td))
2
. (43)

When P (ℓ, Û) = 0, then for L̇3

L̇3 6
N∑
i=1

(−αi

2
λmin(Φi)∥ω̃i∥2 +

αi

2
(1 + l)b2e,imax).

(44)
In this case, we can deduce that L̇i

4 is negative.
From the dense property of R[28], we can conclude that
there is a constant τi > 0 such that

qi(∇Ji(ℓ))
Tℓ̇ < qiτi∥∇Ji(ℓ)∥ 6 0. (45)

Then

L̇(X) 6
N∑
i=1

(λV ∗
i +

1

2
∥∇V ∗

i ∥2−
αi

2
λmin(Φi)∥ω̃i∥2+

αi

2
(1 + l)b2e,imax)− η2eTr Qer +

N∑
i=1

(qiτi∥∇Ji(ℓ)∥)− (1− η2)eTr Qer +

L∥ek(t)∥2 − U(ℓ̆k). (46)

According to the event-triggered condition (34),
one can obtain

L̇(X) 6 −
N∑
i=1

(
αi

2
λmin(Φi)∥ω̃i∥2)− η2eTr Qer −

N∑
i=1

(qiτi∥∇Ji(ℓ)∥) + Z, (47)

where

Z =
N∑
i=1

[λbi,V ∗
i
+

1

2
b2i,∇V ∗

i
+

αi

2
(1 + l)b2e,imax].

Therefore, Eq. (47) produces L̇(X) < 0 as long as
one of the following conditions holds:

∥er∥ >
√

Z

η2λmin(Q)
= Ber1, (48)

or

∥ω̃i∥ >
√

2Z

αiλmin(Φi)
= Bω̃i,1, (49)

or

∥∇Ji(ℓ)∥ > Z

qiτi
= B∇Ji,1. (50)

Thus, according to the Lyapunov extension theorem
in [29], this proves the UUB stability of er and ω̃i.

When P (ℓ, Û) = 1, combine the last term of L̇3

with L̇4, one can obtain
N∑
i=1

qi(−
1

2

( N∑
j=1

∇Jj(ℓ)
)T

Gi(ℓ)R
−1
ii GT

j (ℓ̆k)ω̃i(t) +

(∇Ji(ℓ))
T
[
F (ℓ) +

N∑
j=1

Gj(ℓ)ûj(ℓ̆k)
]
) =

N∑
i=1

qi(−
1

2
(

N∑
j=1

∇Jj(ℓ))
TGi(ℓ)R

−1
ii GT

j (ℓ̆k)ω̃i(t) +

(∇Ji(ℓ))
T[F (ℓ)− 1

2

N∑
j=1

Gj(ℓ)R
−1
jj G

T
j (ℓ̆k)∇ϕT

j ×

(ωj − ω̃j)]) =
N∑
i=1

qi(∇Ji(ℓ))
T[F (ℓ)− 1

2

N∑
j=1

Gj(ℓ)R
−1
jj G

T
j (ℓ̆k)×

∇ϕT
j ωj] =

N∑
i=1

(qi(∇Ji(ℓ))
T[F (ℓ) +

N∑
j=1

Gj(ℓ)u
∗
j (ℓ̆k)] +

1

2
qi(∇Ji(ℓ))

T
N∑
j=1

Gj(ℓ)R
−1
jj G

T
j (ℓ̆k)∇εi) 6

N∑
i=1

qi(−λmin(M̄i)∥∇Ji∥2 +
1

2
Di∥∇Ji∥) =

N∑
i=1

qi(−λmin(M̄i)(∥∇Ji∥ −
Di

4λmin(M̄i)
)2 +

D2
i

16λmin(M̄i)
), (51)

where Di = qibi,∇ε

N∑
j=1

λ2
j,G∥R−1

jj ∥.

Now,

L̇(X)6−
N∑
i=1

αi

2
λmin(Φi)∥ω̃i∥2−

N∑
i=1

qi(λmin(M̄i)×

(∥∇Ji∥ −
Di

4λmin(M̄i)
)2) + Z − η2eTr Qer, (52)

where Z = Z +
N∑
i=1

qiD
2
i

16λmin(M̄i)
.

If at least one of the following inequalities holds:

∥er∥ >
√

Z
η2λmin(Q)

= Ber2, (53)

or

∥ω̃i∥ >
√

2Z
αiλmin(Φi)

= Bω̃i,2, (54)
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or

∥∇Ji∥ >
√

Z
qiλi(M̄i)

+
Di

4λmin(M̄i)
= B∇Ji,2, (55)

then, L̇(X) < 0. Thus, according to the Lyapunov ex-
tension theorem in [29], this proves the UUB stability
of er and ω̃i.

In summary, for the case P (ℓ, Û) = 0 or 1 , if
the condition ∥er∥ > max{Ber,1, Ber,2} = B̄er or
∥ω̃i∥ > max{Bω̃i,1, Bω̃i,2} = B̄ω̃i

or ∥∇Ji(ℓ)∥ >
max{B∇Ji,1, B∇Ji,2} = B̄∇Ji

holds, then L̇(X) < 0.
According to the standard Lyapunov extension theo-
rem, one can conclude that the tacking error er and NN
weight estimation error ω̃i are bounded by B̄er , B̄ω̃i

,
respectively.

Case 2 (t = τk+1) The event is triggered. Thus,
the differential form of Eq. (35)

∆L(X(τk+1)) = ∆L(ℓ̆k+1)−∆L(ℓ(τ−
k+1)) =

∆L1 +∆L2 +∆L3 +∆L4.

(56)

Since the state and value functions of the system
are continuous, it follows that ∆L1 6 0, ∆L3 6 0,
and ∆L4 6 0, where

∆L1 =
N∑
i=1

(V ∗
i (ℓ̆k+1)− V ∗

i (ℓ(τ
−
k+1))),

∆L3 =
1

2

N∑
i=1

[
ω̃T
i (τk+1)ω̃i(τk+1)−

ω̃T
i (ℓ(τ

−
k+1))ω̃i(ℓ(τ

−
k+1)

]
,

∆L4 =
N∑
i=1

qi[Ji(ℓ̆k+1)− Ji(ℓ(τ
−
k+1))].

(57)

Combining these time difference terms, one can
obtain

∆L(X(τk+1)) 6 ∆L2 =
N∑
i=1

(V ∗
i (ℓ̆k+1)− V ∗

i (ℓ̆k)) 6

−
N∑
i=1

Ki∥ℓ̆k+1 − ℓ̆k∥, (58)

where Ki are class-K. That means that the Lyapunov
function (35) is decreasing when ∀t = τk+1.

According to the above two case, the triggering con-
dition (34) and the inequalities (48)–(50) or (53)–(55)
guarantee that the tracking error er and the weight er-
ror ω̃i of the critic NN are all UUB, which ends of the
proof.

Remark 6 From the expression of B̄er , together with
Eq. (48) and Eq. (53), it can be seen that B̄er can be reduced by
increasing λmin(Q). It can be seen from Eq. (49) and Eq. (54)
that the convergence rate of the weight of NN depends on the
minimum eigenvalue of matrix Φi, which means that the con-
vergence speed of the weight can be increased by maximizing

the minimum eigenvalue of Φi. Because the existence of the
third term in Eq. (32) eliminates the need for initial admissi-
ble control. So the initial weight of the input in learning pre-
cess, for convenience, can be selected as zeros. The above de-
sign still needs to solve the important problem of how to avoid
the Zeno behavior. According to the proof similar to that in
[16, 30], it can be concluded that trigger rule (34) is Zeno-free.

5 Simulation
In this section, we simulate the OTCP of nonlin-

ear two-person differential game system using time-
triggered and event-triggered respectively and then ver-
ify the effectiveness of our proposed method through
comparison. Note that time-triggered is run with a fixed
sampling period of 0.005 s.

Consider the following nonlinear differential games
with two-player[8, 18]:

ẋ = f(x) + g1(x)u1 + g2(x)u2, (59)

where

f(x) =

 x2

−x2 − 0.5x1 + 0.25x2(cos(2x1) + 2)
2

−0.25(sin(4x2
1) + 2)

2

 ,

g1(x) =

[
0

cos(2x1) + 2

]
,

g2(x) =

[
0

sin(4x2
1) + 2

]
,

x = [x1 x2]
T ∈ R2 is the system state, and u1, u2 ∈ R

are the control inputs.
The reference signal is generated by the following

command:

ṙ(t) =

[
0 1
−1 0

]
r(t).

Select Q1 = 2I,Q2 = I,R11 = R12 = 2I , and
R21 = R22 = I , I is an identity matrix. The param-
eters in the learning process are set as α1 = α2 = 3,
q1 = q2 = 3, Lu,1 = Lu,2 = 13, λ1,G = λ2,G = 7,
T = 0.005, and Ji = 0.5ℓTℓ. The augmented system
states are ℓ(t) = [ℓ1 ℓ2 ℓ3 ℓ4]

T = [e1 e2 r1 r2]
T,

and the NN activation functions are selected as
ϕ1(ℓ(t)) = ϕ2(ℓ(t)) =

[e21 e1e2 e1r1 e1r2 e22 e2r1 e2r2 r21 r1r2 r22]
T.

Since the initial admissible control strategy is elim-
inated in this paper, the initial weight can be selected as
zero for convenience.

Fig.1 shows the critic NN weight convergence curve
of player 1, which finally converges to

ω̂1 = [0.0016 0.6721 0.0003 0 3.5978 0.2255,

0.4646 0.0001 − 0.0001 6.9762]T.

Fig.2 shows the critic NN weight convergence curve
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of player 2, which finally converges to

ω̂2 = [0.0012 0.5298 0.0008 0.0001 8.9317

− 0.0472 0.6102 0.0001 − 0.0004 0]T.

Fig. 1 The evolution process of the critic NNs weight of the
first player.

Fig. 2 The evolution process of the critic NNs weight of the
second player.

Fig. 3 shows a three-dimensional actual state trajec-
tory and reference trajectory. Fig. 4 shows the evolution
of tracking error in the whole learning process. It can be
observed that the tracking error converges gradually to
zero. According to Fig. 5, we can observe that the min-
imum event triggered interval is 0.01 s (avoiding the
Zeno behavior), which is larger than the time trigger-
ing interval, which can effectively reduce communica-
tion. During the whole learning process, the time-based
controller needs to be updated 40,000 times, while the
event-based controller only needs to be updated 8624
times. In other words, the recalculation and transmis-
sion of control inputs during the adaptive process are re-
duced. Therefore, more system resources can be saved
by using our method.

Fig. 3 The actual trajectory and the reference trajectory.

Fig. 4 The evolution of tracking errors.

97.396.5 97.196.7 96.9

Fig. 5 The triggering interval of event-triggered.

Fig. 6 The cumulative number of the events.

6 Conclusion
In this paper, we studied the OTCP for N -player

NZS game systems with unknown drift dynamics. An
IRL method is used to avoid unknown drift dynamics
systems. The solution of Nash equilibrium is obtained
by constructing a single layer critic NN. By improving
the updating rules of standard gradient descent weight,
the PE conditions are easier to check online, conver-
gence speed is faster and initial admissible control is no
longer required. By designing a reasonable trigger con-
dition, the calculation and communication burden in the
whole control process are reduced. The UUB properties
of the tracking error and the critic NN estimation error
are proved. Finally, the effectiveness of the proposed
method was demonstrated by a numerical example.
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