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Abstract: Control of large-scale and multi-agent nonlinear systems has gained rapid developments from theory to
wide engineering applications, continuously promoting more and more challenging byproduct stabilization problems. The
present study is motivated by a car-following system and focuses on developing a systematic design algorithm for stabilizing
a networked system with dynamic uncertainties. Our study not only gives a stabilizing control result but also explores an
interesting link between the output regulation and stabilization serving a longitudinal control for a string of automated cars
moving in a lane. We also show some simulation results to illustrate the proposed results.
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1 Introduction

Feedback stabilization control is a most fundamen-
tal control topic in nonlinear control theory. Recent
studies in this field have been very active for lower-
triangular nonlinear systems as well as the relevant net-
worked nonlinear systems relating to large-scale inter-
connected systems or networked multi-agent control
systems. Particularly, such stabilization problems are
essential and crucial in the synthesis of many control
problems such as output regulation, synchronization,
consensus, formation and others. We shall refer to [1-4]
for background motivating materials on longitudinal
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platooning investigated in the present study. Also, we
shall refer the interested readers to monographs [5—-6]
and references thereof on this topic and to [7-11] for a
few early remarkable developments.

A breakthrough in this field can date back to
the well-known backstepping technique for lower-
triangular or strict-feedback nonlinear systems with free
dynamic uncertainties, i.e., all the states are available
for the feedback design; see [7,9] to name but a few due
to our familiarity. For the more general and sophisticat-
ed circumstances such as nonlinear systems with var-
ious types of dynamic uncertainties, it has been treat-
ed by many researchers. Particularly, using the power-
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ful tools in the context of ISS (input-to-state stability),
many effective stability analysis techniques as well as
feedback control methodologies have been developed.
For example, [10] developed a state feedback design
method based on a nonlinear small-gain theorem and
[12] proposed interesting Lyapunov function criterion
serving stability analysis and stabilizing control for net-
worked nonlinear systems.

Recently, as a more general stability condition than
ISS, the notion of integral ISS (iISS) has been exten-
sively studied in characterizing more general intercon-
nected systems; see [13—15] and references therein. A
very recent attempt in this direction can be [16] for
studying the stabilization of nonlinear systems in the
presence of iISS dynamic uncertainties. As pointed out
in [16], different from the ISS dynamic uncertainties,
certain bounded tolerable growth rate on system nonlin-
earity is almost necessary. It finally makes the stabiliza-
tion problem much more challenging. In this direction,
for nonlinear systems in output-feedback normal form,
as a special lower-triangular nonlinear system, output-
feedback design is possible. The results have been de-
veloped in [11, 17], where the former deals with either
iISS\ISS or ISS dynamic uncertainties while the latter
further explores the case having both iISS\ISS and IS-
S dynamic uncertainties. For the general lower trian-
gular systems having multiple distinct iISS\ISS and IS-
S dynamic uncertainties, a recursive partial state feed-
back design was constructed in [18] based on a modified
changing supply rate technique.

A primary objective of this paper is to investigate
a stabilization problem of block lower-triangular non-
linear systems having multiple iISS dynamic uncertain-
ties. The study is inspired by a relevant study of [16].
Specifically, by the term “iISS”, we focus on a dissi-

v, - — V, ()
- < RN ... ... <
1 1

"Dy D!

Vehicle 1 Vehicle 2

pation gain to be a class K function. Moreover, it al-
lows the concerned dynamic uncertainties having both
K\K~ and K, dissipation gains. The stabilization of
systems with such mixed dynamic uncertainties impacts
an intermediate byproduct problem in resolving global
robust cooperative output regulation by internal model-
based design. This is actually a main motivation of the
present stabilization study. Toward that end, the present
study first presents a sufficient compact stability condi-
tion for the cascaded systems as the same one investi-
gated in [16]. Then a systematic approach for the feed-
back design is developed. Compared with [16, 18], a
more general class of lower-triangular systems is stud-
ied. Overall, our developed method can offer at least an
interesting alternative.

Paper Organization: Section 2 presents a motivat-
ing example on a car-following system. It is used to
demonstrate a byproduct but key stabilization problem.
Section 3 shows the main design condition and algo-
rithm for the stabilizing control of a class of networked
nonlinear systems in lower-triangular form with multi-
ple types of dynamic uncertainties. Section 4 gives the
simulation results. Section 5 closes the paper with some
remarks. All the proofs and technical details are put in
Appendix.

2 Motivation example: A car-following sys-
tem

This section is devoted to exploring a longitudinal
control for a string of automated cars moving in a lane
as shown in Figure 1. We shall re-formulate the prob-
lem as an output regulation problem. Moreover, follow-
ing the idea of [19], we eventually reveal a relevant sta-
bilization problem as an important step to manage this
longitudinal platooning control problem.

@ o /ui vi+l =7
’I 'm <« -«
s vl |
1

Fig. 1 Car following within an automated lane

Specifically, we focus on a working example of a
car-following system adopted from [20] and described
by

sz‘ =V; — Vi-1,

. _ 1 2

Vi = T{L,L'(_Apivi - di + f1)7 (1)
fi= ;(—fz‘+ui),

K2

>
"D P!
Vehicle i—1 Vehicle ¢ Vehicle ¢+1
for: = 1,2,--- , N, where vy is the velocity of a vir-

tual leader specified later in (2), and ¥; = p; — p;_1 is
the relative distance between the ith and 7 — 1st vehi-
cles. The meaning of other symbols are listed in Ta-
ble 1. Roughly speaking, the longitudinal controller
is drive all vehicles to maintain a steady-state velocity
with vehicle-to-vehicle spacing constraints, and mean-
while to follow a leader vehicle at a safe distance. For
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case studies, we shall refer to [4,21] and relevant refer-
ences therein for more interesting circumstances.

Table 1 Vehicle variables and parameters

Nominal value

Symbol Meaning (of the ith vehicle)
m; Mass 130 kg
Ay Aerodynamic drag 0.3 Ns2/m2

coefficient
Constant frictional 10N
d;
force
~ Engine time 02s
! constant
v; Vehicle velocity -
Actuator force
fi applied to the -
vehicle
u; Control input -

Associated with (1), a virtual leader vehicle is set
whose motion satisfies
Do = Vo, Vo > 0. (2)

Here, py and vy are the lead vehicle’s position and ve-
locity, respectively. We assume that the lead vehicle’s
velocity is a time-varying sinusoidal signal but with a
single frequency as follows:

'Uo(t) = A1 sin(wt + ¢1) + Ao, (3)
where A1, w, @1, Ag are real parameters with
Al,w,AO > 0 and AO > Al.

For the purpose of modeling the reference and un-
certain parameters, we define the following two exosys-
tems:

“4)
Po1 = Q1wn Doz = Qawo,

{ Wy = Shwy, {wz = SZ(w)wQa
and

where

01 0 w
51:|:0 0:|7S2:|:_w O:|7

for some matrices ()1 and )s.

We assume thatw € S C R, w;(0) € W; C R?,
and wy(0) € W, C R? with S, W, and W, being any
known compact sets.

For the ease of presentation, we denote
1Y =t
Hi = [mz Api d; Ti]Ta

w=[w] wy py w'lt,

_ Ql O o 51 0
Q_|:O Ql 7S(W)_ 0 Sg(w) :
Thus, the exosystems in (4) can be written in a compact
as

po = Qu. )

{w = S(w)w,

Consequently, the lead vehicle’s velocity (3) satisfies
vy = QS (w)w.

In what follows, we denote

(5171‘,173%,27%,3,331,4) = (pi7vi7fiaui)7 i=1,---,N.

System (1) can be written as

551,1 = Ti,2,
1 1
. 2
o= —wig+ —(— Ay, — dy)
7 m; [ m; pLi, 1) (6)
. 1 1
Ti3 = —Tia — —Ti3-
i Ti

Then the absolute position tracking error is given by
€ =T;i1 —Tiog+ Ly, i=1,---, N,
where x;0 = po is the lead vehicle’s position and

L, = > Ly with L;, > 0 being the desired constant
k=1
inter-vehicle spacing. For the purpose of longitudinal

control, the inner relative distance error between the ith
and ¢ — 1st vehicles defined is

ei=v;+ L=z —xi1;+ Ly, i=1,---, N,

Now we formulate the control goal of the car-
following system. The objective is to develop a con-
troller for system (1) such that for each initial condi-
tions the trajectory of closed-loop system exists for all
t > 0, and the regulated output satisfies flirglo e(t) = 0.

For this purpose, we follow the two-step design pro-
cedure for solving output regulation problems in the
light of [22] coming up with a key stabilization prob-
lem. To this end, first, an internal model candidate is
constructed to make compensation for steady-state in-
put. Then, the output regulation problem of the original
system is converted into a stabilization problem of an
augmented system composed of the system dynamics
and the internal model.

Denote the steady-state state of x; 1, x; 2, %; 3 and
T;4 by

"Eq*l = 1‘;1(#)7 33:,2 = $:,2(.U)a

xr:a = $;<,3(M)’ fik,4 = x:A(N)a

respectively. Then, by (6) and (5), we have

% %
Ti1 = L9,
Liog = TizgT — piT;o i)
e i (7)
¥, = lgj’f — lx*f
7,3 T i,4 T i,37
0=wa7; —xio(p) + Li.

Further solving the above regulator equations gives the
following steady-state states and inputs

xiy = xi0(p) — Ly, zi0(p) = Q0,
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ot = 03@;1 S(w)o By attaching internal model (9) to (6), we obtain the
02 ov ’ following augmented system, fori =1,--- , N,
gaug y )
2iy = mi (@) + Al + di, Mia = Yia(hix) + Niniz,
b b b
Oz i1 = %’,1(77?,1a 771,1)7 (11a)
&, = 7y S(w)v + .
R 53 Ti1 = Tjg,
Note that functions ¥ ., =1,--- N,j7=1,--- .4 .
. . v e ’ ’ Ny = Via(Mia) + NioZis,
in question are all polynomials in their arguments. It
. . . b b b
allows us to apply the nonlinear internal model design Mo = Vio(Mia2Mia), (11b)
method as in [23] to manage the internal model design. 1 1
To this end, foreachi = 1,--- ,N,j = 1,2,3, we i = i3+ —'(—Amx?z —d;),
first choose a controllable pair (M7, N;?;) of the form i mi
0 1 . 0 s = Yis(Mis) + Nis®ia,
b b b
M. = : : : 7 Ni3z = %—,3(?7?,@ 77i.,3)7 (11c)
i,
0 0 e 1 1 1
—mi7j71 — mi7j72 s — m,-7j,sij :Ci,?) — fxi,él - ;xifm-
K3 1
0 Define the following new coordinates and input
o _ | transformations fori = 1,--- , IV,
i = ) . =
0 €i = X401 — L1y Tijl = €4,
1 _ .
.. . . xi,j+1 - xi,j-i-l - B,j(n;l,jﬂ 773]’)7 ] = 17 27 37
for some positive integer s;;, with }
T 7721,1 = 77?,1 - 031 — N €4,
Mij = [Mij1 Mijo Mg ] s 79, = 1%, — 0% — m;N; o T
chosen such that M7 is Hurwitz. iz = T2~ Vi R
To handle the uncertain exosystem (5), we adopt in- 77?,3 = 77?3 - 933 — T Ni 3% 3,
Pemal model candidates as follows, fori = 1,--- , N, ﬁfj _ 775'7]- _ Hfj’ i=1,23.
J=12.3, ’ ’ ’ (12)

cal __ o al o a2
iy = Mgy + N2jmis

J 1,
ca2 __ 2
ni5 = —Ni; T Tijtr, ()

b 1 1\T, b 2
Mg =~ [(nza,J) Mg — nf,j] )
or equivalently, written in the following compact form
{773,] = '73]' (T’ZJ) + Nijij+1,
b b b
Ni; = Vi (77?,]‘7771',3')7
with output x; ;;1, where

i = col(nis,mi%), v, (nf,) = M ng

(©))

Mio ) Nio ) T
M’i,j = |: 0"7 1"]:| , N’i,j = [0 0 ].] .
Denote the steady-state states of 7/, and nf,j as
a ._ pa b . :
0f; = 07 ;(p) and 07 ; := 07 (1), respectively. Then,
from (9), we have
0?,]‘ = ’Yﬁj(eﬁj) + Ni,jx?,jﬂa
0?,]’ = f,j(egjve?,j)7
fore =1,---,N,j =1, 2,3. Further, the steady-state
state and input can be expressed as'

)i () = T (085 (1), 07 (1) (10)

It gives a translated augmented system described by the
following equations:

ﬁfl = Mi,lﬁﬁl + M; 1 N; €4,

ﬁf,l = _Qi,l(l‘)ﬁﬁl“‘@zl(ﬁglaﬁg,laei,,u)’ (13a)
€ =Tin+ Ai,l(ﬁ?,pﬁ?,p €y 1),

s = Miafiiy + @0 (0, i €, Tis 1),

7752 = _Qi,2(ﬂ>ﬁ32 + ‘P?,2(77?,27 77327 T2, 1),

Tig= 771%@3 A2 (4, 717 1 71, 715 95 €4, T2, 1)
(13b)

s = Migilis + 9ia(n 71, i, s €0, T,

Ty, 1),

=05 3(1)71} 5 + 005 (7 s, 710 5, Tiss 1),

= _ = ~a ~b ~a b ~a b
Ti3 = ;%‘,4 + Ai,3(77i,1777i,1777i,2777i,2777i,3777i,37
3

€i, i‘i,2) ji,37 H)u

(13¢c)
The explicit expression of the above function is as fol-
lows:

"The functions I ;(-),i = 1,--- , N, j = 1,2, 3 can be chosen smooth and compactly supported.
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Oy = 01 ()01 ()", Oy = 025 () [075(10)] T, O3 = 075 (10) (055 ()]
Pl = =1+ 0D +051) 700y — 7T — 053 — ] — [T + 100" + 001701167
05 [0a1T9 i1 01,1]7
Aip = Fz‘,1(77§1,1777ib,17 €is ),
0y = miM; oN;oTio + Niopi (i1, 7010 €0y Bigs 1) — Nio Ly (71,701, €6, Ti2, 1),
by = — [y + 0L3][(0% + 055) 7005 — 773 — 083 — mums o] — [AFSATET + 705005 + 00575100 o+
0751075675 — 673)],
1~ . 4 - S e~ _ o - _
Ai,Q = E i,2(77?,2> 7]323 L2, ,LL) - F¢,,1(77§l,1a 7)317 €i, Li,2, M) + Pz‘,2(7721,17 n?,la €i; L4,2, /‘)?
T
¢i3 = TiM; 3N; 373 + N; s3I (7515 771 1570525 i 95 €, Ti 2, 1) — Ni3pi3(7i'a, 77?2, Ti2,Ti3, 1),
<Pi'),3 = —[ﬁ% + 9(1}';”(77% 0?,3) 01’ ﬁf?& 933 — TiTi3] — [77%77%? +7; 39a + 0%77??]023—&—
0751075675 — 053],
1 - L _ o _
Ai,3 = ; 7,3 (7723) nib,?,v L4,3, ,u) - Fi,,2(771q;17 nfila 77327 77227 €iy Li,2, H) + Pi,3 (77327 77?,27 T2, 24,3, M)?
T
Lip=1; (7 + 07 + N 161”71 1+ 9@ 1) — a0, 9?,1)7
Iip= I o(71y + 075 +m2N12x1277712+012) (ezzaefz)
fi73 = Fl3(7713 +023 +TlNl3xl3anz3 +913) (0z3’0§3)
- Ol (nfy,m2y) . . Ol (nfy,mby) . . dr;1(0%4,6%))
I = ) i, i, iq ga N e ) i, i, b Qb . ) i, i,
7,1 8771(,1;1 (n%l + i1 T 2,161) + 87731 (’r]’b’l + 171> dt ’
~ or; 2(77('12777%) . . . 8F¢2(n42,nb2) . . dFi2(9(‘1279b2)
F/ — ) 1, 1, e Ha N = ) 1, 1, ~I? Hb _ ) 1, ,
1,2 a,r]'iQ <77Z’2 T 3,2 + i 2721.172) + an;’,2 (771,2 + ’La2) dt ’
R A *2 T (7% He N o =b Hb 2
pi2 = - [%3 Tig — ( i1 (i + 07 + Nivei, 7 + i,l)) P
T
1, 3 B L
pi3 = ;[%’,3 —Zi3 — Li2(iiy + 079 + miN; 2T 2, 77?,2 + 95?,2)]-

(2

A detailed calculation for deriving the translated
augmented system (13) can be found in Appendix A.
At this place, we note that the global robust out-
put regulation problem for system (6) and (5) is now
converted into an important global robust stabilization
problem for the translated augmented system (13). The
latter stabilizing control of (13) is the focus of the
present study. It motivates the study in the next section.
3 Stabilization for setting an iISS network
This section is to carry out a global robust partial-
state feedback stabilization design for a general lower-
triangular nonlinear system that can be viewed as
byproduct systems in internal model based approach for
solving the cooperative output regulation problem.
Specifically, summarized from (13) in preceding

(14)

motivating example, the networked nonlinear system at
issue is given by

731_fi<1]c » L[i] )

G = £z, Gy s ),

& = Hixipr + £ (21, Capy 2y 1), 1 << m,

(15)
€ R¥ is the partial mea-
sured state for 1 <4 < n, Tpypq = [y -+ uy] € RY
€ R™¢ and (; € R™ are dy-
namic uncertainties and p := u(t) € D is static un-

where z; := [%1 xi,N]T

is the control. Both z;

certainty that continuously varies in a compact set D.
All functions f¢, f?, f¢ are assumed to be sufficiently
smooth with f7(0,0,0,u) = 0, f£(0,0,0,u) = 0,

££(0,0,0,u) = 0 for 1 < ¢ < m. The matrix H; is
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assumed to be positive definite and can be related to the
Laplacian matrix of the communication topology in co-
operative output regulation such as [23—24] for instance.

As motivated in the preceding section, the main
control goal in the present study is to design a decen-
tralized partial-state feedback controller

7:Un,l)7 1 < l < N, (16)

for designing functions x; : R" — R, such that
the closed-loop system composed of (15) and (16) is
globally robustly asymptotically stable at the origin
(zi, Gy i) = (0,0,0), 1 < i < n.

The basic idea for tacking the aforementioned glob-
al robust stabilization problem is to first establish a sta-
bility condition for a typical class of iISS networks and
then pursue the partial-state feedback design fulfilling
the stability condition. These will be elaborated in fol-
lowing two subsections, respetively.

U = /ﬁ(l’u, Tt

3.1 A sufficient stability condition

In this subsection, we will present a set of veri-
fiable conditions for the following decomposition net-
work with m = 3n,

Xk:fk(XbXZ;"' )anu)a 1<k<m7 (17)
with x; € R™ and each function f} being sufficiently
smooth and f;.(0,0,---,0,u) =0forl < i< m.

For the sake of convenience, denote

n, :={3i—2:1<i<n},
n, :={3i—1:1<i<n},
n.:={3i:1<i<n}

Assumption 1  For the network (17), there exist
iISS Lyapunov functions {V, := Vi(t, xx)}j, satis-
fying along trajectories of (17),

o ([Ixall) < Vit xe) < anlllxl),

Vi < lf:l%,l(vl), Yo (Vi) = —a(Vio), (1)
where o, oy, € Ko and?

Mk € KNO(an), au € Koo,
for (k,l) : k€ n,and k <1 < m, (19a)
Mk € KON O(ay), ax €K,
for (k,l): k € nyand k < 1 < m, (19b)
i € KNO(Id),
for (k,l):i €n.andk —3 <1 <m, (19¢)

Yk =0, for (k1) : k€n,Unyand1 <1 <k,
(19d)

Yr =0, for (k,l):k€n,andl <1 <k —3,
(19¢)

For an intuitive illustration of Assumption 1, we can

define a block square matrix in term of the functions y; j,

as
o 0 73/0 0 0
You Q@2 Y230 0 0
Y31 Y32 s |0 0 73,6
Va1 Va2 Va3 | Q4 0 V4,6 , (20)

V5.1 V52 V53| V54 O5 V56
V6,1 V6,2 V6,3 | V64 V65 (e

with respect to the following block partitions from
the first block (x1,X2,X3) to the nth block (X,,_2,
Xm—1, Xm) of (17). In the matrix (20), functions a’s
are imposed in the diagonal entries and in each column
corresponding to the index in 12, U 1, all off-diagonal
entries are necessary to be the same type of functions
with the diagonal one. Moreover, conditions in (19c),
(19d), and (19e) are introduced to assure existence of
a, €K,k en..

Stability and stabilization problems relating to ISS
networked nonlinear systems have been extensively
studied in literature, see [5, 10] for an excellent over-
view. In sharp contrast to that, as shown in the preced-
ing section, in many situations, the networked systems
can have the more general iISS dynamic uncertainties.
In fact, a pioneering work is [12] where a network sta-
bility criterion is proposed for a general iISS network.
Based on that, we further establish the following useful
stability result for system (17) as the design criterion.

Lemma 1 Consider the iISS network (17) with
m = 3n under Assumption 1. One can construct some
gain functions o, € K N O(Id) for k € n, such that
the rendering the network (17) is globally asymptotical-
ly stable at y;, = 0for1 < k < m.

Lemma 1 can be viewed as a direct consequence of
Theorem 3.1 in [16] without proofs. A self-contained
and complete proof is given in Appendix B of this pa-
per.

3.2 Iterative design for lower-triangular systems

To achieve the global robust stabilization for the
system (15), we first introduce the following assump-
tion.

Assumption 2 For system (15), the following t-
wo conditions hold.

1) For 1 < 7 < n, there are iISS Lyapunov func-
tions V;* := V(t, z;) and V}* := V(¢ (;) satisfying,
along trajectoriesof (15),

2Note that, we omit the trivial case Y, = 01in (19b), (19a), (19c¢) for the sake of simplicity. In addition, these nonzero functions

may rely on aq, - - -
those in [16] and their explanations are omitted.

» Omin{k,1}- Moreover, throughout this paper, we use and refer the same mathematical notation and definitions as
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at(J=ll) < Vet =) < at(lz]),
Vg Zl[vé’,j(V;‘)+’Y§’,j(‘/}”)+vf,j(ijH2)],

J= _ 21
QG < VG < kG, 1)

VP <182, (Vi) 460, (V) 4682 (1l517)],

Jj=1

where
Vi (Vi) = —ad (Vi) 60,(V)) = —al(V)),
af € Kuo, ozi-’ e K°, ’yzj,ézj e kn 0(04]»),
’Yfz =0, 'yﬁj,6f,j € K°NO(a;),
’yfm 52% e KNO(Id),

2) For 1 < i < n, the function ff (2, Cpijs @i, 1)
satisfies

Hfi,c(z[i]aC[i]a$[i]au)||2 <
Zl[ &SV (VI 08l 1P, 22)
;=

for some ¢, € K N O(a;), ¢?; € K°NO(a;) and
¢, €EKLNOd) for1 < j <.

Proposition 1  Consider system (15) under As-
sumption 2. Then, there is a smooth controller of the
form (16) such that the closed-loop system is globally
robustly asymptotically stable at the origin.

The result of Proposition 1 is an immediate conse-
quence from Theorem 3.2 in [16]. A self-contained and
complete proof of Proposition 1 is given in Appendix C
of this paper.

4 Simulation setup and results

In this section, let us continue to illustrate the pro-
posed the stabilization method with the car-following
system example elaborated in Section 2.

For numerical tests, we consider a string of N = 5
cars and a virtual commanding source as the leader ve-
hicle. The nominal values of the vehicles’ parameters
are setas m; = 130kg, A,; = 0.3Ns*/m?,d; = 10N,

7, =0.2s,fori =1,2,---,5. The motion of the vir-
tual lead vehicle is po(t) = 150 + 30t + 30 Sin(%t).

The desired inner vehicle distance is set as L; = 30 m,
fort = 1,---,5. The initial states of the following

cars are set as (p;(0),v;(0), f:(0)) = (149 — i L; +

i,40 +1,0),2=1,---,5.

The procedure of designing internal model-based
longitudinal controllers for car-following systems (1)
is summarized by Algorithm 1. The first step of de-
signing internal models for steady-state compensation
was presented in Section 2. In this simulation, we set
the internal model (8) with m,;; = [1 2.15 1.75]%,
mis=m;3=[1 34555 28T fori=1,---,5.

To achieve the problem conversion, we write the

translated augmented system (13) as (15) with
R = COI(ﬁZl?ﬁZQ?ﬁZS)?
G = COI(ﬁ?,l? 77?,27 7753);
x; = col(e;, Ty 2, T3, Ta),
Then the stabilizer in the 2nd step is designed as
Tia = —50(10 + 1037 4) T 3,

with
Ti3 =3+ 50(10 + 10Z7,)F; 2,
Zio = X2 — 1024 1,
foris = 1,---,5. It can be see from Figure 2 that the

tracking errors e; of all the following cars tend to zero
asymptotically, which confirm our results in Proposi-
tion 1.

Algorithm 1 Internal model principle-based longitu-
dinal controller for car-following systems (1)

I: forl1 <i< Ndo

2 procedure COMPENSATION Z; 41
3 Solve the regulator equations (7)
4 for1 <j<3do
5: Construct the internal model (8)
6: Compute the internal model output by (10)
7: return the internal model output by (10)
8 end for
9: end procedure
10: Problem conversion
11 procedure STABILIZATION ZT; ;
12: Verify the conditions in Assumption 2
13: Design the stabilizer for (15) > Proposition 1
14: end procedure
15: end for
"o |
— e
€3
E — ]
IS
5 ]
510 60

t/s
Fig. 2 Spacing errors e; for the 5 following cars

5 Conclusion

We have presented a sufficient condition for stabi-
lizing control of a class of networked nonlinear systems
with dynamic uncertainties. The study has been moti-
vated by and the proposed results have been applied to
solve a longitudinal control problem for a string of au-
tomated cars moving in a lane. We have shown some
simulation results to illustrate the proposed results.
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The impact of the present study is to provide in-
teresting stabilization design techniques for resolving
more general control problems. Such problems arise in
large-scale and multi-agent systems control for achiev-
ing the celebrated control goals such as consensus, syn-
chronization, and formation in distributed networked
control settings. Another future direction is to further
apply the learning internal model-based method of [25]
together with the proposed stabilization method to re-
visit the longitudinal platooning control problem.
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Appendix A Description of the translated aug-
mented system

A detailed calculation for deriving the translated augment-
ed system is as follows.
The time derivative of e; satisfies

€= Tip —Tjg=
Tig+ Dia i1, mf 1) — Ti1 (031,68 1) =
Zio+ D31 (1,771, €4, 1),
where
i1 =T (T8 4081+ Niveqy it 1 +67 1) — i1 (081,60 1).

The time derivative of 77;' ; satisfies

it = (i) + Nijqzio — 91 (081) — Nijxia —
Nijp(wio — x5 9) =

Yin(min) =i (651) =

Vi (i + 071 + Nijves) —via(0i1) =

M; 1751 + M 1N 1€;.

The time derivative of 7', satisfies

W= Y, mi) — 01 (081,67 1) =
7?,1(ﬁ§1,1+9§1,1+Ni,1€i777?,1+9?,1)—W?,1(9?,17921):
— (01 + 08D +071) (Fy + 6081) —
(93 + 073 + e)] + 0711(671) " 671 — 073] =
01 ()71 + P01 (051,67 1, ei, ),

where

Oi1= 071(081)"
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pia= 0711(671)" 6 -9q2]—(ﬁ?i-kH@l)(ﬁ?ﬁ-%H? RCAS
[ @) + it 0i ) + 071G 107 +

(781 + 08D (5 + 053 + ).

. b b
By using @75 = I 1(071,071), 73 = 132(075,0; ),

*
and :c;?:?) =m;—= d —|—Amm +d;, the time derivative of Z; 2
satisfies
b
. 1 1 2 dr; 1(77;'127771'2)
i = — s — (—A x5 —d;)) — — 2% D
1,2 my 7,3 + mi( piti,2 z) dt

1 b 1 2
E(%’,B + Iio(nita,mi2)) + E(—Am‘xi,z —d;) -

dt
1 1 a b
E% 3+ — o (Fi2(ni2,m3, P5) = [ia(68s, 0i2)) —
Al a(ndy,nly) Al (08,60,)
dt dt

1 2
— (A5 —
z( pili,2

2
Apizio) =

1 _ 1 - N b _
— T3+ — 1 2(7 2, i 2y Tij20 1) —
mg m;

I (7101, €6 B2, 1) +pi2 (4, T €4, Ti 2, ),
where
Tio =Tty + 089 + miNioTi 0, fitg + 009) —
T3 262,67 5),
~, oL (ni1,m;, 1)

Iy, = p (781 + 081 + Nijpés) +
7,1
or; 1(771 177711) dFi,l(eglaogl)
7( 11+911) é7
8’71‘,1 dt

1 b \\2 1 _
pi2 = EApi(Fi,l(ezlﬂm)) - EApi(xi,Q +

(2

_ b b o2
L (i 4 051 + Nijvei, i1+ 671))°

The time derivative of 7]’ satisfies

iite = via(nie) + Nioxzis — v 2(0f2) — Niozis —
. ALy (1,0 )
miNi2(Zi,2 — #) =
Via(ni2) + Niomiz — vie(0i2) — Niozisg —
Az (1, m 1)
2 ,1(1i,1,Mi1
Nio(2i3 — Apitio — di — mi#) =
2 2
Via(nia) — vie(0i2) — Nio(—Apixia + Apizis +
b
m_dxf,Q 3 m_dﬂ,l(nﬁhm,ﬂ) N
todt ¢ dt o

—a _
M; 27 90 +miM; 2 N; o 2 +
~a ~b _
Ny 2pi2(Ts1,Ti,15 €65 Ti,25 1) —
=~ s~a  ~b _
Ni2I3 1 (71,51, €5 Ti2, 1)-
The time derivative of 775?72 satisfies

< b b b b
N2 = Yi2Mi2,ni2) —vi20i2,0i2) =

b~ o b
Yio(fiie + 050 +miNi 2Ti 2,7 2+ 0; 2) —

W20, 9?,2) =
~Oi2 (Wil 2 + ¢ 2(052,07 5, Bi,2, 1)
where
B;0 = 9 (9 ) ,
oo = 91‘,2[(9‘ 5) 7075 — 073] —

(7S + 085) (7S + 655)T o0 5 —
785 (7t) T+ i85 (05 ) + 035 (70 5) 7168 5 +

(ﬁ’ﬁ% + 0 )(ﬁf% + 01 2+ mq;s, 2)

By using x4 = I 3(053,073), 775 = i 2(0f5,075)

*
x;
andzi, =7; d:ﬁ + a7 5, the time derivative of 7; 3 satisfies
a b
- 1 1 dI 2(ni 2, m; 2)
Ti3= —Ti4— T3 —— . =
T Ti dt

1 _ b
—(&ia + Li3(ni's,m03)) —

3

b
l:r- B dFi,2(77§1,2777i,2) .
Ti 43 dt -
1 1 a b
;$z4+ (L3 (nf3,m83) — Ti3(65 5,07 3)) —

dFi,2(77i,2777i,2) dFi,2(9ﬁ279$,2)

dt dt
1
T—Z(mlg x;3) 1=
1 1 -
T*$14+ Fv 3(771 3777z 3, Zi, 35 14) —

(2
Fi,Q('F]i,lv 771‘,17771,27 771‘,27 ei, Ti 2, 1) +

~a ~b _ _
0i,3(Ti.2, 525 Ti,25 Ti 35 1)

_ S b
I3 =T 375+ 0; 3+ 7iNi 3% 3,73+ 0;3) —
b
I 3(073,0;3),

- 8F 2(n Iy ) I
/ M(m 2+ 072 +miNi i) +

o g
O 2(ni'9,m; 2)( +9-b )— dFi,2(9§1,2»9?,2)
6"71',2 i ,2 7,2 dt )

1, &
pi3 = —(xi3—
T

T3 —
- - ~b b
L o(io 4 059 + miN; 2% 2,75 2 + 05 2))-
The time derivative of 7j;' 5 satisfies

nis = viamis) + Nigwia —vis(0is) — Nigwia —

dlia(nie,nla)
dt )=
Yi-a(Mivs) + Nizwia —ig(0i3) —
dFi,2(77g,2»77§?,2) _
dt )=
dx;

3
— N;3(m I + a3 —

TiN; 3(%4,3 —

%
N; 3w —

Niz(wjs— 53— 7

Yi'3(0i'3)

b
dFi,Q(ﬁszi,z)) o
dt -

M; 3753 + 7 M; 3N; 325 3 +

Yirg(nig) —

Ti3 — Ty
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Al s~a  ~b  ~a ~b _
Ni 3T 2(Mi1, M1, 0.2, 5,25 €35, Ti 2, 1) —
~a ~b _ _
Ni 30:,3(Ti.2, 525 Ti,25 Ti 35 1)

The time derivative of ﬁf’g satisfies

b b b b b
i3 = Yi3Mis:mi3) — vis(053,053) =
.
’Yi,3(7713+923+7'1 13$1377723+913)
b
¥i,3( 1379 3) =

~6; 3()iit 3 + 00 3(05 3,07 3, T 3, 1),
where
Oi3 = 075(655)",
pis = 073[(003) 7005 — 073] -
(785 + 055) (775 + 075) 00 5 —
(55 0) T + A5 (005)

~al ~a?2
(77?,3 + 9?,3)(77?,3 + 91 ,3 + TiTq, 3)

+ 0% (%) 1160 5 +

Appendix B Proof of Lemma 1

The proof can be done by Mathematical Induction of ver-
ifying conditions in [12, Theorem 3]. Two lemmas are given
below respectively. In the sequel, Lemma 2 verifies the initial
step ¢ = 1 and Lemma 3 demonstrates the induction from ¢ to
i+ 1foralll < ¢ < n—1inthecasen > 1. For the sake of
convenience, for 1 < i < n, denote that

Allw) = Ja1 (1) - azi(ws)]T,
31 31
Fil@ =1 > mp) 2 vse)”
k=1,k#1 k=1,k#3i
(B1)
and
DFil(y) = e;l[wi‘yl - whivs) T, ®2)
ATy = AT @) o A )T,

where
O<e <l wf>1 M) enN, 1<k<3i

Lemma 2 At the step i = 1, consider the network
(17) with m = 3. Under Assumption 1, for any

0<e1 <1, wp>1,1<k<3,
there are

as € KNOId), AN @) = (1) A3 1]
with A1 € M and A > 0, satisfying the following condition:

AP ) < AW E)pH ™ o Al ), vo e RY, (B3)

Proof First note that, under Assumption 1,
Al (V)r[l] (v) =
A (v1)71,3(¥3) + A3[y2,1 (V1) + v2,3(v3)] +
¥3,1 (1) + 73,2(v2),

A )DI ™ 6 Al =
erfA(v)wy

w§71a3(1/3)].

lal(ul) + )\zw;ilag(l/g) +

In the above, pick A1 (s) := A} + \](s) for s > 0 with

A= A1(0) >0, M € Koo (B4)
Then by Young’s inequality, it follows, for any 1 € Koo

M (v1)71,3(v3) = Aiy1,3(v3) + A1 (v1)71,3(v3) <
Aiv1,3(v3) + 1 0 X (1) - A1 (1) +
W1t oy 3(vs) - v1,3(vs).
Thus, to show (B3), it suffices to find ag € Koo, A], A5 >0
and \| € Koo such that for all v € R‘i
P10 X (1) - AL (v1) + A5y2,1(11) + 93,1 (1) <
61wi_1)\1(ul)a1(yl), (BSa)

v3,2(12) < erwy " Asaa (1), (B5b)
A71,3(v3) + A3y2,3(vs) + 15 !

—1
61w§ as(v3).

071,3(r3) - 71,3(v3) <
(B5¢c)

To do so, notice that existence of a3 in (B5c) is straight-
forward as long as its left-hand side functions are determined.
The proofs of (B5a) and (B5b) are given below.

Proof of (B5b). By using [17, Lemma 3.1], for 432 €
(K° U {0}) N O(az) with ap € K°, there exists a constant
A5 > 0 satisfying (B5b).

Proof of (B5a). Let

-1

1 -
Yi(s) = gerwi g 0 AT (s),

which, together with A} (s) < A1(s) for s > 0, gives

1 _
P1o X (v1) - A (v1) < 561(*216 AL (v1)ad ().

Since v2,1,73,1 € (K U {0}) N O(aq), by using [26, Lemma
1], there exists a function A\; € N such that

% 1 .
A5y2,1 (1) + 73,1 (1) < sewwl ™ AL (v1)a (),

2

which confirms (B5a). O
To present the following induction lemma from ¢ — 1 to i,

we introduce the following induction hypothesis.
Induction Hypothesis. Atthe stepiforl < i < n—1,

consider the network (17) with m = 3i. For any
0<e < <<l wp>11<k<3i,
there exist
asg, - ,az—1) € KNO(Id),
Ay =) - Ao,

satisfy the condition

o All(w), v e RY,
(B6)

Ay rlly < AUy pld™
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Lemma3 Atthestepi+1forl <14 < n—1,consid-
er the network (17) with m = 3(i + 1). Under Assumption 1,
suppose that, at step i, the Induction Hypothesis is ensured.
Then, for any

0<e<ei1<1l,wi>1,3+1<k<3i+3,

there are
asg, -, 034,343 € KN O(Id),
AP Q) = ) AP (1) Mg (v3i1) Miga 1],

with >\31+1 S N, >\§1+2 > 0, and

31

> 5;[3](1/1@)7

k=1

(eN, if1<k<
6[1} ’
Fl=el it1<k<

=0,

sy =

3i, k € ng Une,
3i, k € ny,

for the constant 51[51* > 0, satisfying, for all v € Ri(iﬂ),

"o ality),
(B7)

Al (I/)F[i+1] V) < Ali+1] (I/)D[i+1]

Proof Recall the Induction Hypothesis for m = 3i that
has assured the existence of as3, - ,a3; € KN O(Id) satis-
fying condition (B6). In the following, existence of a3;4+3 €
K N O(Id) is shown for the case m = 3(i + 1) . Note that,
under Assumption 1,

A[i+1] (V)F[i+1] (l/) _

8 w) AT () F U () + 61 () A ()35 5143 (Vsi4.3)+
3143

A3i+1(V3i41) Y3it1,k (VE)+
k=1,k£3141,3i4+2
. 3i43
A3i40 >
k=1,k#£3i+2
A[H—l] (V)D[i—i-l] -

3i+3

Y3it2,k(VE) + V3i+3,k Vi),

>
k=1,k#£3i+3
1 o A[z‘+1] (l/) _

St sl () Al () DU~

€

€ir1 23141 (V3i41)whis asig1 (V3ig1)+

oA+

1 1
€it1A3i4oWai4 003i+2(V3i+2) + €it1wa; 303i+3(V3i+3)-
(B8)

Further pick 5,[51 e Nforl <k
A3it1 € N to be

3iand k € ng U nc, and

5l (s) = ol 4 611 (s), ol .= 6 (0) > 0,
A3ig1(5) = A3ip1 + Asit1(s), Vs >0,
A3i+1 = A3i41(0) >0, 5;[:} , Asit1 € Koo

Then by Young’s Inequality, it gives, for 1/;1 l,wl 3,1/1[Z]
Koo,

S ) A () y3i 304 3(v3i43) <

3
> 08 3 o4 (vains)+

Y

> Wl o o () - 6 (i) +

k=1,k¢n,

31

> wl e ©130,3i+3(V3i+3) - 131,3i+3(V3i+3),
k=1,k¢n,

3i43
A3i41(¥3i41) Y3i41,k (k) <
k=1,k#£3i41,3i+2
3043

A3it1 Y341,k (Vi) +

k=1,k#3i41,3i+2
(3i + 1)th2 0 A3y 41 (V3i11) - Agip1(V3i41)+
3143

—1
Yy o ¥3i41,k (Vk) - V3i 1,k (Vk)-
k=1,k#£3i41,3i+2

(B9)
Thus, in view of (B3), (B8) and (B9), to show (B7), it suffices
to show that

€i+1 — €
€

) < Ay,

(B10a)

sl (,,)Am(y)D[ir o

(3i + 1)92 0 Agip1 (V3i41) - A1 (Vsig1) +

A3i4273i42,3i+1(V3i41) + 13i+3,3i+1(V3i41) <
1

€i+1A3i+1(V3i41) w341 @3i41(Va3i41), (B10b)

* x—1
V3i+3,3i+2(V3i+2) S €i41A3i42wW3; 1 203i+2(V3i+2),

(B10c)
(1 (g1 5) < erprwinas ; B10d
YT (v3i43) < €41w3;5 303043 (3i43), ( )
where
_[i+1] N RS N [
Y (v) = Z ka 06k (k) - 6" (vg) +
k:l,kénb
3 -
> Uy ovsiptk(Mr) - Y3i1e(VE) +
=1
30
'Zl[)‘SiJrl'V?,i-&-l,k(Vk) +
=
ASitov3it2,k (V) + 3tk )],
[i+1] 3 il
YT N vsig3) == D0 0 734,3i4+3(3i43) +
kzi

Z ¢1 & © 73i,3i+3(V3i43) X
k=1 k%nb

V34,3i+3(V3i43) +
A3i+173i+1,3i4+3(V3i43) +
A3i+oV3i+2,3i4+3(V3its) +
i]—1

@Z] © V3i+1,3i4+3(V3i4+3) X
V3i4+1,3i+3(V3i43)-

Existence of g satisfying (B10d) is clear. The above

(B10a) to (B10c) are shown below.
Proof of (B10c). By using [17, Lemma 3.1], for

Y3i+3,3i+2 € K° N O(agiy2) with ag;a € K°, there exists a
constant A3, ;o > 0 satisfying (B10c).
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Proof of (B10b). Note that v3;42 3i4+1,73i+3,3i+1 €
K N O(asiy1) and )\éi+2 € K. By using [26, Lemma 1],
there exists Az;+1 € A such that

A3it2V3i+2,3i+1(V3i41) + 13i4+3,3i+1(3i41) <
1 -1
§Ei+1)‘3i+1(V3i+1)w§i+1a3i+l(V3i+1)~
Further, let
1
) ( )H = §Ez+1W31+1013z+1 © )\314,_1( ) € Koo.

Then, it leads to

(3i + 1)l

1 / *—1
5 €130 41 (V3i41)w3i4 13041 (V3i41) S

0 A1 (V3i41) - Agip1 (V3i41) <

1 —1
SCi+1 A3i+1(V3i4+1)ws; 11 @3i4+1(V3i41),

which confirms (B10b).

Proof of (B10a). First, for k € ng U ne, similar to the
Proof of (B10b), since y; , € KN O(ay,), 3i +1 <1 < 3i+3,
there exists d; € A such that

* -1
A3i+17Y3i+1,k (k) + 11131 © V3i4+1,k (Vi) - ¥3i41,6 (VE) +
ASitoV3it2,k (V) + ¥3ita,k (W) <
&) (V)N (i )wp

1 1
§(€i+1 - Oék(l/k).

Second, let

[4] 1

() == S (eir1 — ey O ar) 0 0T T (s) € K,

giving
W o sl ) - ol () <
*—1

1 il i
5t — sy N ),

e)31 (i) A (v ) 7

ag(vg) <

1
5(61'_;'_1 — ak(uk).

Third, for k € mny, since v, € K°NO(ay), 3i +1 <
I < 3i + 3 with a, € K, by [17, Lemma 3.1], there exists
6,[5]* > 0 such that

-1
A3ip17Y3i+1,k (VE) + wé” © Y3041,k (V) - V3i+1,k (k) +
NditoY3it2,k(VE) + V3i43,k(Vk) <

(€41 — 61‘)5;[51*)\2(1/1@)&1;_1%(1/1@)-

Finally, by combining the above inequalities, the proof of
(B10a) is complete. O

Appendix C Proof of Proposition 1
Consider system (15). Define the following new coordi-

nate & = [ --- @] where

TL =11, Tip1 = Tip1 — pi(d
pi(Zi) = [ps,1 (&) - piN

) 1<i<n—1,
(%4, N
Pi k(i) = —Pik (Ti )Tk, 1 < k<N,

7N, 1<i<n, (CD)

s

where, the function p; ,(%; ;) > 1 is smooth, even (i.e.,
pi k(s) = pi r(—s)), and moreover, increasing over [0, +-00).
By (C1), system (15) can be transformed into

i = (2 g B 1)

T = —H;pi(Z:) + f7 (zp3) Cags Tpagr) 1), L <<,
where
~ia :fza(z C[z]?xla"' 7i‘i+ﬁi—l(ii—l)nu’)7
i = fzb(z[z] Q) @15 T+ pi—1(Zi—1), 1),
fi = fi(21,C1, &1, 1) + Hido,
Fo= G Quap 81 0 &+ pic1(@im1), 1) +
~ a 11— ~ rc
HiZiy1 — a’f, L (—Hi—1pi-1(&i-1) + f-1)-
Ti—1

Note that the origin is an equilibrium of (C2). In the follow-
ing, we show the proof by Lemma 1. In other word, we need
to design suitable functions p; for 1 < ¢ < n such that all the
conditions of Lemma 1 are satisfied. This will be done in the
following three steps.
First, consider (z;, ¢;) subsystem. Note that, by [27, Lem-
ma A.1], there exists a function p; € K N O(s) such that
loi @I < il ]%)- (C3)
By further using the inequality a(a + b) <
a € Kanda,b e Ry, it gives rise to

a(2a) + a(2b) for

c 2 J ~ ~ 2
Vi Ulzsll™) = v (125 + pj—1(i-1)7) <
~ 12 ~ 2
Vi (4125 117) + 5 (Allpj—1(&- 1)) <
~ 2 - 2
Virg (AIZ5 1) + 55 (dej—1 (125 -1 117))-
Then, by (21), we have
’L
< 2 i) )+ 70 (V) + 351851, (€4
j=
with
Vi (5) = 75,5 (45) + 75 j+1(4e;(s)) € KN O(1d).

Moreover, in the same manner, by (21), we also have
Z
Z (65 (Vi) + 62 ;(VP) + 655 (1%51%)], (C5)

where 6 ; € KN O(Id).
Second, let us consider &; subsystem to show the fact that
function £ (2(), (i), T[i41), 1) satisfies

_ i i+l
IFE1% < Z[ SV + 98V + Z U151,
J: :
(Co)
where 1/) € KN O(aj), wé’,j €K°NO(aj)forl < j<i
andw GICQO( ) for 1 < j < i+ 1. This will be shown by

mathematlcal induction.
Initial Step. At the initial step ¢ = 1, by (22), we have

rc2 iy 2 20~ 112
AN < 2017 (21, Cuon, | + 2[ Hy[[7]|22]17,

which verifies (C6) for i = 1 with ¥ ; = 9 1, 1?1’71 = wlf,p

UE 1 = 91195 2(s) = 2| Has.
Induction Step. Suppose i > 1 and at step ¢ — 1, there
exists the function f;” 1 (2;_1], [i—1], T3], 1) satisfying (C6).
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Then, it will be shown that the function ff(zm, Clls F[ig1]0 1) along trajectories of (C2),
also satisfies (C6). Toward this end, note that,
N
e 2 ~ - - 2 _ -
IFEI* < BIFE (zpaps Cpags B1, -+ &3+ pima (Fima), WP + 2 20 pin(®i0) g+ |1H; 2N +

2~ 12
BIH | Zi4l

8 i — ~ rc
PPL (CHy apia (@) + FE1)]

3“8@-_1

By (C3), it gives rise to

7

ISP < 35 68,0500+ 05 (7) + 12317 <
il[w, SV 0l (V) + 0 (4)E51D)] +
P
1—1

T vtinles 15,1 ()

On the other hand, note that by [27, Lemma A.1], there exists
a function g; € K N O(s) such that

Opi, \ Opi 2
”8@(%) 9%, )]

ai (%)) (C8)

Then, we have

8 . N ~

||8§11 (—Hi—1pi—1(Fi—1) + fE1)|” <
Api_1 9pi—1 1\ 4

z Ti 1) — 0

||axz_ (zi-1) 3571—1( I+

*|| — Hi_1pi—1(Fi—1) + fiall*

0

155 Ol = Hicapioa (Fi1) + Fa I <

ggzumu )+ A oE (1)) +
@[ PV + D (VD)) + zw (1) +

801

’L

0 i— izl —a a _
2| 22 (0) |2 X 1985 (V) + b5 (V)] +
ps

0%;_1

205

0 WP 111205 (11%511%) +

> &5 (1251%)]. (C9)
=

Consequently by combining (C7) and (C9), the inequality (C6)
can be verified for the function ff(z[l-], Cla)s Tpip1]s 1)

Third, deﬁne a positive definite quadratic function V;° :=
VE(Z;) = 7, H . By using (C6), it can be verified that,

iww V) + 9L (VD) + 9 (135 12))-

j=1

For any of € K N O(Id), noting that ¢¢ ; € K N O(Id),
by [19, Lemma 7.8], there exists an even functlon pi7 i = 1that
is increasing over [0, +00), such that

2~ 112
17112 I

C(1Ei)1%) + of (27 Hy 'a5) + || H;

e 2
P ( )%1«

TTMZ =

Then, choosing

Pike(Fig) = Pip(Fig), 1<k <N, 1<i<n, (C10)

leads to

7 [ +1
VES X 6500+ 2 #2 (V) + > 955V,
J:

j= j=
(C11)

for V7.1 = 0, and functions ¢7'; = w” € KnoO(af),
fi’?,j%,j €EK°NO(a j), qSi’jl/)i’j € KN O(Id), where in par-
ticular, ¢ (V%) = —a% (V;).

Hence, Assumption 1 is verifiable. Moreover, by Lem-
ma 1, one can construct gain functions af € K N O(Id) for
1 < ¢ < n such that system (C2) is globally asymptotically
stable at the origin. Furthermore, such gain functions can be
specified by designing functions p; for 1 < i < n in (C10).
The proof is complete.
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