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网网网络络络非非非线线线性性性系系系统统统的的的镇镇镇定定定及及及在在在车车车辆辆辆跟跟跟随随随控控控制制制的的的应应应用用用
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摘要:非线性大系统或多自主体系统在理论与工程应用领域都受到了广泛的关注. 其中,稳定性以及衍生的镇定控制
问题是研究的关键.为了应对车辆跟随控制问题,本文针对一类下三角型不确定网络非线性系统,给出稳定网络系统满
足的充分条件,并提出一种全局鲁棒镇定控制设计方法. 通过解决车辆跟随系统的纵向控制问题,揭示本文的研究结果
可用于输出调节问题等综合控制问题的求解. 仿真验证本文结果的有效性.
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Abstract: Control of large-scale and multi-agent nonlinear systems has gained rapid developments from theory to
wide engineering applications, continuously promoting more and more challenging byproduct stabilization problems. The
present study is motivated by a car-following system and focuses on developing a systematic design algorithm for stabilizing
a networked system with dynamic uncertainties. Our study not only gives a stabilizing control result but also explores an
interesting link between the output regulation and stabilization serving a longitudinal control for a string of automated cars
moving in a lane. We also show some simulation results to illustrate the proposed results.
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1 Introduction
Feedback stabilization control is a most fundamen-

tal control topic in nonlinear control theory. Recent
studies in this field have been very active for lower-
triangular nonlinear systems as well as the relevant net-
worked nonlinear systems relating to large-scale inter-
connected systems or networked multi-agent control
systems. Particularly, such stabilization problems are
essential and crucial in the synthesis of many control
problems such as output regulation, synchronization,
consensus, formation and others. We shall refer to [1–4]
for background motivating materials on longitudinal

platooning investigated in the present study. Also, we
shall refer the interested readers to monographs [5–6]
and references thereof on this topic and to [7–11] for a
few early remarkable developments.

A breakthrough in this field can date back to
the well-known backstepping technique for lower-
triangular or strict-feedback nonlinear systems with free
dynamic uncertainties, i.e., all the states are available
for the feedback design; see [7,9] to name but a few due
to our familiarity. For the more general and sophisticat-
ed circumstances such as nonlinear systems with var-
ious types of dynamic uncertainties, it has been treat-
ed by many researchers. Particularly, using the power-
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ful tools in the context of ISS (input-to-state stability),
many effective stability analysis techniques as well as
feedback control methodologies have been developed.
For example, [10] developed a state feedback design
method based on a nonlinear small-gain theorem and
[12] proposed interesting Lyapunov function criterion
serving stability analysis and stabilizing control for net-
worked nonlinear systems.

Recently, as a more general stability condition than
ISS, the notion of integral ISS (iISS) has been exten-
sively studied in characterizing more general intercon-
nected systems; see [13–15] and references therein. A
very recent attempt in this direction can be [16] for
studying the stabilization of nonlinear systems in the
presence of iISS dynamic uncertainties. As pointed out
in [16], different from the ISS dynamic uncertainties,
certain bounded tolerable growth rate on system nonlin-
earity is almost necessary. It finally makes the stabiliza-
tion problem much more challenging. In this direction,
for nonlinear systems in output-feedback normal form,
as a special lower-triangular nonlinear system, output-
feedback design is possible. The results have been de-
veloped in [11, 17], where the former deals with either
iISS\ISS or ISS dynamic uncertainties while the latter
further explores the case having both iISS\ISS and IS-
S dynamic uncertainties. For the general lower trian-
gular systems having multiple distinct iISS\ISS and IS-
S dynamic uncertainties, a recursive partial state feed-
back design was constructed in [18] based on a modified
changing supply rate technique.

A primary objective of this paper is to investigate
a stabilization problem of block lower-triangular non-
linear systems having multiple iISS dynamic uncertain-
ties. The study is inspired by a relevant study of [16].
Specifically, by the term “iISS”, we focus on a dissi-

pation gain to be a class K function. Moreover, it al-
lows the concerned dynamic uncertainties having both
K\K∞ and K∞ dissipation gains. The stabilization of
systems with such mixed dynamic uncertainties impacts
an intermediate byproduct problem in resolving global
robust cooperative output regulation by internal model-
based design. This is actually a main motivation of the
present stabilization study. Toward that end, the present
study first presents a sufficient compact stability condi-
tion for the cascaded systems as the same one investi-
gated in [16]. Then a systematic approach for the feed-
back design is developed. Compared with [16, 18], a
more general class of lower-triangular systems is stud-
ied. Overall, our developed method can offer at least an
interesting alternative.

Paper Organization: Section 2 presents a motivat-
ing example on a car-following system. It is used to
demonstrate a byproduct but key stabilization problem.
Section 3 shows the main design condition and algo-
rithm for the stabilizing control of a class of networked
nonlinear systems in lower-triangular form with multi-
ple types of dynamic uncertainties. Section 4 gives the
simulation results. Section 5 closes the paper with some
remarks. All the proofs and technical details are put in
Appendix.

2 Motivation example: A car-following sys-
tem
This section is devoted to exploring a longitudinal

control for a string of automated cars moving in a lane
as shown in Figure 1. We shall re-formulate the prob-
lem as an output regulation problem. Moreover, follow-
ing the idea of [19], we eventually reveal a relevant sta-
bilization problem as an important step to manage this
longitudinal platooning control problem.

Fig. 1 Car following within an automated lane

Specifically, we focus on a working example of a
car-following system adopted from [20] and described
by 

ψ̇i = vi − vi−1,

v̇i =
1

mi

(−Aρiv
2
i − di + fi),

ḟi =
1

τi
(−fi + ui),

(1)

for i = 1, 2, · · · , N , where v0 is the velocity of a vir-
tual leader specified later in (2), and ψi = pi − pi−1 is
the relative distance between the ith and i − 1st vehi-
cles. The meaning of other symbols are listed in Ta-
ble 1. Roughly speaking, the longitudinal controller
is drive all vehicles to maintain a steady-state velocity
with vehicle-to-vehicle spacing constraints, and mean-
while to follow a leader vehicle at a safe distance. For
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case studies, we shall refer to [4, 21] and relevant refer-
ences therein for more interesting circumstances.

Table 1 Vehicle variables and parameters

Symbol Meaning
Nominal value

(of the ith vehicle)

mi Mass 130 kg

Aρi
Aerodynamic drag

coefficient
0.3 Ns2/m2

di
Constant frictional

force
10 N

τi
Engine time

constant
0.2 s

vi Vehicle velocity –

fi

Actuator force
applied to the

vehicle

–

ui Control input –

Associated with (1), a virtual leader vehicle is set
whose motion satisfies

ṗ0 = v0, v0 > 0. (2)

Here, p0 and v0 are the lead vehicle’s position and ve-
locity, respectively. We assume that the lead vehicle’s
velocity is a time-varying sinusoidal signal but with a
single frequency as follows:

v0(t) = A1 sin(ωt+ ϕ1) +A0, (3)

where A1, ω, ϕ1, A0 are real parameters with

A1, ω,A0 > 0 and A0 ≫ A1.

For the purpose of modeling the reference and un-
certain parameters, we define the following two exosys-
tems: {

ẇ1 = S1w1,

p01 = Q1w1

and

{
ẇ2 = S2(ω)w2,

p02 = Q2w2,
(4)

where

S1 =

[
0 1
0 0

]
, S2 =

[
0 ω

−ω 0

]
,

for some matrices Q1 and Q2.
We assume that ω ∈ S ⊂ R, w1(0) ∈ W1 ⊂ R2,

and w2(0) ∈ W2 ⊂ R2 with S, W1 and W2 being any
known compact sets.

For the ease of presentation, we denote

w = [wT
1 wT

2 ]
T, µ = [µT

1 · · · µT
N wT]T,

µi = [mi Aρi di τi]
T,

Q =

[
Q1 0
0 Q1

]
, S(ω) =

[
S1 0
0 S2(ω)

]
.

Thus, the exosystems in (4) can be written in a compact
as {

ẇ = S(ω)w,

p0 = Qw.
(5)

Consequently, the lead vehicle’s velocity (3) satisfies

v0 = QS(ω)w.

In what follows, we denote

(xi,1, xi,2, xi,3, xi,4) := (pi, vi, fi, ui), i = 1, · · · , N.
System (1) can be written as

ẋi,1 = xi,2,

ẋi,2 =
1

mi

xi,3 +
1

mi

(−Aρix
2
i,2 − di),

ẋi,3 =
1

τi
xi,4 −

1

τi
xi,3.

(6)

Then the absolute position tracking error is given by

ei = xi,1 − xi,0 + L̄i, i = 1, · · · , N,
where xi,0 = p0 is the lead vehicle’s position and

L̄i =
i∑

k=1

Lk with Lk > 0 being the desired constant

inter-vehicle spacing. For the purpose of longitudinal
control, the inner relative distance error between the ith
and i− 1st vehicles defined is

êi = ψi + Li = xi,1 − xi−1,i + Li, i = 1, · · · , N.

Now we formulate the control goal of the car-
following system. The objective is to develop a con-
troller for system (1) such that for each initial condi-
tions the trajectory of closed-loop system exists for all
t > 0, and the regulated output satisfies lim

t→∞
e(t) = 0.

For this purpose, we follow the two-step design pro-
cedure for solving output regulation problems in the
light of [22] coming up with a key stabilization prob-
lem. To this end, first, an internal model candidate is
constructed to make compensation for steady-state in-
put. Then, the output regulation problem of the original
system is converted into a stabilization problem of an
augmented system composed of the system dynamics
and the internal model.

Denote the steady-state state of xi,1, xi,2, xi,3 and
xi,4 by

x∗
i,1 := x∗

i,1(µ), x
∗
i,2 := x∗

i,2(µ),

x∗
i,3 := x∗

i,3(µ), x
∗
i,4 := x∗

i,4(µ),

respectively. Then, by (6) and (5), we have

ẋ∗
i,1 = x∗

i,2,

ẋ∗
i,2 =

1

mi

x∗
i,3 +

1

mi

(−Aρix
∗2
i,2 − di),

ẋ∗
i,3 =

1

τi
x∗
i,4 −

1

τi
x∗
i,3,

0 = x∗
i,1 − xi,0(µ) + L̄i.

(7)

Further solving the above regulator equations gives the
following steady-state states and inputs

x∗
i,1 = xi,0(µ)− L̄i, xi,0(µ) = Qv̄,
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x∗
i,2 =

∂x∗
i,1

∂v̄
S(ω)v̄,

x∗
i,3 = mi

∂x∗
i,2

∂v̄
S(ω)v̄ +Aρix

∗2
i,2 + di,

x∗
i,4 = τi

∂x∗
i,3

∂v̄
S(ω)v̄ + x∗

i,3.

Note that functions x∗
i,j , i = 1, · · · , N , j = 1, · · · , 4

in question are all polynomials in their arguments. It
allows us to apply the nonlinear internal model design
method as in [23] to manage the internal model design.

To this end, for each i = 1, · · · , N , j = 1, 2, 3, we
first choose a controllable pair (M◦

i,j, N
◦
i,j) of the form

M◦
i,j =


0 1 · · · 0
...

...
...

0 0 · · · 1
−mi,j,1 −mi,j,2 · · · −mi,j,sij

,

N◦
i,j =


0
...
0
1

,
for some positive integer sij , with

mi,j =
[
mi,j,1 mi,j,2 · · · mi,j,sij

]T
,

chosen such that M◦
i,j is Hurwitz.

To handle the uncertain exosystem (5), we adopt in-
ternal model candidates as follows, for i = 1, · · · , N ,
j = 1, 2, 3,

η̇a1i,j =M◦
i,jη

a1
i,j +N◦

i,jη
a2
i,j,

η̇a2i,j = −ηa2i,j + xi,j+1,

η̇bi,j = −ηa1i,j
[
(ηa1i,j)

Tηbi,j − ηa2i,j
]
,

(8)

or equivalently, written in the following compact form{
η̇ai,j = γa

i,j(η
a
i,j) +Ni,jxi,j+1,

η̇bi,j = γb
i,j(η

a
i,j, η

b
i,j),

(9)

with output xi,j+1, where

ηai,j = col(ηa1i,j, η
a2
i,j), γ

a
i,j(η

a
i,j) =Mi,jη

a
i,j,

Mi,j =

[
M◦

i,j N◦
i,j

0 1

]
, Ni,j =

[
0 · · · 0 1

]T
.

Denote the steady-state states of ηai,j and ηbi,j as
θai,j := θai,j(µ) and θbi,j := θai,j(µ), respectively. Then,
from (9), we have

θ̇ai,j = γa
i,j(θ

a
i,j) +Ni,jx

∗
i,j+1,

θ̇bi,j = γb
i,j(θ

a
i,j, θ

b
i,j),

for i = 1, · · · , N , j = 1, 2, 3. Further, the steady-state
state and input can be expressed as1

x∗
i,j+1(µ) = Γi,j(θ

a
i,j(µ), θ

b
i,j(µ)). (10)

By attaching internal model (9) to (6), we obtain the
following augmented system, for i = 1, · · · , N ,

η̇ai,1 = γa
i,1(η

a
i,1) +Ni,1xi,2,

η̇bi,1 = γb
i,1(η

a
i,1, η

b
i,1),

ẋi,1 = xi,2,

(11a)


η̇ai,2 = γa

i,2(η
a
i,2) +Ni,2xi,3,

η̇bi,2 = γb
i,2(η

a
i,2, η

b
i,2),

ẋi,2 =
1

mi

xi,3 +
1

mi

(−Aρix
2
i,2 − di),

(11b)


η̇ai,3 = γa

i,3(η
a
i,3) +Ni,3xi,4,

η̇bi,3 = γb
i,3(η

a
i,3, η

b
i,3),

ẋi,3 =
1

τi
xi,4 −

1

τi
xi,3.

(11c)

Define the following new coordinates and input
transformations for i = 1, · · · , N ,

ei = xi,1 − x∗
i,1, x̄i,1 = ei,

x̄i,j+1 = xi,j+1 − Γi,j(η
a
i,j, η

b
i,j), j = 1, 2, 3,

η̃ai,1 = ηai,1 − θai,1 −Ni,1ei,

η̃ai,2 = ηai,2 − θai,2 −miNi,2x̄i,2,

η̃ai,3 = ηai,3 − θai,3 − τiNi,3x̄i,3,

η̃bi,j = ηbi,j − θbi,j, j = 1, 2, 3.
(12)

It gives a translated augmented system described by the
following equations:

˙̃ηai,1 =Mi,1η̃
a
i,1 +Mi,1Ni,1ei,

˙̃ηbi,1 = −Θi,1(µ)η̃
b
i,1+φ

b
i,1(η̃

a
i,1, η̃

b
i,1, ei, µ),

ėi = x̄i,2 +∆i,1(η̃
a
i,1, η̃

b
i,1, ei, µ),

(13a)


˙̃ηai,2 =Mi,2η̃

a
i,2 + φa

i,2(η̃
a
i,1, η̃

b
i,1, ei, x̄i,2, µ),

˙̃ηbi,2 = −Θi,2(µ)η̃
b
i,2 + φb

i,2(η̃
a
i,2, η̃

b
i,2, x̄i,2, µ),

˙̄xi,2=
1

mi

x̄i,3+∆i,2(η̃
a
i,1, η̃

b
i,1, η̃

a
i,2, η̃

b
i,2, ei, x̄i,2, µ),

(13b)

˙̃ηai,3 =Mi,3η̃
a
i,3 + φa

i,3(η̃
a
i,1, η̃

b
i,1, η̃

a
i,2, η̃

b
i,2, ei, x̄i,2,

x̄i,3, µ),

˙̃ηbi,3 = −Θi,3(µ)η̃
b
i,3 + φb

i,3(η̃
a
i,3, η̃

b
i,3, x̄i,3, µ),

˙̄xi,3 =
1

τi
x̄i,4 +∆i,3(η̃

a
i,1, η̃

b
i,1, η̃

a
i,2, η̃

b
i,2, η̃

a
i,3, η̃

b
i,3,

ei, x̄i,2, x̄i,3, µ),

(13c)

The explicit expression of the above function is as fol-
lows:

1The functions Γi,j(·), i = 1, · · · , N , j = 1, 2, 3 can be chosen smooth and compactly supported.
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Θa
i,1 = θa1i,1(µ)[θ

a1
i,1(µ)]

T, Θa
i,2 = θa1i,2(µ)[θ

a1
i,2(µ)]

T, Θa
i,3 = θa1i,3(µ)[θ

a1
i,3(µ)]

T,

φb
i,1 = −(η̃a1i,1 + θa1i,1)[(η̃

a1
i,1 + θa1i,1)

Tθbi,1 − η̃a2i,1 − θa2i,1 − ei]− [η̃a1i,1η̃
a1T
i,1 + η̃a1i,1θ

a1T
i,1 + θa1i,1η̃

a1T
i,1 ]θbi,1+

θa1i,1[θ
a1T
i,1 θbi,1 − θa2i,1],

∆i,1 = Γ̃i,1(η̃
a
i,1, η̃

b
i,1, ei, µ),

φa
i,2 = miMi,2Ni,2x̄i,2 +Ni,2ρi,2(η̃

a
i,1, η̃

b
i,1, ei, x̄i,2, µ)−Ni,2Γ̃

′
i,1(η̃

a
i,1, η̃

b
i,1, ei, x̄i,2, µ),

φb
i,2 = −[η̃a1i,2 + θa1i,2][(η̃

a1
i,2 + θa1i,2)

Tθbi,2 − η̃a2i,2 − θa2i,2 −mixi,2]−[η̃a1i,2η̃
a1T
i,2 + η̃a1i,2θ

a1T
i,2 + θa1i,2η̃

a1T
i,2 ]θbi,2+

θa1i,2[θ
a1T
i,2 θbi,2 − θa2i,2],

∆i,2 =
1

mi
Γ̃i,2(η̃

a
i,2, η̃

b
i,2, x̄i,2, µ)− Γ̃ ′

i,1(η̃
a
i,1, η̃

b
i,1, ei, x̄i,2, µ) + ρi,2(η̃

a
i,1, η̃

b
i,1, ei, x̄i,2, µ),

φa
i,3 = τiMi,3Ni,3xi,3 +Ni,3Γ̃

′
i,2(η̃

a
i,1, η̃

b
i,1, η̃

a
i,2, η̃

b
i,2, ei, x̄i,2, µ)−Ni,3ρi,3(η̃

a
i,2, η̃

b
i,2, x̄i,2, x̄i,3, µ),

φb
i,3 = −[η̃a1i,3 + θa1i,3][(η̃

a1
i,3 + θa1i,3)

Tθbi,3 − η̃a2i,3 − θa2i,3 − τixi,3]− [η̃a1i,3η̃
a1T
i,3 + η̃a1i,3θ

a1T
i,3 + θa1i,3η̃

a1T
i,3 ]θbi,3+

θa1i,3[θ
a1T
i,3 θbi,3 − θa2i,3],

∆i,3 =
1

τi
Γ̃i,3(η̃

a
i,3, η̃

b
i,3, x̄i,3, µ)− Γ̃ ′

i,2(η̃
a
i,1, η̃

b
i,1, η̃

a
i,2, η̃

b
i,2, ei, x̄i,2, µ) + ρi,3(η̃

a
i,2, η̃

b
i,2, x̄i,2, x̄i,3, µ),

Γ̃i,1 = Γi,1(η̃
a
i,1 + θai,1 +Ni,1ei, η̃

b
i,1 + θbi,1)− Γi,1(θ

a
i,1, θ

b
i,1),

Γ̃i,2 = Γi,2(η̃
a
i,2 + θai,2 +miNi,2x̄i,2, η̃

b
i,2 + θbi,2)− Γi,2(θ

a
i,2, θ

b
i,2),

Γ̃i,3 = Γi,3(η̃
a
i,3 + θai,3 + τiNi,3x̄i,3, η̃

b
i,3 + θbi,3)− Γi,3(θ

a
i,3, θ

b
i,3),

Γ̃ ′
i,1 =

∂Γi,1(η
a
i,1, η

b
i,1)

∂ηai,1
( ˙̃ηai,1 + θ̇ai,1 +Ni,1ėi) +

∂Γi,1(η
a
i,1, η

b
i,1)

∂ηbi,1
( ˙̃ηbi,1 + θ̇bi,1)−

dΓi,1(θ
a
i,1, θ

b
i,1)

dt
,

Γ̃ ′
i,2 =

∂Γi,2(η
a
i,2, η

b
i,2)

∂ηai,2
( ˙̃ηai,2 + θ̇ai,2 +miNi,2 ˙̄xi,2) +

∂Γi,2(η
a
i,2, η

b
i,2)

∂ηbi,2
( ˙̃ηbi,2 + θ̇bi,2)−

dΓi,2(θ
a
i,2, θ

b
i,2)

dt
,

ρi,2 =
Aρi

mi
[x∗2i,3 − x̄i,2 −

(
Γi,1(η̃

a
i,1 + θai,1 +Ni,1ei, η̃

b
i,1 + θbi,1)

)2
],

ρi,3 =
1

τi
[x∗i,3 − x̄i,3 − Γi,2(η̃

a
i,2 + θai,2 +miNi,2x̄i,2, η̃

b
i,2 + θbi,2)].

(14)

A detailed calculation for deriving the translated
augmented system (13) can be found in Appendix A.

At this place, we note that the global robust out-
put regulation problem for system (6) and (5) is now
converted into an important global robust stabilization
problem for the translated augmented system (13). The
latter stabilizing control of (13) is the focus of the
present study. It motivates the study in the next section.

3 Stabilization for setting an iISS network
This section is to carry out a global robust partial-

state feedback stabilization design for a general lower-
triangular nonlinear system that can be viewed as
byproduct systems in internal model based approach for
solving the cooperative output regulation problem.

Specifically, summarized from (13) in preceding

motivating example, the networked nonlinear system at
issue is given by

żi = fa
i (z[i], ζ[i], x[i], µ),

ζ̇i = f b
i (z[i], ζ[i], x[i], µ),

ẋi = Hixi+1 + f c
i (z[i], ζ[i], x[i], µ), 1 6 i 6 n,

(15)
where xi := [xi,1 · · · xi,N ]

T ∈ RN is the partial mea-
sured state for 1 6 i 6 n, xn+1 := [u1 · · · uN ] ∈ RN

is the control. Both zi ∈ Rnzi and ζi ∈ Rnζi are dy-
namic uncertainties and µ := µ(t) ∈ D is static un-
certainty that continuously varies in a compact set D.
All functions fa

i , f
b
i , f

c
i are assumed to be sufficiently

smooth with fa
i (0, 0, 0, µ) = 0, f b

i (0, 0, 0, µ) = 0,
f c
i (0, 0, 0, µ) = 0 for 1 6 i 6 n. The matrix Hi is
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assumed to be positive definite and can be related to the
Laplacian matrix of the communication topology in co-
operative output regulation such as [23–24] for instance.

As motivated in the preceding section, the main
control goal in the present study is to design a decen-
tralized partial-state feedback controller

ul = κl(x1,l, · · · , xn,l), 1 6 l 6 N, (16)

for designing functions κl : Rn → R, such that
the closed-loop system composed of (15) and (16) is
globally robustly asymptotically stable at the origin
(zi, ζi, xi) = (0, 0, 0), 1 6 i 6 n.

The basic idea for tacking the aforementioned glob-
al robust stabilization problem is to first establish a sta-
bility condition for a typical class of iISS networks and
then pursue the partial-state feedback design fulfilling
the stability condition. These will be elaborated in fol-
lowing two subsections, respetively.
3.1 A sufficient stability condition

In this subsection, we will present a set of veri-
fiable conditions for the following decomposition net-
work with m = 3n,

χ̇k = fk(χ1, χ2, · · · , χm, µ), 1 6 k 6 m, (17)

with χk ∈ Rnk and each function fk being sufficiently
smooth and fk(0, 0, · · · , 0, µ) = 0 for 1 6 i 6 m.

For the sake of convenience, denote

na := {3i− 2 : 1 6 i 6 n},
nb := {3i− 1 : 1 6 i 6 n},
nc := {3i : 1 6 i 6 n}.

Assumption 1 For the network (17), there exist
iISS Lyapunov functions {Vk := Vk(t, χk)}mk=1 satis-
fying along trajectories of (17),

αk(∥χk∥) 6 Vk(t, χk) 6 ᾱk(∥χk∥),

V̇k 6
m∑
l=1

γk,l(Vl), γk,k(Vi) = −αk(Vk),
(18)

where αk, ᾱk ∈ K∞ and2

γl,k ∈ K ∩O(αk), αk ∈ K∞,

for (k, l) : k ∈ na and k < l 6 m, (19a)

γl,k ∈ Ko ∩ O(αk), αk ∈ Ko,

for (k, l) : k ∈ nb and k < l 6 m, (19b)

γl,k ∈ K ∩O(Id),

for (k, l) : i ∈ nc and k − 3 6 l 6 m, (19c)

γl,k ≡ 0, for (k, l) : k ∈ na ∪ nb and 1 6 l < k,
(19d)

γl,k ≡ 0, for (k, l) : k ∈ nc and 1 6 l < k − 3,
(19e)

For an intuitive illustration of Assumption 1, we can

define a block square matrix in term of the functions γl,k
as 

α1 0 γ1,3 0 0 0 · · ·
γ2,1 α2 γ2,3 0 0 0 · · ·
γ3,1 γ3,2 α3 0 0 γ3,6 · · ·
γ4,1 γ4,2 γ4,3 α4 0 γ4,6 · · ·
γ5,1 γ5,2 γ5,3 γ5,4 α5 γ5,6 · · ·
γ6,1 γ6,2 γ6,3 γ6,4 γ6,5 α6 · · ·
...

...
...

...
...

...
. . .


, (20)

with respect to the following block partitions from
the first block (χ1, χ2, χ3) to the nth block (χm−2,

χm−1, χm) of (17). In the matrix (20), functions αk’s
are imposed in the diagonal entries and in each column
corresponding to the index in na ∪ nb, all off-diagonal
entries are necessary to be the same type of functions
with the diagonal one. Moreover, conditions in (19c),
(19d), and (19e) are introduced to assure existence of
αk ∈ K, k ∈ nc.

Stability and stabilization problems relating to ISS
networked nonlinear systems have been extensively
studied in literature, see [5, 10] for an excellent over-
view. In sharp contrast to that, as shown in the preced-
ing section, in many situations, the networked systems
can have the more general iISS dynamic uncertainties.
In fact, a pioneering work is [12] where a network sta-
bility criterion is proposed for a general iISS network.
Based on that, we further establish the following useful
stability result for system (17) as the design criterion.

Lemma 1 Consider the iISS network (17) with
m = 3n under Assumption 1. One can construct some
gain functions αk ∈ K ∩ O(Id) for k ∈ nc such that
the rendering the network (17) is globally asymptotical-
ly stable at χk = 0 for 1 6 k 6 m.

Lemma 1 can be viewed as a direct consequence of
Theorem 3.1 in [16] without proofs. A self-contained
and complete proof is given in Appendix B of this pa-
per.
3.2 Iterative design for lower-triangular systems

To achieve the global robust stabilization for the
system (15), we first introduce the following assump-
tion.

Assumption 2 For system (15), the following t-
wo conditions hold.

1) For 1 6 i 6 n, there are iISS Lyapunov func-
tions V a

i := V a
i (t, zi) and V b

i := V b
i (t, ζi) satisfying,

along trajectoriesof (15),
2Note that, we omit the trivial case γl,k = 0 in (19b), (19a), (19c) for the sake of simplicity. In addition, these nonzero functions

may rely on α1, · · · , αmin{k,l}. Moreover, throughout this paper, we use and refer the same mathematical notation and definitions as
those in [16] and their explanations are omitted.
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αa
i (∥zi∥) 6 V a

i (t, zi) 6 ᾱa
i (∥zi∥),

V̇ a
i 6

i∑
j=1

[γa
i,j(V

a
j )+γ

b
i,j(V

b
j )+γ

c
i,j(∥xj∥2)],

αb
i(∥ζi∥) 6 V b

i (t, ζi) 6 ᾱb
i(∥ζi∥),

V̇ b
i 6

i∑
j=1

[δai,j(V
a
j )+δ

b
i,j(V

b
j )+δ

c
i,j(∥xj∥2)],

(21)

where

γa
i,i(V

a
i ) = −αa

i (V
a
i ), δ

b
i,i(V

b
i ) = −αb

i(V
b
i ),

αa
i ∈ K∞, α

b
i ∈ Ko, γa

i,j, δ
a
i,j ∈ K ∩O(αj),

γb
i,i ≡ 0, γb

i,j, δ
b
i,j ∈ Ko ∩ O(αj),

γc
i,j, δ

c
i,j ∈ K ∩O(Id),

2) For 1 6 i 6 n, the function f c
i (z[i], ζ[i], x[i], µ)

satisfies

∥f c
i (z[i], ζ[i], x[i], µ)∥2 6

i∑
j=1

[ψa
i,j(V

a
j )+ψ

b
i,j(V

b
j )+ψ

c
i,j(∥xj∥2)], (22)

for some ψa
i,j ∈ K ∩ O(αj), ψb

i,j ∈ Ko ∩ O(αj) and
ψc

i,j ∈ K ∩O(Id) for 1 6 j 6 i.

Proposition 1 Consider system (15) under As-
sumption 2. Then, there is a smooth controller of the
form (16) such that the closed-loop system is globally
robustly asymptotically stable at the origin.

The result of Proposition 1 is an immediate conse-
quence from Theorem 3.2 in [16]. A self-contained and
complete proof of Proposition 1 is given in Appendix C
of this paper.

4 Simulation setup and results
In this section, let us continue to illustrate the pro-

posed the stabilization method with the car-following
system example elaborated in Section 2.

For numerical tests, we consider a string of N = 5
cars and a virtual commanding source as the leader ve-
hicle. The nominal values of the vehicles’ parameters
are set asmi = 130 kg, Aρi = 0.3 Ns2/m2, di = 10 N,
τi = 0.2 s, for i = 1, 2, · · · , 5. The motion of the vir-
tual lead vehicle is p0(t) = 150 + 30t + 30 sin(

π

30
t).

The desired inner vehicle distance is set as Li = 30 m,
for i = 1, · · · , 5. The initial states of the following

cars are set as (pi(0), vi(0), fi(0)) = (149−
i∑

j=1

Li +

i, 40 + i, 0), i = 1, · · · , 5.
The procedure of designing internal model-based

longitudinal controllers for car-following systems (1)
is summarized by Algorithm 1. The first step of de-
signing internal models for steady-state compensation
was presented in Section 2. In this simulation, we set
the internal model (8) with mi,1 = [1 2.15 1.75]T,
mi,2 = mi,3 = [1 3.4 5.5 5 2.8]T for i = 1, · · · , 5.

To achieve the problem conversion, we write the

translated augmented system (13) as (15) with

zi = col(η̃ai,1, η̃
a
i,2, η̃

a
i,3),

ζi = col(η̃bi,1, η̃
b
i,2, η̃

b
i,3),

xi = col(ei, x̄i,2, x̄3, x̄4),

Then the stabilizer in the 2nd step is designed as

xi,4 = −50(10 + 10x̃2
i,3)x̃i,3,

with

x̃i,3 = xi,3 + 50(10 + 10x̃2
i,2)x̃i,2,

x̃i,2 = xi,2 − 10xi,1,

for i = 1, · · · , 5. It can be see from Figure 2 that the
tracking errors ei of all the following cars tend to zero
asymptotically, which confirm our results in Proposi-
tion 1.

Algorithm 1 Internal model principle-based longitu-
dinal controller for car-following systems (1)

1: for 1 6 i 6 N do
2: procedure COMPENSATION xi,j+1

3: Solve the regulator equations (7)
4: for 1 6 j 6 3 do
5: Construct the internal model (8)
6: Compute the internal model output by(10)
7: return the internal model output by (10)
8: end for
9: end procedure

10: Problem conversion
11: procedure STABILIZATION x̄i,j

12: Verify the conditions in Assumption 2
13: Design the stabilizer for (15) ◃ Proposition 1
14: end procedure
15: end for

Fig. 2 Spacing errors ei for the 5 following cars

5 Conclusion
We have presented a sufficient condition for stabi-

lizing control of a class of networked nonlinear systems
with dynamic uncertainties. The study has been moti-
vated by and the proposed results have been applied to
solve a longitudinal control problem for a string of au-
tomated cars moving in a lane. We have shown some
simulation results to illustrate the proposed results.
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The impact of the present study is to provide in-
teresting stabilization design techniques for resolving
more general control problems. Such problems arise in
large-scale and multi-agent systems control for achiev-
ing the celebrated control goals such as consensus, syn-
chronization, and formation in distributed networked
control settings. Another future direction is to further
apply the learning internal model-based method of [25]
together with the proposed stabilization method to re-
visit the longitudinal platooning control problem.
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Appendix A Description of the translated aug-
mented system

A detailed calculation for deriving the translated augment-
ed system is as follows.

The time derivative of ei satisfies

ėi = xi,2 − x∗i,2 =

x̄i,2 + Γi,1(η
a
i,1, η

b
i,1)− Γi,1(θ

a
i,1, θ

b
i,1) =:

x̄i,2 + Γ̃i,1(η̃
a
i,1, η̃

b
i,1, ei, µ),

where

Γ̃i,1=Γi,1(η̃
a
i,1+θ

a
i,1+Ni,1ei, η̃

b
i,1+θ

b
i,1)−Γi,1(θ

a
i,1, θ

b
i,1).

The time derivative of η̃ai,1 satisfies

˙̃ηai,1 = γai,1(η
a
i,1) +Ni,1xi,2 − γai,1(θ

a
i,1)−Ni,1x

∗
i,2 −

Ni,1(xi,2 − x∗i,2) =

γai,1(η
a
i,1)− γai,1(θ

a
i,1) =

γai,1(η̃
a
i,1 + θai,1 +Ni,1ei)− γai,1(θ

a
i,1) =

Mi,1η̃
a
i,1 +Mi,1Ni,1ei.

The time derivative of η̃ai,1 satisfies

˙̃ηbi,1= γbi,1(η
a
i,1, η

b
i,1)− γbi,1(θ

a
i,1, θ

b
i,1) =

γbi,1(η̃
a
i,1+θ

a
i,1+Ni,1ei, η̃

b
i,1+θ

b
i,1)−γ

b
i,1(θ

a
i,1, θ

b
i,1)=

−(η̃a1i,1 + θa1i,1)[(η̃
a1
i,1 + θa1i,1)

T(η̃bi,1 + θbi,1)−

(η̃a2i,1 + θa2i,1 + ei)] + θa1i,1[(θ
a1
i,1)

Tθbi,1 − θa2i,1] =:

−Θi,1(µ)η̃
b
i,1 + φb

i,1(θ
a
i,1, θ

b
i,1, ei, µ),

where

Θi,1= θa1i,1(θ
a1
i,1)

T
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φb
i,1= θa1i,1[(θ

a1
i,1)

Tθbi,1−θ
a2
i,1]−(η̃a1i,1+θ

a1
i,1)(η̃

a1
i,1+θ

a1
i,1)

Tθbi,1−

[η̃a1i,1(η̃
a1
i,1)

T + η̃a1i,1(θ
a1
i,1)

T + θa1i,1(η̃
a1
i,1)

T]θbi,1 +

(η̃a1i,1 + θa1i,1)(η̃
a2
i,1 + θa2i,1 + ei).

By using x∗i,2 = Γi,1(θ
a
i,1, θ

b
i,1), x

∗
i,3 = Γi,2(θ

a
i,2, θ

b
i,2),

and x∗i,3 = mi

dx∗i,2
dt

+Aρix
∗2
i,2+di, the time derivative of x̄i,2

satisfies

˙̄xi,2 =
1

mi
xi,3 +

1

mi
(−Aρix

2
i,2 − di)−

dΓi,1(η
a
i,2, η

b
i,2)

dt
=

1

mi
(x̄i,3 + Γi,2(η

a
i,2, η

b
i,2)) +

1

mi
(−Aρix

2
i,2 − di)−

dΓi,1(η
a
i,2, η

b
i,2)

dt
=

1

mi
x̄i,3 +

1

mi
(Γi,2(η

a
i,2, η

b
i,2)− Γi,2(θ

a
i,2, θ

b
i,2))−

dΓi,1(η
a
i,1, η

b
i,1)

dt
+

dΓi,1(θ
a
i,1, θ

b
i,1)

dt
+

1

mi
(Aρix

∗2
i,2 −Aρix

2
i,2) =:

1

mi
x̄i,3 +

1

mi
Γ̃i,2(η̃

a
i,2, η̃

b
i,2, x̄i,2, µ)−

Γ̃ ′
i,1(η̃

a
i,1, η̃

b
i,1, ei, x̄i,2, µ)+ρi,2(η̃

a
i,1, η̃

b
i,1, ei, x̄i,2, µ),

where

Γ̃i,2 = Γi,2(η̃
a
i,2 + θai,2 +miNi,2x̄i,2, η̃

b
i,2 + θbi,2)−

Γi,2(θ
a
i,2, θ

b
i,2),

Γ̃ ′
i,1 =

∂Γi,1(η
a
i,1, η

b
i,1)

∂ηai,1
( ˙̃ηai,1 + θ̇ai,1 +Ni,1ėi) +

∂Γi,1(η
a
i,1, η

b
i,1)

∂ηbi,1
( ˙̃ηbi,1 + θ̇bi,1)−

dΓi,1(θ
a
i,1, θ

b
i,1)

dt
,

ρi,2 =
1

mi
Aρi(Γi,1(θ

a
i,1, θ

b
i,1))

2 − 1

mi
Aρi(x̄i,2 +

Γi,1(η̃
a
i,1 + θai,1 +Ni,1ei, η̃

b
i,1 + θbi,1))

2.

The time derivative of η̃ai,2 satisfies

˙̃ηai,2 = γai,2(η
a
i,2) +Ni,2xi,3 − γai,2(θ

a
i,2)−Ni,2x

∗
i,3 −

miNi,2(ẋi,2 −
dΓi,1(η

a
i,1, η

b
i,1)

dt
) =

γai,2(η
a
i,2) +Ni,2xi,3 − γai,2(θ

a
i,2)−Ni,2x

∗
i,3 −

Ni,2(xi,3 −Aρix
2
i,2 − di −mi

dΓi,1(η
a
i,1, η

b
i,1)

dt
) =

γai,2(η
a
i,2)− γai,2(θ

a
i,2)−Ni,2(−Aρix

2
i,2 +Aρix

∗2
i,2 +

mi

dx∗i,2
dt

−mi

dΓi,1(η
a
i,1, η

b
i,1)

dt
) =:

Mi,2η̃
a
i,2 +miMi,2Ni,2x̄i,2 +

Ni,2ρi,2(η̃
a
i,1, η̃

b
i,1, ei, x̄i,2, µ)−

Ni,2Γ̃
′
i,1(η̃

a
i,1, η̃

b
i,1, ei, x̄i,2, µ).

The time derivative of η̃bi,2 satisfies

˙̃ηbi,2 = γbi,2(η
a
i,2, η

b
i,2)− γbi,2(θ

a
i,2, θ

b
i,2) =

γbi,2(η̃
a
i,2 + θai,2 +miNi,2x̄i,2, η̃

b
i,2 + θbi,2)−

γbi,2(θ
a
i,2, θ

b
i,2) =:

−Θi,2(µ)η̃
b
i,2 + φb

i,2(θ
a
i,2, θ

b
i,2, x̄i,2, µ),

where

Θi,2 = θa1i,2(θ
a1
i,2)

T,

φb
i,2 = θa1i,2[(θ

a1
i,2)

Tθbi,2 − θa2i,2]−

(η̃a1i,2 + θa1i,2)(η̃
a1
i,2 + θa1i,2)

Tθbi,2 −

[η̃a1i,2(η̃
a1
i,2)

T + η̃a1i,2(θ
a1
i,2)

T + θa1i,2(η̃
a1
i,2)

T]θbi,2 +

(η̃a1i,2 + θa1i,2)(η̃
a2
i,2 + θa2i,2 +mixi,2).

By using x∗i,4 = Γi,3(θ
a
i,3, θ

b
i,3), x

∗
i,3 = Γi,2(θ

a
i,2, θ

b
i,2)

and x∗i,4 = τi
dx∗i,3
dt

+ x∗i,3, the time derivative of x̄i,3 satisfies

˙̄xi,3 =
1

τi
xi,4 − 1

τi
xi,3 −

dΓi,2(η
a
i,2, η

b
i,2)

dt
=

1

τi
(x̄i,4 + Γi,3(η

a
i,3, η

b
i,3))−

1

τi
xi,3 −

dΓi,2(η
a
i,2, η

b
i,2)

dt
=

1

τi
x̄i,4 +

1

τi
(Γi,3(η

a
i,3, η

b
i,3)− Γi,3(θ

a
i,3, θ

b
i,3))−

dΓi,2(η
a
i,2, η

b
i,2)

dt
+

dΓi,2(θ
a
i,2, θ

b
i,2)

dt
+

1

τi
(x∗i,3 − xi,3) :=

1

τi
x̄i,4 +

1

τi
Γ̃i,3(η̃

a
i,3, η̃

b
i,3, x̄i,3, µ)−

Γ̃ ′
i,2(η̃

a
i,1, η̃

b
i,1, η̃

a
i,2, η̃

b
i,2, ei, x̄i,2, µ) +

ρi,3(η̃
a
i,2, η̃

b
i,2, x̄i,2, x̄i,3, µ),

where

Γ̃i,3 = Γi,3(η̃
a
i,3 + θai,3 + τiNi,3x̄i,3, η̃

b
i,3 + θbi,3)−

Γi,3(θ
a
i,3, θ

b
i,3),

Γ̃ ′
i,2 =

∂Γi,2(η
a
i,2, η

b
i,2)

∂ηai,2
( ˙̃ηai,2 + θ̇ai,2 +miNi,2 ˙̄xi,2) +

∂Γi,2(η
a
i,2, η

b
i,2)

∂ηbi,2
( ˙̃ηbi,2+θ̇

b
i,2)−

dΓi,2(θ
a
i,2, θ

b
i,2)

dt
,

ρi,3 =
1

τi
(x∗i,3 − x̄i,3 −

Γi,2(η̃
a
i,2 + θai,2 +miNi,2x̄i,2, η̃

b
i,2 + θbi,2)).

The time derivative of η̃ai,3 satisfies

η̇ai,3 = γai,3(η
a
i,3) +Ni,3xi,4 − γai,3(θ

a
i,3)−Ni,3x

∗
i,4 −

τiNi,3(ẋi,3 −
dΓi,2(η

a
i,2, η

b
i,2)

dt
) =

γai,3(η
a
i,3) +Ni,3xi,4 − γai,3(θ

a
i,3)−Ni,3x

∗
i,4 −

Ni,3(xi,4 − xi,3 − τi
dΓi,2(η

a
i,2, η

b
i,2)

dt
) =

γai,3(η
a
i,3)− γai,3(θ

a
i,3)−Ni,3(τi

dx∗i,3
dt

+ x∗i,3 −

xi,3 − τi
dΓi,2(η

a
i,2, η

b
i,2)

dt
) :=

Mi,3η̃
a
i,3 + τiMi,3Ni,3xi,3 +
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Ni,3Γ̃
′
i,2(η̃

a
i,1, η̃

b
i,1, η̃

a
i,2, η̃

b
i,2, ei, x̄i,2, µ)−

Ni,3ρi,3(η̃
a
i,2, η̃

b
i,2, x̄i,2, x̄i,3, µ).

The time derivative of η̃bi,3 satisfies

η̇bi,3 = γbi,3(η
a
i,3, η

b
i,3)− γbi,3(θ

a
i,3, θ

b
i,3) =

γbi,3(η̃
a
i,3 + θai,3 + τiNi,3x̄i,3, η̃

b
i,3 + θbi,3)−

γbi,3(θ
a
i,3, θ

b
i,3) :=

−Θi,3(µ)η̃
b
i,3 + φb

i,3(θ
a
i,3, θ

b
i,3, x̄i,3, µ),

where

Θi,3 = θa1i,3(θ
a1
i,3)

T,

φb
i,3 = θa1i,3[(θ

a1
i,3)

Tθbi,3 − θa2i,3]−

(η̃a1i,3 + θa1i,3)(η̃
a1
i,3 + θa1i,3)

Tθbi,3 −

[η̃a1i,3(η̃
a1
i,3)

T + η̃a1i,3(θ
a1
i,3)

T + θa1i,3(η̃
a1
i,3)

T]θbi,3 +

(η̃a1i,3 + θa1i,3)(η̃
a2
i,3 + θa2i,3 + τixi,3).

Appendix B Proof of Lemma 1
The proof can be done by Mathematical Induction of ver-

ifying conditions in [12, Theorem 3]. Two lemmas are given
below respectively. In the sequel, Lemma 2 verifies the initial
step i = 1 and Lemma 3 demonstrates the induction from i to
i + 1 for all 1 6 i 6 n − 1 in the case n > 1. For the sake of
convenience, for 1 6 i 6 n, denote that

A[i](ν) := [α1(ν1) · · · α3i(ν3i)]
T,

z[i](ν) := [
3i∑

k=1,k ̸=1

γ1,k(νk) · · ·
3i∑

k=1,k ̸=3i

γ3i,k(νk)]
T

(B1)

and {
D[i](ν) := ϵ−1

i [ω∗
1ν1 · · · ω∗

3iν3i]
T,

Λ[i](ν) := [λ
[i]
1 (ν1) · · · λ

[i]
3i(ν3i)]

T,
(B2)

where

0 < ϵi < 1, ω∗
k > 1, λ

[i]
k (νk) ∈ N , 1 6 k 6 3i.

Lemma 2 At the step i = 1, consider the network
(17) with m = 3. Under Assumption 1, for any

0 < ϵ1 < 1, ω∗
k > 1, 1 6 k 6 3,

there are

α3 ∈ K ∩O(Id), Λ[1](ν) := [λ1(ν1) λ
∗
2 1]

with λ1 ∈ N and λ∗2 > 0, satisfying the following condition:

Λ[1](ν)z[1](ν) 6 Λ[1](ν)D[1]−1
◦A[1](ν), ∀ν ∈ R3

+, (B3)

Proof First note that, under Assumption 1,

Λ[1](ν)z[1](ν) =

λ1(ν1)γ1,3(ν3) + λ∗2[γ2,1(ν1) + γ2,3(ν3)] +

γ3,1(ν1) + γ3,2(ν2),

Λ[1](ν)D[1]−1
◦A[1](ν) =

ϵ1[λ1(ν1)ω
∗−1
1 α1(ν1) + λ∗2ω

∗−1
2 α2(ν2) +

ω∗−1
3 α3(ν3)].

In the above, pick λ1(s) := λ∗1 + λ′1(s) for s > 0 with

λ∗1 := λ1(0) > 0, λ′1 ∈ K∞. (B4)

Then by Young’s inequality, it follows, for any ψ1 ∈ K∞

λ1(ν1)γ1,3(ν3) = λ∗1γ1,3(ν3) + λ′1(ν1)γ1,3(ν3) 6
λ∗1γ1,3(ν3) + ψ1 ◦ λ′1(ν1) · λ′1(ν1) +

ψ−1
1 ◦ γ1,3(ν3) · γ1,3(ν3).

Thus, to show (B3), it suffices to find α3∈K∞, λ∗1, λ
∗
2>0

and λ′1 ∈ K∞ such that for all ν ∈ R3
+

ψ1 ◦ λ′1(ν1) · λ′1(ν1) + λ∗2γ2,1(ν1) + γ3,1(ν1) 6
ϵ1ω

∗−1
1 λ1(ν1)α1(ν1), (B5a)

γ3,2(ν2) 6 ϵ1ω
∗−1
2 λ∗2α2(ν2), (B5b)

λ∗1γ1,3(ν3) + λ∗2γ2,3(ν3) + ψ−1
1 ◦ γ1,3(ν3) · γ1,3(ν3) 6

ϵ1ω
∗−1
3 α3(ν3). (B5c)

To do so, notice that existence of α3 in (B5c) is straight-
forward as long as its left-hand side functions are determined.
The proofs of (B5a) and (B5b) are given below.

Proof of (B5b). By using [17, Lemma 3.1], for γ3,2 ∈
(Ko ∪ {0}) ∩ O(α2) with α2 ∈ Ko, there exists a constant
λ∗2 > 0 satisfying (B5b).

Proof of (B5a). Let

ψ1(s) =
1

2
ϵ1ω

∗−1
1 α1 ◦ λ′−1

1 (s),

which, together with λ′1(s) 6 λ1(s) for s > 0, gives

ψ1 ◦ λ′1(ν1) · λ′1(ν1) 6
1

2
ϵ1ω

∗−1
1 λ1(ν1)α1(ν1).

Since γ2,1, γ3,1 ∈ (K ∪ {0}) ∩ O(α1), by using [26, Lemma
1], there exists a function λ1 ∈ N such that

λ∗2γ2,1(ν1) + γ3,1(ν1) 6
1

2
ϵ1ω

∗−1
1 λ1(ν1)α1(ν1),

which confirms (B5a).
To present the following induction lemma from i− 1 to i,

we introduce the following induction hypothesis.
Induction Hypothesis. At the step i for 1 6 i 6 n − 1,

consider the network (17) with m = 3i. For any

0 < ϵ1 < · · · < ϵi < 1, ω∗
k > 1, 1 6 k 6 3i,

there exist

α3, · · · , α3(i−1) ∈ K ∩O(Id),

Λ[i](ν) = [λ
[i]
1 (ν) · · · λ

[i]
3i(ν)],

satisfy the condition

Λ[i](ν)z[i](ν) 6 Λ[i−1](ν)D[i]−1
◦A[i](ν), ∀ν ∈ R3i

+ ,

(B6)
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Lemma 3 At the step i+1 for 1 6 i 6 n−1, consid-
er the network (17) with m = 3(i + 1). Under Assumption 1,
suppose that, at step i, the Induction Hypothesis is ensured.
Then, for any

0 < ϵi < ϵi+1 < 1, ω∗
k > 1, 3i+ 1 6 k 6 3i+ 3,

there are

α3, · · · , α3i, α3i+3 ∈ K ∩ O(Id),

Λ[i+1](ν) := [δ[i](ν)Λ[i](ν) λ3i+1(ν3i+1) λ
∗
3i+2 1],

with λ3i+1 ∈ N , λ∗3i+2 > 0, and

δ[i](ν) =
3i∑

k=1

δ
[i]
k (νk),

δ
[i]
k

{
∈ N , if 1 6 k 6 3i, k ∈ na ∪ nc,

≡ δ
[i]∗
k , if 1 6 k 6 3i, k ∈ nb,

for the constant δ[i]∗k > 0, satisfying, for all ν ∈ R3(i+1)
+ ,

Λ[i+1](ν)z[i+1](ν) 6 Λ[i+1](ν)D[i+1]−1
◦A[i+1](ν),

(B7)

Proof Recall the Induction Hypothesis for m = 3i that
has assured the existence of α3, · · · , α3i ∈ K ∩ O(Id) satis-
fying condition (B6). In the following, existence of α3i+3 ∈
K ∩ O(Id) is shown for the case m = 3(i + 1) . Note that,
under Assumption 1,



Λ[i+1](ν)z[i+1](ν) =

δ[i](ν)Λ[i](ν)z[i](ν) + δ[i](ν)Λ[i](ν)γ3i,3i+3(ν3i+3)+

λ3i+1(ν3i+1)
3i+3∑

k=1,k ̸=3i+1,3i+2

γ3i+1,k(νk)+

λ∗3i+2

3i+3∑
k=1,k ̸=3i+2

γ3i+2,k(νk) +
3i+3∑

k=1,k ̸=3i+3

γ3i+3,k(νk),

Λ[i+1](ν)D[i+1]−1
◦A[i+1](ν) =

ϵi+1

ϵi
δ[i](ν)Λ[i](ν)D[i]−1

◦A[i](ν)+

ϵi+1λ3i+1(ν3i+1)ω
∗−1
3i+1α3i+1(ν3i+1)+

ϵi+1λ
∗
3i+2ω

∗−1
3i+2α3i+2(ν3i+2) + ϵi+1ω

∗−1
3i+3α3i+3(ν3i+3).

(B8)

Further pick δ[i]k ∈ N for 1 6 k 6 3i and k ∈ na ∪ nc, and
λ3i+1 ∈ N to be

δ
[i]
k (s) := δ

[i]∗
k + δ

[i]′

k (s), δ
[i]∗
k := δ

[i]
k (0) > 0,

λ3i+1(s) := λ∗3i+1 + λ′3i+1(s), ∀s > 0,

λ∗3i+1 := λ3i+1(0) > 0, δ
[i]′

k , λ′3i+1 ∈ K∞.

Then by Young’s Inequality, it gives, for ψ[i]
1,1, ψ

[i]
1,3, ψ

[i]
2 ∈

K∞,



δ[i](ν)Λ[i](ν)γ3i,3i+3(ν3i+3) 6
3i∑

k=1

δ
[i]∗
k γ3i,3i+3(ν3i+3)+

3i∑
k=1,k/∈nb

ψ
[i]−1
1,k ◦ δ[i]

′

k (νk) · δ
[i]′

k (νi)+

3i∑
k=1,k/∈nb

ψ
[i]
1,k ◦ γ3i,3i+3(ν3i+3) · γ3i,3i+3(ν3i+3),

λ3i+1(ν3i+1)
3i+3∑

k=1,k ̸=3i+1,3i+2

γ3i+1,k(νk) 6

λ∗3i+1

3i+3∑
k=1,k ̸=3i+1,3i+2

γ3i+1,k(νk)+

(3i+ 1)ψ2 ◦ λ′3i+1(ν3i+1) · λ′3i+1(ν3i+1)+

3i+3∑
k=1,k ̸=3i+1,3i+2

ψ−1
2 ◦ γ3i+1,k(νk) · γ3i+1,k(νk).

(B9)

Thus, in view of (B3), (B8) and (B9), to show (B7), it suffices
to show that

γ̄[i+1](ν) 6 ϵi+1 − ϵi
ϵi

δ[i](ν)Λ[i](ν)D[i]−1
◦A[i](ν),

(B10a)

(3i+ 1)ψ2 ◦ λ′3i+1(ν3i+1) · λ′3i+1(ν3i+1) +

λ∗3i+2γ3i+2,3i+1(ν3i+1) + γ3i+3,3i+1(ν3i+1) 6

ϵi+1λ3i+1(ν3i+1)ω
∗−1
3i+1α3i+1(ν43i+1), (B10b)

γ3i+3,3i+2(ν3i+2) 6 ϵi+1λ
∗
3i+2ω

∗−1
3i+2α3i+2(ν3i+2),

(B10c)

γ[i+1](ν3i+3) 6 ϵi+1ω
∗−1
3i+3α3i+3(ν3i+3), (B10d)

where

γ̄[i+1](ν) :=
3i∑

k=1,k/∈nb

ψ
[i]−1
1,k ◦ δ[i]

′

k (νk) · δ
[i]′

k (νk) +

3i∑
k=1

ψ
[i]−1
2 ◦ γ3i+1,k(νk) · γ3i+1,k(νk) +

3i∑
i=1

[λ∗3i+1γ3i+1,k(νk) +

λ∗3i+2γ3i+2,k(νk) + γ3i+3,k(νk)],

γ[i+1](ν3i+3) :=
3i∑

k=1

δ
[i]∗
k γ3i,3i+3(ν3i+3) +

3i∑
k=1,k/∈nb

ψ
[i]
1,k ◦ γ3i,3i+3(ν3i+3)×

γ3i,3i+3(ν3i+3) +

λ∗3i+1γ3i+1,3i+3(ν3i+3) +

λ∗3i+2γ3i+2,3i+3(ν3i+3) +

ψ
[i]−1
2 ◦ γ3i+1,3i+3(ν3i+3)×

γ3i+1,3i+3(ν3i+3).

Existence of α6 satisfying (B10d) is clear. The above
(B10a) to (B10c) are shown below.

Proof of (B10c). By using [17, Lemma 3.1], for
γ3i+3,3i+2 ∈ Ko ∩ O(α3i+2) with α3i+2 ∈ Ko, there exists a
constant λ∗3i+2 > 0 satisfying (B10c).
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Proof of (B10b). Note that γ3i+2,3i+1, γ3i+3,3i+1 ∈
K ∩ O(α3i+1) and λ′3i+2 ∈ K∞. By using [26, Lemma 1],
there exists λ3i+1 ∈ N such that

λ∗3i+2γ3i+2,3i+1(ν3i+1) + γ3i+3,3i+1(ν3i+1) 6
1

2
ϵi+1λ3i+1(ν3i+1)ω

∗−1
3i+1α3i+1(ν3i+1).

Further, let

ψ2(s)
[i] :=

1

2
ϵi+1ω

∗−1
3i+1α3i+1 ◦ λ′−1

3i+1(s) ∈ K∞.

Then, it leads to

(3i+ 1)ψ
[i]
2 ◦ λ′3i+1(ν3i+1) · λ′3i+1(ν3i+1) 6

1

2
ϵi+1λ

′
3i+1(ν3i+1)ω

∗−1
3i+1α3i+1(ν3i+1) 6

1

2
ϵi+1λ3i+1(ν3i+1)ω

∗−1
3i+1α3i+1(ν3i+1),

which confirms (B10b).
Proof of (B10a). First, for k ∈ na ∪ nc, similar to the

Proof of (B10b), since γl,k ∈ K∩O(αk), 3i+1 6 l 6 3i+3,
there exists δk ∈ N such that

λ∗3i+1γ3i+1,k(νk) + ψ
[i]−1
2 ◦ γ3i+1,k(νi) · γ3i+1,k(νk) +

λ∗3i+2γ3i+2,k(νk) + γ3i+3,k(νk) 6
1

2
(ϵi+1 − ϵi)δ

[i]
k (νk)λ

[i]
k (νi)ω

∗−1
k αk(νk).

Second, let

ψ
[i]
1,k(s) :=

1

2
(ϵi+1 − ϵi)ω

∗−1
k (λ

[i]
k · αk) ◦ δ

[i]′−1
k (s) ∈ K∞,

giving

ψ
[i]−1
1,k ◦ δ[i]

′

k (νk) · δ
[i]′

k (νk) 6
1

2
(ϵi+1 − ϵi)δ

[i]′

k (νk)λ
[i]
k (νk)ω

∗−1
k αk(νk) 6

1

2
(ϵi+1 − ϵi)δ

[i]
i (νk)λ

[i]
k (νk)ω

∗−1
k αk(νk).

Third, for k ∈ nb, since γl,k ∈ Ko ∩ O(αk), 3i + 1 6
l 6 3i + 3 with αk ∈ Ko, by [17, Lemma 3.1], there exists
δ
[i]∗
k > 0 such that

λ∗3i+1γ3i+1,k(νk) + ψ
[i]−1
2 ◦ γ3i+1,k(νk) · γ3i+1,k(νk) +

λ∗3i+2γ3i+2,k(νk) + γ3i+3,k(νk) 6

(ϵi+1 − ϵi)δ
[i]∗
k λ∗k(νk)ω

∗−1
k αk(νk).

Finally, by combining the above inequalities, the proof of
(B10a) is complete.

Appendix C Proof of Proposition 1
Consider system (15). Define the following new coordi-

nate x̃ = [x̃T1 · · · x̃Tn ]
T where

x̃1 = x1, x̃i+1 = xi+1 − ρi(x̃i), 1 6 i 6 n− 1,

ρi(x̃i) := [ρi,1(x̃i,1) · · · ρi,N (x̃i,N )]T, 1 6 i 6 n,

ρi,k(x̃i) = −ρ̄i,k(x̃i,k)x̃i,k, 1 6 k 6 N,

(C1)

where, the function ρ̄i,k(x̃i,k) > 1 is smooth, even (i.e.,
ρ̄i,k(s) = ρ̄i,k(−s)), and moreover, increasing over [0,+∞).

By (C1), system (15) can be transformed into


żi = f̃ai (z[i], ζ[i], x̃[i], µ),

ζ̇i = f̃bi (z[i], ζ[i], x̃[i], µ),

˙̃xi = −Hiρi(x̃i) + f̃ci (z[i], ζ[i], x̃[i+1], µ), 1 6 i 6 n,

(C2)

where

f̃ai = fai (z[i], ζ[i], x̃1, · · · , x̃i + ρ̄i−1(x̃i−1), µ),

f̃bi = fbi (z[i], ζ[i], x̃1, · · · , x̃i + ρ̄i−1(x̃i−1), µ),

f̃c1 = fc1(z1, ζ1, x̃1, µ) +H1x̃2,

f̃ci = fci (z[i], ζ[i], x̃1, · · · , x̃i + ρi−1(x̃i−1), µ) +

Hix̃i+1 − ∂ρi−1

∂x̃i−1
(−Hi−1ρi−1(x̃i−1) + f̃ci−1).

Note that the origin is an equilibrium of (C2). In the follow-
ing, we show the proof by Lemma 1. In other word, we need
to design suitable functions ρ̄i for 1 6 i 6 n such that all the
conditions of Lemma 1 are satisfied. This will be done in the
following three steps.

First, consider (zi, ζi) subsystem. Note that, by [27, Lem-
ma A.1], there exists a function ϱi ∈ K ∩ O(s) such that

∥ρi(x̃i)∥2 6 ϱi(∥x̃i∥2). (C3)

By further using the inequality α(a + b) 6 α(2a) + α(2b) for
α ∈ K and a, b ∈ R+, it gives rise to

γci,j(∥xj∥
2) = γci,j(∥x̃j + ρj−1(x̃j−1)∥2) 6

γci,j(4∥x̃j∥
2) + γci,j(4∥ρj−1(x̃j−1)∥2) 6

γci,j(4∥x̃j∥
2) + γci,j(4ϱj−1(∥x̃j−1∥2)).

Then, by (21), we have

V̇ a
i 6

i∑
j=1

[γai,j(V
a
j ) + γbi,j(V

b
j ) + γ̄ci,j(∥x̃j∥

2)], (C4)

with

γ̄ci,j(s) = γci,j(4s) + γci,j+1(4ϱj(s)) ∈ K ∩O(Id).

Moreover, in the same manner, by (21), we also have

V̇ b
i 6

i∑
j=1

[δai,j(V
a
j ) + δbi,j(V

b
j ) + δ̄ci,j(∥x̃j∥

2)], (C5)

where δ̄ci,j ∈ K ∩O(Id).
Second, let us consider x̃i subsystem to show the fact that

function f̃ci (z[i], ζ[i], x̃[i+1], µ) satisfies

∥f̃ci ∥
2 6

i∑
j=1

[ψ̄a
i,j(V

a
j ) + ψ̄b

i,j(V
b
j )] +

i+1∑
j=1

ψ̄c
i,j(∥x̃j∥

2),

(C6)

where ψ̄a
i,j ∈ K ∩ O(αj), ψ̄b

i,j ∈ Ko ∩ O(αj) for 1 6 j 6 i

and ψ̄c
i,j ∈ K∩O(s) for 1 6 j 6 i+ 1. This will be shown by

mathematical induction.
Initial Step. At the initial step i = 1, by (22), we have

∥f̃c1∥2 6 2∥f̃c1(z1, ζ1, x1, µ)∥2 + 2∥H1∥2∥x̃2∥2,

which verifies (C6) for i = 1 with ψ̄a
1,1 = ψa

1,1, ψ̄b
1,1 = ψb

1,1,
ψ̄c
1,1 = ψa

1,1, ψ̄c
1,2(s) = 2∥H1∥2s.

Induction Step. Suppose i > 1 and at step i − 1, there
exists the function f̃ci−1(z[i−1], ζ[i−1], x̃[i], µ) satisfying (C6).
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Then, it will be shown that the function f̃ci (z[i], ζ[i], x̃[i+1], µ)

also satisfies (C6). Toward this end, note that,

∥f̃ci ∥
2 6 3∥fci (z[i], ζ[i], x̃1, · · · , x̃i + ρi−1(x̃i−1), µ)∥2 +

3∥Hi∥2∥x̃i+1∥2 +

3∥∂ρi−1

∂x̃i−1
(−Hi−1ρi−1(x̃i−1) + f̃ci−1)∥

2.

By (C3), it gives rise to

∥fci ∥
2 6

i∑
j=1

[ψa
i,j(V

a
j ) + ψb

i,j(V
b
j ) + ψc

i,j(∥xj∥
2)] 6

i∑
j=1

[ψa
i,j(V

a
j ) + ψb

i,j(V
b
j ) + ψc

i,j(4∥x̃j∥
2)] +

i−1∑
j=1

ψc
i,j+1(4ϱj(∥x̃j∥

2)). (C7)

On the other hand, note that by [27, Lemma A.1], there exists
a function ϱ̄i ∈ K ∩ O(s) such that

∥∂ρi
∂x̃i

(xi)−
∂ρi
∂x̃i

(0)∥2 6 ϱ̄i(∥x̃i∥2). (C8)

Then, we have

∥∂ρi−1

∂x̃i−1
(−Hi−1ρi−1(x̃i−1) + f̃ci−1)∥

2 6

1

2
∥∂ρi−1

∂x̃i−1
(xi−1)−

∂ρi−1

∂x̃i−1
(0)∥4 +

1

2
∥ −Hi−1ρi−1(x̃i−1) + f̃ci−1∥

4 +

∥∂ρi−1

∂x̃i−1
(0)∥2∥ −Hi−1ρi−1(x̃i−1) + f̃ci−1∥

2 6

1

2
ϱ̄2i (∥x̃i∥

2) + 4∥Hi−1∥4ϱ2i−1(∥x̃i−1∥2) +

(3i− 2)[
i−1∑
j=1

[ψ̄a2
i,j(V

a
j ) + ψ̄b2

i,j(V
b
j )] +

i∑
j=1

ψ̄c2
i,j(∥x̃j∥

2)] +

2∥∂ρi−1

∂x̃i−1
(0)∥2∥Hi−1∥2ϱj(∥x̃j∥2) +

2∥∂ρi−1

∂x̃i−1
(0)∥2

i−1∑
j=1

[ψ̄a
i,j(V

a
j ) + ψ̄b

i,j(V
b
j )] +

i∑
j=1

ψ̄c
i,j(∥x̃j∥

2)]. (C9)

Consequently by combining (C7) and (C9), the inequality (C6)
can be verified for the function f̃ci (z[i], ζ[i], x̃[i+1], µ).

Third, define a positive definite quadratic function V c
i :=

V c
i (x̃i) = x̃Ti H

−1
i x̃i. By using (C6), it can be verified that,

along trajectories of (C2),

V̇ c
i 6 −2

N∑
k=1

ρ̄i,k(x̃i,k)x̃
2
i,k + ∥H−1

i ∥2∥x̃i∥2 +

i∑
j=1

[ψ̄a
i,j(V

a
j ) + ψ̄b

i,j(V
b
j ) + ψ̄c

i,j(∥x̃j∥
2)].

For any αc
i ∈ K ∩ O(Id), noting that ψ̄c

i,i ∈ K ∩ O(Id),
by [19, Lemma 7.8], there exists an even function ρ̄∗i,k > 1 that
is increasing over [0,+∞), such that

ψ̄c
i,i(∥x̃i∥

2) + αc
i (x̃

T
i H

−1
i x̃i) + ∥H−1

i ∥2∥x̃i∥2 6
N∑

k=1

ρ̄∗i,k(x̃i,k)x̃
2
i,k.

Then, choosing

ρ̄i,k(x̃i,k) > ρ̄∗i,k(x̃i,k), 1 6 k 6 N, 1 6 i 6 n, (C10)

leads to

V̇ c
i 6

i∑
j=1

ϕai,j(V
a
j ) +

i∑
j=1

ϕbi,j(V
b
j ) +

i+1∑
j=1

ϕci,j(V
c
j ),

(C11)

for V c
n+1 ≡ 0, and functions ϕai,j = ψ̄a

i,j ∈ K ∩ O(αa
j ),

ϕbi,jψ̄
b
i,j ∈ Ko ∩ O(αb

j), ϕ
c
i,jψ̄

c
i,j ∈ K ∩ O(Id), where in par-

ticular, ϕci,i(V
c
i ) = −αc

i (V
c
i ).

Hence, Assumption 1 is verifiable. Moreover, by Lem-
ma 1, one can construct gain functions αc

i ∈ K ∩ O(Id) for
1 6 i 6 n such that system (C2) is globally asymptotically
stable at the origin. Furthermore, such gain functions can be
specified by designing functions ρ̄i for 1 6 i 6 n in (C10).
The proof is complete.
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