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摘要:本文利用一种新的导航策略和反馈控制器解决了欠驱动船舶受到外部扰动作用下的保持直线运动问题.与传
统的视野线(line-of-sight, LOS)导航策略相比,改进的LOS导航策略具有变积分增益能够补偿外部环境扰动引起的侧滑
效应并且能够避免积分饱和影响,其中积分增益是以垂直距离误差为函数引导船舶灵活快速地趋向期望的轨迹. 本文所
提出的积分导航策略和基于积分器反演控制策略组成一种串联结构的系统,并且证明了当所有控制目标实现时整个系
统是全局一致渐进稳定的. 仿真结果说明了所提出内容的有效性和性能.
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Uniformly globally asymptotically stable path following with
integral gain-variable guidance law for ships
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Abstract: This paper addresses the problem of straight-line path following for underactuated ships exposed to constant
external force by utilizing a novel guidance law and dynamic feedback controller. Compared to the conventional line-of-
sight (LOS), The modified LOS guidance law with variable integral gain is proposed to compensate for sideslip influence so
as to copy with the environmental force and avoid integral windup as well, in which arguments and integral gain computed
as a function of cross-track error. This guidance law can conduce the ships to converge to desired path in a elegant and
faster manner. The proposed integral guidance law and the control strategy based on integrator backstepping technique
make up a cascaded structure which is proved to be uniformly globally asymptotically stable (UGAS) when the target tasks
are all achieved. Simulation results have demonstrated the effectiveness and capability of the proposed control and guidance
scheme.
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1 Introduction
As we know, in order to develop and utilize the

marine natural resources and reduce transportation
cost at sea, the researches of marine control system
have gained extensive attentions. The ability to ma-
neuver a ship to track or follow a given path is of
primary importance in guidance and control system
which are basic methodologies concerned with the
achievement of marine motion control objectives.

In guidance system, the LOS guidance law is a
three-point guidance scheme since it involves a sta-
tionary reference point on path in addition to the ship
and the desired positions, what’s more, it acts like a
helmsman who commonly make the ship purse the
desired path through steering it towards a point ly-
ing a constant distance ahead of the ship on the path,

which is called the look-ahead distance, therefore, the
three points are derived in the meantime. In maritime
applications, path following control techniques based
on the LOS guidance law has been broadly applied
because of its nice properties[1]. The conventional
line-of-sight guidance was described in the book [2],
although it has been employed for missiles success-
fully, it is needed to modify the guidance law before
it’s suitable to maritime applications at the existence
of disturbances because of its drawback of being sus-
ceptible to environmental disturbance. An modified
LOS guidance law with integral action was proposed
to handle environmental disturbances such as con-
stant ocean, winds and waves[3], but the property of
reducing integrator wind-up wasn’t enough intuitive
and obvious, and the fixed integral gain may amplify
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the integral action unnecessarily. Afterwards, the in-
tegral LOS guidance law paired with nonlinear con-
troller for marine surface vessels with saturated trans-
verse actuators was presented by Caharija and Pet-
tersen[4], so as to compensate the drift caused by side-
slipping in the presence of constant ocean currents.

There are few proofs of LOS guidance law with
compensation of sideslip angle before[5], however,
the effect of drift angle was omitted and its pro-
posed synthesized controller guaranteed the global k-
exponential stability of cross-tracking error in the lit-
erature [6]. The backstepping design methodology,
described in [2], is a recursive design methodology
and strongly related to feedback linearization. How-
ever, when designing nonlinear backstepping con-
trollers the designers can exploit good nonlinearities
in the system which the feedback linearization cancel,
and bad or destabilizing nonlinearities are dominated
by adding nonlinear damping[2]. In the article [7],
the coordinated path following control problem for
a group of underactuated ships are addressed by us-
ing the combination of Lyapunov direct method and
backstepping, this path following controller forces
each underactuated ship to follow a predefined path
subject to external constant disturbances[8]. In [9], a
control law based on nonlinear adaptive backstepping
was proposed to copy with unknown system parame-
ters and environmental disturbances, but the path can
be kept within a tracking error globally. Wave im-
pact was also taken into account to improve the per-
formance of path following in the wave fields by in-
troducing a numerical test bed[10].

The geometric error was explicitly employed in
the design procedure and convergence to the desired
path was guaranteed by an alternative controller with
modified speed assignment according to it, which is
the cross-track error between marine surface vehicle
and the path[11], unfortunately, the dynamic task was
sacrificed when the craft moved off the path. Shortly
afterwards, they applied a least-square approach to
fully marine craft and adjusted the speed likewise to
ensure cross-track error in the presence of ocean cur-
rents[12].

However, traditional LOS guidance is computa-
tionally simple, intuitive and easy to tune, and easily
influenced by external forces such as ocean currents,
wind and waves which will affect the motion of vehi-
cles and give rise to lateral acceleration, consequently,
the occurrence of sideslip angle due to lateral accel-
eration can destabilize the system. In addition, the
drawback cannot be avoided by simply adding inte-
gral action since the source of the problem root in

LOS steering law itself. It has been confirmed that the
LOS guidance law needed to be modified by includ-
ing a term related to the drift angle to stabilize the
cross-tracking error around the desired equilibrium
point[5]. It is worthy clarifying that sideslip angle is
equal to zero when the sway velocity is zero or the
ship move forward without external disturbance, and
the total velocity is equal to surge velocity. But dur-
ing a turn, the sideslip angle is nonzero due to the total
velocity is separated into two parts–sway velocity and
surge velocity. And on the other side, it becomes nec-
essary to counteract the influence from external dis-
turbance especially constant disturbance by compen-
sating sideslip angle in order to follow straight line.
At this point, it is clearly important to underline that
the compensation of drift angle need to be done no
matter whether the vehicles are suffered from exter-
nal force.

In this paper, motivated by the research [5], we
propose to compensate for sideslip angle directly at
first, though the procedure of the proof takes full ad-
vantage of the trigonometric function and is less com-
putationally expensive. Then two guidance laws com-
bined with nonlinear integrator backstepping con-
troller, which compensate the drift angle directly and
indirectly, are designed to steer the ship follow de-
sired path. And they not only contribute to avoid inte-
grator saturation and compensate for the influence of
disturbances both directly and indirectly, but keep the
integrated system uniformly globally asymptotically
stable.
1.1 System model and problem statement

In this section, we present the control objective
and the mathematical model of ship considered in this
paper.
1.2 Ship model

It is commonly sufficient to consider a 3 DOF hor-
izontal nonlinear maneuvering model in the form[1]:

η̇ = R(ψ)ν, (1)

Mν̇ + N(ν)ν = τ + RT(ψ)b, (2)

where η = [x y ψ]T ∈ R2 × [−π, π] represents
earth-fixed position coordinates and heading angle,
ν = [u v r]T ∈ R3 represents the body-fixed ve-
locities, and

R(ψ) =




cos ψ sinψ 0
− sinψ cos ψ 0

0 0 1


 ∈ SO(3) (3)

is the rotation matrix. The inertia matrix M and the
matrix N are defined as
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M =




m11 0 0
0 m22 m23

0 m32 m33


 , N(ν)=




n11 0 0
0 n22 n23

0 n32 n33


 ,

we assume that the matrices in maneuvering model
(1)–(2) satisfy the properties: M = MT and terms
in N(ν) is positive. The symmetry property of iner-
tia matrix M is needed in Lyapunov stability analysis
of backstepping design procedure. τ = [τu, τv, τr] is
the body-fixed propulsion forces and moments, and
all the low-frequency environmental forces and mo-
ments acting on ship, which are caused by wind,
ocean current and second order wave loads, is col-
lected in the earth-fixed vector b. By the following
rotation, the transformation from earth-fixed coordi-
nates b into body-fixed coordinates is achieved:

τ = R(ψ)Tb. (4)

Since these disturbances are bounded and so slowly
varying compared to the ship dynamics, we can as-
sume that ḃ = 0 and b ∈ L∞ in the controller synthe-
sis.

1.3 Problem statement
The primary objective of this paper is to design

a control and guidance system to steer the ship to
converge to the desired straight-line path P with de-
sired speed ud which can be starting from any po-
sitions with some orientations. Convergence to the
path, which is referred to as the geometric task, is for-
mulated as

lim
t→∞ d(t) = 0, (5)

where d(t) is cross-tracking error.
It is required that the ship converge to the path as

smoothly as desired. Thus, the heading angle has to
track desired angle, that is

lim
t→∞(ψ − ψd) = 0, (6)

the desired heading angle ψd will determined later.
2 Guidance and control system design
2.1 Line-of-sight guidance system

Figure 1 indicates geometry of the line-of-sight
guidance principle and involves main variables. In
this paper, the LOS guidance system based on look-
ahead steering method is employed. Consider a
straight-line P as the desired path, the slope of the
path is defined as ψk ∈ [−π, π]. At each of time, the
LOS vector starts from the ship’s position p(x, y) and
end to the point plos(xlos, ylos) which is located on the
straight path at a lookahead distance ∆ > 0 ahead of
the direct projection of p onto the path. The orienta-
tion of the LOS vector is donated ψLOS, i.e., the LOS
angle, as Fig. 1 shows. In LOS guidance system, let

the moving point plos be the desired point that the ship
moves towards at each time instant. It means that the
heading angle ψ must be aligned along the angle of
LOS vector at each of instant time. Thus, the corre-
sponding LOS guidance law is given by

ψLOS = ψk + arctan(− d

∆
), (7)

where ψk is the slope of the path, and ψLOS is the
desired course angle of the ship. At the same time,
aligning the heading angle ψ along the angle ψLOS

may result in a nonzero cross-tracking error when the
total speed of ship is not aligned with the x-axis of
the body-fixed reference frame. Thus , a better alter-
native is to align the total speed with desired course
angle ψLOS instead of aligning the x-axis of the body-
fixed reference frame, that is to say, to compensate for
sideslip angle β. The compensation essentially im-
plies that the desired heading angle is computed using
the following equation:

ψd = ψLOS − β, (8)

where β = atan(v/u).

Fig. 1 The illustration of LOS guidance law

Locate a point pk at the straight path, and denote
the distance between p and plos by σ: σ , [s d]T

where d(t) is the cross-tracking error and s(t) is the
along-tracking error. Thus, it can be derived by the
transformation of reference frame:

σ = RT(ψk)(p− pk). (9)

Differentiate the equation (9), we can obtain σ̇ =
RT(ψ − ψk)ν, where ν = [u v]T. Consequently,
the cross-track error is

ḋ = u sin(ψ − ψk) + v sin(ψ − ψk) =√
(u2 + v2) sin(ψ − ψk + β) =

U sin(ψ − ψk + β). (10)

For the analysis of stability, the equation (10) is
rewritten to be
ḋ = U sin(ψd − ψk + β) + U [sin(ψ − ψk + β)−

sin(ψd − ψk + β)] (11)
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with the help of the basic transformation of trigono-
metric function and the heading angle error z0 =
ψ − ψd, equation(11) can be farther derived as

ḋ = − Ud√
∆2 + d2

+

2U sin(
1
2
z0) cos(ψk − ψd − β − 1

2
z0). (12)

By substituting equations (7)−(8), we get

ḋ = − Ud√
∆2 + d2

+

2U sin(
1
2
z0) cos(arctan

d

∆
− 1

2
z0) (13)

and the equation (11) can be reformulated to be

ḋ = fd(d, t) + gd(d, ξ), (14)

where fd(d, t)=U sin(ψd−ψk +β) and gd(d, ξ(z0))

= 2U sin(
1
2
z0) cos(arctan

d

∆
− 1

2
z0), ξ = ξ(z0) is a

vector about d and will be determined in Section 4.

Remark 1 The systems (1)−(2) and the guidance
systems (7)−(8) are interconnected and constitute the nonlin-
ear cascade system. Consider Eqs.(13)−(14), it can be seen
that not only the desired heading angle ψd influences the guid-
ance system, but also the heading error z0 = ψ − ψd does.
Furthermore, the function gd(d, ξ) gives how the heading error
dynamic affects the cross-tracking error and make the system
track U sin(ψd − ψk + β) as softly and smoothly as possible.

However, even though the various means of di-
rect measurement of β are considered (see [5]), these
methods become much more difficult to be handled
when external slowly-varying forces such as the cur-
rent acts on the vehicle. Adding the integral action
is an alternative way to compensate the sideslip an-
gle effects for cancelling environmental disturbances.
Compared with the traditional LOS guidance, the in-
tegral gain-variable LOS (ILOS) guidance is designed
to enable the underactuated vehicles to follow the
straight-line paths under the influence of environmen-
tal disturbances such as current, wind or waves by
adding integral action into the former. To this end,
the following LOS guidance law with variable inte-
gral gain is proposed:

ψmILOS , − arctan(Kpd + e−ρ|d|yd),

ẏd =
e−ρ|d|yd√

1 + (Kpd + e−ρ|d|yd)
,

(15)

ψd = ψk + ψmLOS , (16)

where ρ > 0 is design parameter and Kp = 1/∆ > 0.
The idea behind (15) is that the integral of cross term
d is only used to keep ψmILOS nonzero when a state-
state off-track condition is detected (i.e. d 6= 0),

and when the vehicle follows the desired paths (i.e.
d = 0) in the situation where environmental distur-
bances drive the vehicle away from the given path.
In this ILOS guidance law (15), the variable inte-
grating gain will make the integral term less domi-
nant when the vehicle is far from the desired paths to
avoid overshoot and saturation effects, in other words,
e−ρ|d| → 1 as d → ∞. Thus, the persistent accumu-
lation of the nonzero integral term will generate the
side-slip angle.
3 Control design method

When designing marine control systems it is
clearly important to add integral action to control law
to avoid steady-state error and compensate for slowly-
varying disturbance. In this section, a model-based
control method is performed by utilizing the integra-
tor backstepping for the nonlinear maneuvering sys-
tem (1)–(2), and this design is divided into two coher-
ent steps.

The overall design procedures are moving on
based on the these following conditions: all the ref-
erence signals needed in design, the desired heading
ψd and its higher order derivatives ψ̇d and ψ̈d, and the
desired surge speed ud and its derivative u̇d , are as-
sumed to be bounded in signal space L∞, i.e., ψd, ψ̇d,
ψ̈d, ud, u̇d∈ L∞, and this assumption is reasonable in
practice.

The change of coordinates, that is, the error vari-
ables z0 ∈ R and z ∈ R3 is defined as

z0 = ψ − ψd = hTη − ψd, (17)

z , [z1 z2 z3]T = ν −α, (18)

where α , [α1 α2 α3] ∈ R3 is a vector of stabiliz-
ing functions to be specified later, and let h ∈ R3 be
the projection vector h , [0 0 1]T.

Step 1 Let the control objective to be the con-
vergence of the error signal z0 to zero. To this effect,
define the first control Lyapunov function (CLF) as

V1 , 1
2
z2
0 > 0. (19)

By differentiating the equation(17) as a function of
time, it can be derived that

ż0 = ψ̇ − ψ̇d =hTν−ψ̇d =hT(z+α)−ψ̇d, (20)

since η̇ = Rν. Differentiating (19) along the trajec-
tory of z0-dynamics yields

V̇1 = z0ż0 = z0h
Tz + z0(α3 − ψ̇d). (21)

Considering the purpose of this step, the stabilizing
function α3(z0) is linearized about z0, that is to say,
the stabilizing function α3(z0) is chosen to be

α3(z0) = −k0z0 − ψ̇d, (22)
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where k0 > 0, which acts like a feedback control as
well and results in

V̇1 = −k0z
2
0 + z0h

Tz. (23)

This concludes Step 1.
Step 2 The derivative of Mz is now expressed

as

Mż = M(ν̇ − α̇) = τ + RTb−N(ν)ν −Mα̇.

(24)

At this point we need to augment the first CLF and de-
sign τ render its derivative nonpositive, we consider
this augmented CLF:

V2 = V1 +
1
2
zTMz +

1
2
b̃TΓ−1b̃, (25)

where b̃ ∈ R3 is adaptation error defined as: b̃ = b̂−b

and Γ = ΓT > 0 is the adaptation gain matrix.
The b̂ is the estimate of the environmental disturbance
vector b, and it should be noted that the assumption
ḃ = 0 means that ˙̃

b = ˙̂
b. Derivative equation (25)

along the trajectories of z0,z, b̃, using equations (23)
−(25), we get

V̇2 = −k0z
2
0 + z0h

Tz + zTMż + b̃TΓ−1 ˙̃
b =

−k0z
2
0 + zT(hz0 + τ + RTb−Nν −

Mα̇) + b̃TΓ−1 ˙̂
b. (26)

To make clearness, N is used instead of N(ν). Sub-

stituting the ν = z + α and ḃ = ˙̂
b − ˙̃

b into (25)
yields

V̇2 = −k0z
2
0 + zT(τ + RTb−N(z + α)−

Mα̇ + hz0) + b̃TΓ−1( ˙̂
b− ΓRz). (27)

Thus, the parameter adaptation law
˙̂
b = ΓRz (28)

makes the third term of (27) zero. By assigning the
control input to be

τ = Nα−Kz −RTb̂ + Mα̇− hz0, (29)

where K = diag{k1, k2, k3} > 0 is a positive defi-
nite design matrix, finally we obtain negative definite
V̇2 by

V̇2 = −k0z
2
0 − zT(N + K)z < 0, ∀z0 6= 0, z 6= 0

(30)

and according to standard Lyapunov arguments, this
result guarantees the boundedness of (z0,z) and their
convergence to zero. As for sway-unactuated ships
of which the common actuator confirmation is a main
propeller and a rudder, however, there is no redundant
actuator to deliver sway force independently, as a re-

sult, the force of τv couldn’t be assigned directly. In
general, the sway force τv is set to be zero instead
references [1, 13]. Whereas note that the coupled
relationship between sway and yaw from equations
(1)−(2), one can reasonably infer that the rudder de-
flection may result in sway force and then influences
the sway dynamics. Consequently, we can obtain

τv = lττr, (31)

where lτ is the moment arm from the controlled
point, midship or center of gravity (CG), to the rud-
der placed aft. Now that α2 is still unknown and the
sway dynamics α2 is not controlled directly, one can
attempt to find an update law for α2 to satisfy that the
computed force τv in equation (29) conforms to the
physical constraints of the system, that is, τv = lττr.
Consider the expressions of the second and third el-
ement of vector τ , and reformulate these resultant
equations, the following dynamic equation is derived:

m̄2α̇2 = −n̄2α2 + γ(α3, α̇3, b̂, z0,z), (32)

where

m̄2 = m22 − lτm32 > 0, n̄2 = n22 − lτn32 > 0,

γ(α3, α̇3, b̂, z0,z) =

−lτz0 + (lτn33 − n23)α3 + (lτm33 −m23)α̇3 +

(b̂1 cos ψ − b̂2 sinψ − lτ b̂3) + k2z2 − lτk3z3.

Theorem 1 The origin of the error system
(z0,z, b̃) for the 3 degree of freedom (DOF) un-
deractuated ship model (1)–(2) is uniformly globally
asymptotically stable (UGAS) and uniform local ex-
ponential stability (ULES) by using the control law
(29) and disturbance adaptation law (28) and choos-
ing the stabilizing function α as α1 = ud, numerical
integration of (32) and (22) respectively.

Remark 2 The smooth reference signal ψd, ψ̇d, and
ψ̈d are provided by ILOS guidance system, while ud ∈ L∞ is
given by operator and its derivative u̇d must be bounded.

Proof Firstly, based on the equations (20)(24)
(28), we establish the explicit error dynamics for the
(z0,z, b̃)-system. Define the subsystems:

Σ1 : Θ̇ = h(Θ, t) + B(t)b̃, (33)

Σ2 : ˙̃
b = −ΓBTMT

errorΘ, (34)

where

Θ , [z0 z1 z2 z3]T, h(Θ, t) = −M−1
errorNerror,

B(t) = −M−1
errorR

T
error,

Merror =




1 0 0 0
0 m11 0 0
0 0 m22 m23

0 0 m32 m33


 ,
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Rerror =




0 cos ψ − sinψ 0
0 sin ψ cos ψ 0
0 0 0 1


 ,

Nerror =




k0 0 0 0
0 n11 + k1 0 0
0 0 n22 + k2 n23

0 0 n32 n33 + k3


 .

The subsystems (33) and (34) constitute the
whole time-varying nonlinear (z0,z, b̃)-system. For
the obtained system (33) is nonautonomous, it is not
suitable for Krasovskii-Lasalle’s theorem. An alter-
native theorem for this case was stated in [14]. For
the remainder of the proof, readers can refer to the
proof in [14].

In conclusions, lim
t→∞ z0 = lim

t→∞(ψ − ψd) = 0 and

lim
t→∞ z1 = lim

t→∞(u − ud) = 0 by choosing α2 = ud,
then the tasks of tracking the desired heading angle
and desired surge velocity are all fulfilled at the same
time. In view of the theorem1 and its criteria, it can
be infer that the driving term γ of α2-subsystem is
bounded, i.e. γ(α3, α̇3, b̂, z0,z) ∈ L∞. This implies
that the α2-subsystem is input-to-state stable (ISS)
from γ to α2 since m̄2 > 0 and n̄2 > 0. Moreover,
the unforced α2-subsystem (γ = 0) is clearly expo-
nentially stable. It is also straight-forward to show
that α2 ∈ L∞, z2 ∈ L∞ ⇒ the sway speed v ∈ L∞,
it means that the unactuated sway dynamics is glob-
ally bounded.

4 The interconnection behaviour between
guidance and control systems
Again here consider the ḋ-subsystem (14) and er-

ror dynamic (z0,z, b̃)-system, we establish the new
error state vectors: Φ , [d ξ]T ∈ R8, and ξ =
[z0 z b̃]T. The ḋ-subsystem (14) and the (z0,z, b̃)-
system equations can be rewritten respectively as

Σ3 : ḋ = fd(d, t) + gd(d, ξ), (35)

Σ4 : ξ̇ = fξ(ξ, t). (36)

The above systems constitute the cascaded structure
which embraces the control and guidance systems, as
is depicted in Fig. 2.

Fig. 2 The brief illustration of the cascaded system

Hence we go on to state the following theorem.

Theorem 2 The origin Φ = 0 of cascaded sys-
tems Σ3 and Σ4 is uniformly globally asymptotically

stable if the desired heading angle ψd is provided by
guidance law (7) and the drift angle is compensated
as well according to equation (8).

Proof Note that the the cascade interconnec-
tion, the proof may be carried out by the applying
the subsystems’stability for the control and guid-
ance system. In this paper, we will borrow the lemma
2.1 in [15] to prove uniform global asymptotic sta-
bility. We start by the subsystem Σ4 (the perturbing
system): it should be stressed that the direct conclu-
sion of the theorem1 states that the origin ξ = 0 of
the systems Σ4 is UGAS by utilizing the control law
(29)and adaptation law (28). Then, to present one of
several sufficient conditions for UGAS, it is needed
to consider the unforced-system of the system Σ3:
ḋ = fd(d, t) and the Lyapunov function candidate
(LFC):

Vunforced,d = (1/2)d2, so the time derivative of
LFC along d is

V̇unforced,d = − U√
∆2 + d2

d2 6 0.

Clearly, this shows that the unforced-system is UGAS
and ULES.

Because the surge speed u and sway speed v are
all bounded, the total speed U =

√
u2 + v2 ∈ L∞, in

other words, 0 < U < Umax. Regarding the gd(d, ξ),
it also belongs to L∞ for gd(d, ξ) 6 2Umax. As a
consequence of all the driving terms’ boundedness,
the solution of d(t) is uniformly globally bounded
(UGB). On the other hand, the solutions of the sub-
system Σ4 : ξ̇ = fξ(ξ, t) are clearly UGB on the
basis of the content front. These bounded solutions
result in the solutions of Φ are also UGB. And now,
the cascaded structure can be concluded to be UGAS
by exploiting the Lemma, see [15] for the cascade:

UGASξ + UGASunforced,d + UGBΦ ⇔ UGASΦ.

At this point, the cascade systems Σ3 and Σ4 are
demonstrated that it has a uniformly globally asymp-
totically stable equilibrium at Φ = 0.

Theorem 3 When the underactuated ship (1)−
(2) is exposed to constant environmental force, con-
vergence to the desired path is achieved uniformly
globally asymptotically if the desired heading angle
is given by (15).

Proof we can rewrite (10) as follows:

ḋ = U sin(− arctan(Kpd + e−ρ|d|)) =

− (Kpd + e−ρ|d|d)√
1 + (Kpd + e−ρ|d|d)2

U. (37)
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Next, the fourth LFC is proposed:

VmILOS =
1
2
y2
d +

1
2
d2. (38)

So the time derivative is computed as

V̇mILOS = ydẏd + dḋ =

ydẏd +
−(Kp + e−ρ|d|)Ud2

√
1 + (Kpd + e−ρ|d|d)2

. (39)

Substituting ẏd in (15) yields

V̇mILOS =
−d2

√
1 + (Kpd + e−ρ|d|d)2

U 6 0. (40)

From (40), it can be concluded that the system (38)
has a UGAS/ULES equilibrium point at yd = 0 with
the adaptive integral gain-variable LOS guidance law
(15).
5 Simulation

The proposed ILOS guidance law (15) and the
control law (29), adaptation law (28) are simulated in
MATLAB/Simulink, trying to force a underactuated
ship model to follow a straight line while exposed to
constant environmental disturbance. The controller
used

M =




25.8 0 0
0 33.8 1.0115
0 1.0115 2.76


 , N =




2 0 0
0 7 0.1
0 0.1 0.5


 .

Accordingly, ρ=2, ∆=3.5, k0 =10, k1 =10, k2 =
5, k3 = 10, while Γ = I . The initial ship pose and
velocity are set to be η0 = [0 m 0m π/2 rad]T and
ν0 = [1m/s 0m/ s 0 rad/ s]. And the straight-line
path is chosen as the straight path with slope ψk =
π/3 rad which passes through the point(5m, 9m).
The environmental forces can be bounded constant
or slow variable, without loss of generality, here
we assume that slow variable b oscillates around
[−5N 5 N 0 N] on a small scale.

In Figs. 3−4, we make a comparison between the
LOS guidance law (8) and the integral gain-variable
LOS guidance law (15) with the same controller (29)
to show the effectiveness of the LOS guidance law
(15). And further more, compared to the law (8),
which is based on actual measurement, in Fig. 4 it can
be seen that the proposed ILOS guidance paired with
controller drivers the underactuated ship onto prede-
fined path with smaller error and more graceful ac-
tion. See Fig. 6 and compared it with Fig. 5, as ex-
pected, the adaptive backstepping method with pro-
posed LOS guidance law (15) results in the heading
angle converging to a specified angle which is dif-
ferent from the slope of the given straight-line path,

keeping the vehicle on the desired path, which means
that it is no longer needed to measure the drift angle
by applying the proposed ILOS guidance law.

Fig. 3 The practical path generated by guidance law (8)
based on the proposed controller

Fig. 4 The practical path generated by guidance law (15)
based on the proposed controller

Fig. 5 The practical heading angle with guidance law (8)

Fig. 6 The practical heading angle with guidance law (15)

6 Conclusions
This paper has addressed two relational prob-

lems pertaining to underactuated ships’ control strat-
egy and guidance law. Since the vehicle is exposed
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to constant external force, the two alternative com-
pensation approaches of sideslip angle are considered
to maneuver the vehicle to follow the desired path
when steady-state off-track circumstance exists and
the adaption law is added to controller at the same
time. Moreover, UGAS is proven for the tracking er-
ror states. In particular, we have derived a adaptive
integral gain-variable LOS guidance law capable of
resisting the constant external force. Simulation re-
sults have illustrated the effectiveness and capability
of the proposed control and guidance scheme.
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