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摘要:本文探讨离散时间切换线性系统的最小状态超调设计问题.对有限时长情形,给出基于穷尽搜索的构造性
算法,并采用降价法提高计算效率.对无限时长情形,给出基于分段总汇的次优设计方案.
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Minimum state-overshooting design for
discrete-time switched linear systems
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Abstract: In this work, we address the problem of minimum state-overshooting for discrete-time switched linear sys-
tems. For finite time horizons, the problem is solved in a constructive manner by exhaustive search, and a reduced-order
methodology is applied to improve the computational efficiency. For infinite time horizons, sub-optimal solutions are
obtained based on proper aggregation of finite-time-horizon trajectories.
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1 Introduction
A switched linear system is a hybrid system con-

sisting of a set of linear subsystems and a rule that co-
ordinates the switching among the subsystems. From
modelling perspective, switched linear systems could
represent/approximate a large class of real-world dy-
namical systems. From control perspective, the hybrid
control strategy provides a powerful tool in achieving
better adaptation/robustness/intelligence performances
than the conventional non-switched control.

For switched linear systems where switching/
control laws are design variables, how to properly de-
sign the laws to improve the system performances is
a critical issue. In the literature, most works fo-
cused on asymptotic performances such as stabili-
ty/stabilizability, and the reader is referred to [1–5]. It
should be stressed that, the switching/control laws thus
designed might produce bad transient behaviors such as
large overshoot and/or high-frequency oscillation that
damage the system. Therefore, it is important to design
the switching/control laws to achieve acceptable tran-
sient/asymptotic behaviors simultaneously.

An important index of transient performance is

overshoot that refers to an output exceeding its final,
steady-state value. The minimum overshooting prob-
lem is a classical control problem, and many efforts
have been taken mainly for linear systems[6–12] during
the last two decades. Early in 1991, a bang-bang based
damping switching controller was proposed to obtain
non-overshooting control for second-order systems[13].
Zhu et al. used a similar approach to eliminate over-
shoot of the double integrator and the third-order in-
tegrator[14–15]. Santarelli & Dahleh showed that, for a
class of linear plants, a particular switching architecture
outperforms the (optimal) linear feedback controller in
terms of overshoot and settling time, which indicates
that hybrid control could provide transient performance
benefits[16–19]. While the aforementioned progress was
impressive, the problem of minimum overshooting is
still largely open even for linear systems.

In this work, we are to investigate the problem
of minimum state-overshooting for force-free discrete-
time switched linear systems.

The problem is to find proper switching strate-
gy that makes the switched system stable with least
possible state overshoot. By introducing the state-
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overshoot measured by a norm, we divide the minimum
overshooting problem into the finite-time horizon and
infinite-time horizon cases, respectively. The former is
solved via exhausted search, and the latter is converted
into a sub-optimal concatenation of the finite-time hori-
zon solutions.

Notations: Let R, Rn, and Rn×n be the set of real
numbers, the set of n-th dimensional real vectors, the
set of n× n real matrices, respectively. Let N+ be the
set of non-negative integers. Let ∥ · ∥ be an arbitrarily
given but fixed vector (or the induced matrix) norm. De-
note by Br and Hr the ball and the sphere centered on
the origin of state space with radius r, respectively. For
any non-negative integer k, let k = {0, 1, · · · , k}. For
an indexed set of real numbers ∆ = {α1, α2, · · · , αj},
define argmin∆ = min{j : αj 6 αi, ∀ i ̸= j}.

2 Preliminaries
A discrete-time force-free switched linear system is

described by

x(t+ 1) = Aσ(t)x(t), (1)

where x(t) ∈ Rn is the system state, σ(t) ∈ M =

{1, 2, · · · ,m} is the switching law, and Ai ∈ Rn×n,
i = 1, 2, · · · ,m are known subsystem matrices.

Denote by ϕ(t; 0, x, σ) the solution of system (1)
at time t with initial condition x(0) = x and switching
law σ.

Definition 1 Switched system (1) is said to be
1) Switched stable if for any ε > 0, there exist a

δ > 0, and a switching law {σx : x ∈ Bδ}, such that

∥ϕ(t; 0, x, σx)∥ 6 ε, ∀ x ∈ Bδ, t > 0; (2)

and
2) Switched convergent if for any ϵ > 0 and γ > 0,

there exist a switching law {σx : x ∈ Bγ}, and a time
T > 0, such that

∥ϕ(t; 0, x, σx)∥ 6 ϵ, ∀x ∈ Bγ , t > T. (3)

It was proved that switched convergent implies ex-
ponential convergent that the system could be made
exponentially stable by appropriately designing the
switching laws [20].

For any natural number tf and x ̸= 0, define

τ tf
x = min

σx
max

t=0,1,··· ,tf

∥ϕ(t; 0, x, σx)∥
∥x∥

, (4)

and τ tf = sup
x ̸=0

τ tf
x . Furthermore, define

τx = lim sup
tf→+∞

τ tf
x , τ = sup

x ̸=0
{τx}.

It can be seen that τ = lim sup
tf→+∞

τ tf , which we term as

the system overshoot. It is clear that τ ∈ [1,+∞], and
τ < +∞ if and only if the system is switched stable.

When τ > 1, the overshooting phenomenon occurs.
Proposition 1 Denote

Γ = {x ∈ Rn : min
i∈M

∥Aix∥ > ∥x∥}. (5)

Then we have
1) τ = 1 if and only if Γ is the empty set;
2) The switched system is switched stable if and

only if τx < ∞;
3) If the system is switched convergent, then τ =

max
x∈Γ

τx.

Proof It follows from the definition that τx > 1
for all x ̸= 0. Note that τ = 1 means that the system
does not admit overshoot, which in turn implies that Γ
is empty. On the contrary, if there is an x in Γ , then
τx > 1 and hence τ > 1.

The second statement is straightforward.
For the third statement, note that switched conver-

gence is equivalent to exponential stability, which fur-
ther implies the existence of a positive real number τ̄
such that τx 6 τ̄ . On the other hand, it follows from the
radial-invariance property that we could focus on the u-
nit sphere, H1. By the compactness of the unit sphere
and the continuity of τx on H1, the maximum of τx on
H1 could be reached.

Remark 1 When the switched system is switched
marginally stable (switched stable but not switched convergen-
t), we do not know yet whether τ = max

x∈Γ
τx holds true or not.

This seems quite involved and we leave it open for further in-
vestigation.

In this work, we are to investigate the following
problems of minimum overshooting.

Finite time minimum state-overshooting problem
(FTMSOP): Fix a terminal time tf . For any initial
state 0 ̸= x ∈ Rn, find a switching law σx over tf − 1
such that the maximum state norm over tf is minimized.

Infinite time minimum state-overshooting problem
(ITMSOP): Suppose that system (1) is switched conver-
gent. For any initial state 0 ̸= x ∈ Rn, find a switching
law σx such that the state converges to the origin with
least possible state overshoot.

Note that in the latter problem, we need to find
(common) switching laws that achieve exponential sta-
bility with least possible system overshoot.

3 FTMSOP
As the time horizon is finite, for any given ini-

tial state, the minimum overshooting problem could be
solved by exhausted searching. However, when the ini-
tial state varies, exhausted searching is not feasible. For
this, we are to find a computational procedure to cal-
culate the minimum overshoot over all state trajectories
within the time horizon.
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Let Θ be the set of switching paths defined over
tf − 1. For a switched system with m subsystems,
the cardinality of Θ is mtf . For any non-origin x and
switching path ϑ ∈ Θ, denote

νϑ
x =

tf
max
i=0

∥ϕ(i; 0, x, ϑ)∥.

It is clear that

τ tf
x = min

ϑ∈Θ
{νϑ

x }/∥x∥, τ tf = max
x ̸=0

{τ tf
x }.

A switching path ϑ is said to be minimum-overshooting
w.r.t. x if νϑ

x = τ tf
x ∥x∥. Let Θtf

x be the set of such
minimum-overshooting switched laws. Furthermore,
define Ωϑ = {x ̸= 0 : νϑ

x = τ tf
x ∥x∥}. It follows

that
∪

ϑ∈Θ

Ωϑ = Rn − {0}.

As analyzed in [21], the region Ωϑ is norm-
dependent. For ℓ1-norm and ℓ∞-norm, the region is a
union of polyhedrons that are easily representative.

Note that, while feasible, the determination of Ωϑ

by exhausted computation is quite time-consuming. In
many cases, this is not necessary as some pruning al-
gorithms could be applied to reduce the computational
burden. For instance, if follows from Proposition 1 that,
when min

i∈M
∥Aix∥ 6 ∥x∥ holds true for any x ∈ Rn,

then there is no overshoot, and hence the computing of
Ωϑ needs not to proceed. For the purpose of computing
τ , we have the following proposition that could reduce
the computational load.

Proposition 2 Suppose that Γ defined as in (5) is
non-empty. Then we have τ tf = max{τ tf

x : x ∈ Γ}.
Proof We proceed by contradiction. It follows

from Proposition 1 that τ tf > 1. Define τ̄ = sup{τ tf
x :

x ∈ Γ}. Suppose that there is an x ̸∈ Γ , such that
τ tf
x > τ̄ . For x0 = x, define a switching law and the

corresponding state trajectory recursively by

σxj
=

{
argmin

i∈M
{∥Aixj∥}, if xj ̸∈ Γ,

ϖj, otherwise,

xj+1 = Aσxj
xj, j

∗ = min{j : xj ∈ Γ},

ϖj ∈ Θtf−j∗

xj∗
, j = 0, 1, 2, · · · .

It can be seen that ∥xj∥ 6 ∥xj∗∥ and τ tf−j∗

xj∗
6 τ tf

xj∗
,

which means that τ tf
x 6 τ tf

xj∗
6 τ̄ . This leads to contra-

diction.
Finally, the above analysis clearly shows that

sup{τ tf
x : x ∈ Γ} = max

x ̸=0
{τ tf

x },

which means that

sup{τ tf
x : x ∈ Γ} = max{τ tf

x : x ∈ Γ}.

4 ITMSOP
When the time horizon is infinite, we are looking

for a switching law that makes the switched system sta-

ble while achieving least possible overshoot. For this,
we assume a prior that the switched system is switched
convergent throughout this section.

Lemma 1 For any switched convergent system
and any positive real number µ, there exist a positive
integer L, a set of switching paths {θ1, · · · , θk}, and
set of nonnegative integers {t1, · · · , tk} with ti 6 L,
i = 1, · · · , k, such that

k

min
i=1

∥ϕ(ti; 0, x, θi)∥ 6 µ∥x∥, ∀ x ̸= 0. (6)

Fix a µ < 1, and let tf = L. The switching paths
{θ1, · · · , θk} and the corresponding set {t1, · · · , tk}
could be computed by the computational procedure
presented in [21].

For any x ̸= 0, define υx=
∥ϕ(ti;0,x,θi)∥6µ∥x∥

min
i=1,··· ,k

{νθi
x }.

With the above preparations, we have the main re-
sult as follows.

Theorem 1 The system overshoot satisfies the
estimations

τ > max{τ tf
x : x ∈ Γ}, (7)

and
τ 6 max{max

x∈Γ
{υx}, µmax

x ̸∈Γ
{υx}}. (8)

Proof The lower-bound estimate follows directly
from Proposition 2 and the fact that τ tf 6 τ . We now
proceed to establish the upper-bound estimate.

Borrowing the idea of path-wise state feedback
switching law presented in [21], for any initial state x,
we define a modified path-wise switching law σx recur-
sively by

κj = arg
∥ϕ(ti;0,xj ,θi)∥6µ∥xj∥

min
i=1,··· ,k

{νθi
xj
},

lj+1 = lj + tκj
,

σx(t) = θκj
(t− lj), t = lj, · · · , lj+1 − 1,

xj+1 = ϕ(tκj
; 0, xj, θκj

), j = 0, 1, · · · ,

(9)

where x0 = x and l0 = 0. It can be seen that the
switching law is well defined over the infinite time hori-
zon for any non-origin initial state. Furthermore, for
any non-origin initial state, we have
l1−1
max
i=l0

∥ϕ(i; 0, x, σx)∥=υx, ∥ϕ(l1; 0, x, σx)∥6µ∥x∥,

which could be further extended to
lj−1
max
i=l0

∥ϕ(i; 0, x, σx)∥ 6 max{υx, · · · , µj−1υxj−1
},

and ∥ϕ(lj; 0, x, σx)∥ 6 µj∥x∥. Based on the above
reasonings, we conclude that the state trajectory is ex-
ponentially convergent, and the overshoot is less than
or equal to max{υx, µυx1

, · · · } that is bounded from
above by max{max

x∈Γ
{υx}, µmax

x̸∈Γ
{υx}} when x ∈ H1.

This completes the proof.
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Remark 2 Note that the theorem does not provide an
accurate computing of the system overshoot. It is conjectured
that the lower bound is the true value of system overshoot, but
we are currently unable to affirm the conjecture.

5 Computational procedure
Combining the above analysis together, we are able

to provide a computational procedure to estimate the
system overshoot.

Schematic Procedure for computing the System
Overshoot

Step 1 Compute region Γ .

Step 2 Compute switching paths {θ1, · · · , θk}
and the corresponding set {t1, · · · , tk} that satisfy
Lemma 1.

Step 3 Compute τ∗ = max{τ tf
x : x ∈ Γ}.

Step 4 Compute

τ ∗ = max{max
x∈Γ

{υx}, µmax
x ̸∈Γ

{υx}}.

Step 5 Output the estimate τ ∈ [τ∗, τ
∗].

When we fix the ℓ1-norm, by virtual of the homo-
geneity τx on x, and borrow the ideas from Ref. [21], a
computational procedure could be developed. Here we
present a numerical example to illustrate the procedure.

Example 1 Consider the system (1) with three
planar subsystems given by

A1=

[
−0.7113 0.5333
1.8498 0.0968

]
, A2=

[
−0.0378 0.4588
2.4130 0.4437

]
,

A3 =

[
−0.7714 0.2266
−0.8239 − 1.4026

]
.

By applying the computational procedure presented
in [21], we confirm that the system is switched conver-
gent. When further applying the above schematic pro-
cedure, we obtain the upper and lower bounds for any
initial state, which is shown in Fig.1.

Fig. 1 The overshooting bounds

Note that the figure depicts initial states on the up-
per semi-part of the unit circle, that is, x0 = [x1; 1 −
|x1|] with x1 ∈ [−1, 1), and any other initial state could
be expressed by a scalar multiplication of these points.

It can be seen that the upper bounds coincide with the
lower bounds for a large part of the initial states, in-
dicating that the overshooting estimates are with nice
accuracy.

Fig.2 shows the state trajectories under switch-
ing law (9) and the original path-wise state-feedback
switching law of [21]. It is clear that both switching
laws produce convergent state trajectories with possible
unequal overshoots.

Fig. 2 State norms under different switching laws

6 Conclusions
In this work, the problem of minimum-over-

shooting problem has been investigated for force-free
general discrete-time switched linear systems. Some
properties of minimum overshooting were revealed both
for the finite time and infinite time horizons. By prop-
erly modifying the path-wise state-feedback switching
law developed in our earlier work[21], we obtained new
switching law that achieves exponential stability with
sub-minimum system overshoot. A computational pro-
cedure was also presented to approximate the over-
shoot, and a numerical example was given to illustrate
the effectiveness of the proposed scheme.

As a final remark, note that the results could not
be directly extended to the continuous-time case. First,
without sampling, the computation of the least over-
shooting is intractable. Second, when the system is
sampled, then the overshooting among the sampling in-
tervals is difficult to exactly computed, and the accumu-
lation might make effective estimates impossible. Nev-
ertheless, some ideas in the work could possibly be ex-
tended to the continuous-time counterpart, and we will
investigate this in a further work.
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