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Output tracking control for switched nonlinear systems with
at least an incrementally passive subsystem
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Abstract: This paper studies the output tracking control problem for a class of switched nonlinear systems with at least
an incrementally passive subsystem via average dwell time method. For any given passivity rate, we can design feedback
controllers for subsystems to make average dwell time dependent on incremental exponential small-time norm-observability
property of incrementally passive subsystem get smaller and to solve the output tracking control problem for the switched
nonlinear systems. A numeral example shows the effectiveness of the proposed method.
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1 Introduction
In the last decade, switched systems have received

a great amount of attention due to the widespread appli-
cation in many fields[1–2]. A switched control system is
a special kind of hybrid dynamical systems consisting
of a family of continuous-time subsystems and a rule
that orchestrates the switching among them[3]. Many
useful tools[4–10] have been developed to deal with such
systems, such as the common Lyapunov function tech-
nique[4], the multiple Lyapunov functions method[5–6],
the average dwell time approach[7–10] and so on.

On the other hand, the output tracking problem is
to make the output of the plant, via a controller, track
the given reference signal. The output track problem
has been widely considered in aeronautics, robot con-
trol[11], flight control and so on. Compared with the
stabilization problem, output tracking control is more

challengeable. There have been many results for track-
ing control problem for nonlinear systems[12–15]. Due
to the interaction between continuous dynamics and
discrete dynamics, switched systems may have a very
complicated behavior. Consequently, the output track-
ing control problem is more difficult and interesting for
switched systems. In [16], a state-dependent switching
law has been designed to achieve output tracking for
the switched linear systems with time varying delays.
For switched nonlinear systems, based on the sliding
mode control method, the output tracking problem for
cascade systems with external disturbance has also been
addressed in [17]. In [9], the tracking control problem
for switched linear time-varying delays systems with
stabilizable and unstabilizable subsystems has been in-
vestigated via the average dwell time method.

Passivity theory can be traced back to the beginning
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of the 1970’s. Passivity means that the energy dissipat-
ed inside a dynamic system is not larger than the energy
supplied from outside. Passivity theory has been used
to solve the output tracking problem[14–15, 18–20]. To s-
tudy the energy relation between two trajectories, the
concept of conventional passivity was extended to in-
cremental passivity in [21]. Incremental passivity is al-
so an input–output property originally proposed from
an operator point of view in [22–23]. The incremen-
tal passivity concept in the state space form was pro-
posed in [21]. The interconnection of two incremental-
ly passive systems is still incrementally passive. Then,
for incrementally passive system, an incrementally pas-
sive controller can be designed to drive the trajecto-
ries to converge to one another. Therefore, feedback
control based on incremental passivity is particularly
useful in studying output regulation problem for non-
switched systems in [21]. Incremental passivity theory
has been applied to the analysis of electrical circuits[24],
and the synchronisation analysis problem of coupled os-
cillators[25]. The incremental passivity property is still
useful for switched nonlinear systems. Incremental pas-
sivity theory and the incremental passivity-based output
tracking problem for switched nonlinear systems using
weak-storage functions and multiple supply rates were
set up in [26], where the incremental passivity property
for subsystems was not assumed. However, the activat-
ed subsystem is required to be incrementally passive.

In this paper, the output tracking control problem
for a class of switched nonlinear systems is solved with
the help of the incremental passivity property of sub-
systems via the average dwell time method. At least a
subsystem is assumed to be incrementally passive. The
results of this paper have three distinct features. Firstly,
for any given passivity rate, the simple output feedback
controllers of subsystems are designed to solve the out-
put tracking control problem for the switched nonlin-
ear systems. The average dwell time is dependent on
incremental exponential small-time norm- observabili-
ty property of incrementally passive subsystem and can
get smaller by the controllers. Secondly, in this paper,
some subsystems are allowed to be non-incrementally
passive, when they are activated. Thirdly, the output
tracking problem was solved under a given switched
signal in [26]. Moreover, a state-dependent switching
law is designed to render the switched systems incre-
mentally passive. However, in this paper, the output
tracking problem of switched nonlinear systems was
solved under a class of switching signal with the av-
erage dwell time.

Notations Rn: the n-dimensional Euclidean spa-
ce. C1 functions: continuously differentiable functions.
R+ : [0,+∞). i ∈ IP: the ith subsystem is incremen-
tal passive. i ∈ In ⊆ I − IP: the ith subsystem is non-
incrementally passive.

2 Incremental passivity
In this section, we will recall some basic theory on

incrementally passivity for nonlinear system.

Definition 1[21] Consider a system{
ẋ = f(x) + g(x)u,

y = h(x)
(1)

with state x ∈ Rn, inputs u ∈ Rm, and output y ∈ Rm.
System (1) is said to be incrementally passive if there
exists a C1 storage function V (x, x′) : R2n → R+

such that for any two inputs u(t), u′(t) and any two
solutions of system (1) x(t), x′(t) corresponding to
these inputs, the respective outputs y(t) = h(x(t)) and
y′(t) = h(x′(t)) satisfy the following inequality.

V̇ 6 (y − y′)T(u− u′). (2)

Definition 2 System (1) is said to be exponen-
tially incrementally passive if there exists constant λ >
0 such that the following inequality

V̇ + λV 6 (y − y′)T(u− u′) (3)

holds.

Remark 1 Notice that if f(0) = 0, h(0) = 0, then
an incrementally passive (exponentially incrementally passive)
system is also (exponentially) passive in the conventional sense
with the storage function Ṽ (x) = V (x, 0). The notion of expo-
nential incremental passivity defined in this paper is more gen-
eral than the notion of exponential passivity introduced in [30].

Definition 3 The nonlinear system

ẋ = f(x), y = h(x)

is said to be exponentially incremental small-time
norm-observable with degree λ if there exists δ > 0
such that when ∥y(t+ s0)− y′(t+ s0)∥ 6 δ holds for
some t > t0, s0 > 0 and 0 < τ 6 s0, we have

∥x(t+ s)− x′(t+ s)∥ 6 ce−λs∥x(t)− x′(t)∥.
Remark 2 In classical nonlinear passive systems,

zero-state detectability is required for asymptotical stability.
For switched systems, zero-state detectability is no longer ef-
fective due to switching. Several similar properties have been
imposed to produce asymptotical stability, such as norm-
observability[28], asymptotic zero-state detectability[29], expo-
nential small-time norm-observability[8]. In order to get all so-
lutions of the system converge to a bounded solution, the expo-
nentially incremental small-time norm-observable is needed.

Lemma 1 Suppose that the system (1) with u(t)
= 0 has a bound solution. x̄(t) output y = h(x̄) for
t > t0. Then, the inequalities (2)–(3) are equivalent to
the following conditions (4)–(5), respectively.

∂V

∂x
f(x) +

∂V

∂x̄
f(x̄) 6 0,

∂V

∂x
g(x) = h(x)− h(x̄),

(4)
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∂V

∂x
f(x) +

∂V

∂x̄
f(x̄) 6 −λV,

∂V

∂x
g(x) = h(x)− h(x̄).

(5)

Proof Since system (1) is incrementally passive,
we get

V̇ =
∂V

∂x
f(x) +

∂V

∂x′ f(x
′) +

∂V

∂x
g(x)u+

∂V

∂x′ g(x
′)u′ 6 (y − y′)T(u− u′). (6)

Substituting u′(t) = 0, x′ = x̄(t), y′ = h(x̄) yields
for ∀u,

V̇ =
∂V

∂x
f(x) +

∂V

∂x′ f(x̄) +
∂V

∂x
g(x)u 6

(y − y′)Tu. (7)

Obviously, the condition (7) is equivalent to condition
(4).

Similarly to the proof of (4), the equality (5) holds.
Note that by taking u′ = 0, x̄ = 0, y′ = h(x̄) = 0, the
above condition satisfies the Hill-Moylan condition[27].

QED.

3 Problem formulation
Consider a switched nonlinear system described by{

ẋ = fσ(t)(x) + gσ(t)(t)uσ(t),

y = hσ(t)(x)
(8)

with state x ∈ Rn, a piecewise constant function de-
pending on time σ(t) : [0,∞) → I = {1, 2, · · · ,M},
called the switching signal. It is assumed to be switch-
ing a finite number of times in any finite time inter-
val so as to rule out Zeno behavior [4]. ui ∈ Rm and
hi(x) ∈ Rm are the input vector and the output vector
of the ith subsystem, respectively. fi(x), gi(x), hi(x)
are smooth functions. Corresponding to the switching
signal, we have the switching sequence

Σ = {x0; (i0, t0), (i1, t1), · · · , (ik, tk), · · · ,
|ik ∈ I, k ∈ N}, (9)

where t0 is the initial time, x0 is the initial state, and N
is the set of nonnegative integers. When t ∈ [tk, tk+1),
σ(t) = ik, that is, the ikth subsystem is active. In this
paper, we focus on the output tracking control problem
for the system (8). In order to study the solvability of
the output tracking problem, we make the following as-
sumption.

Assumption 1 Let Y ⊂ Rm be a domain of ref-
erence signal. For any yr(t) ∈ Y, ui(t) = 0, t >
t0, there exist unique a bound solution x̄(t) such that
yr(t) = hi(x̄(t)).

The output tracking control problem for the
switched systems can be formulated as follows:

Design controllers ui for each subsystem such that,
for given a family of switching signals σ(t).

1) The state of the closed-loop system (8) is glob-
ally bounded.

2) lim
t→∞

(y(t)− yr(t)) = 0.

4 Output tracking of switched nonlinear
systems
In this section, we will design controller for each

subsystem to solve the output tracking problem for any
given average dwell time with the help of the incremen-
tal passivity property of subsystems.

In order to solve the output tracking control prob-
lem, at least one subsystem is assumed to be incremen-
tally passive. Here we do not need incremental passivity
of all subsystems. For convenience, the subsystems of
(8) is classified into two groups. The system (8) is incre-
mental passive for i ∈ IP ⊆ I , and non-incrementally
passive for i ∈ In ⊆ I − IP. Also, the activation
time ratio of incrementally passive subsystems and non-
incrementally passive subsystems plays a crucial role.
Therefore, the incremental passivity rate is defined as
follows.

Definition 4 [8] For any 0 6 T1 < T2, let
Tp[T1,T2] denote the total activation time of the in-
cremental passive subsystems during [T1, T2]. Then

rp[T1,T2] =
Tp[T1,T2]

T2 − T1

is called the incremental passiv-

ity rate of the switched system (8). Obviously, 0 <
rp[T1,T2] 6 1.

The notion of average dwell time is introduced in
[10] as follows.

Definition 5 [10] For a switching signal σ(t) and
any t > τ > 0, let Nσ(τ, t) be the switching numbers
of σ(t) over the interval (τ, t). If

Nσ(τ, t) 6 N0 +
t− τ

τa
holds for N0 > 0, τa > 0, then τa and N0 are called the
average dwell time and the chatter bound, respectively.

Now, we are in a position to give solvability condi-
tions on the output tracking problem for switched sys-
tems with incrementally passive and non-incrementally
passive subsystems.

Theorem 1 Suppose that Assumption 1 holds
and there exist C1 nonnegative storage function Vi(x,
x′) and constants α1>0, α2>0, such that for i, j ∈ I .

1) α1∥x− x′∥2 6 Vi(x, x
′) 6 α2∥x− x′∥2.

2) The activation time of the incremental passive
subsystems during [T1, T2] satisfies with TP [T1,T2] >
r(T2 − T1)−T0 for some constant T0 > 0, r ∈ (0, 1].

3) For i ∈ In, there exists λi2 > 0 such that the
i-th subsystem satisfies

∂Vi

∂x
f(x) +

∂Vi

∂x̄
f(x̄) 6 λi2Vi(x, x̄). (10)

4) For i ∈ IP, the subsystem is exponentially in-
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cremental small-time norm-observa-ble with degree

λ̄ > λ1

2
, c 6

√
α1

α2

under ui = 0, where

λ∗ = λ1r − λ2(1− r)− lnµ

τa
, µ =

α2

α1

for some constants λ∗ > 0, λ1 > 0, λ2 = max
i∈In

{λi2}.

Then, the output tracking control problem is solved with
the average dwell time τa > lnµ/(λ1r−λ2(1−r)) and
the controllers are given by

ui =

{
−ki(x, τa, r)(Lgi

Vi)
T, i ∈ IP,

0, i ∈ In,
(11)

where

ki(x, τa, r) ={
λ1(∥Lgi

Vi∥2)−1Vi(x, x̄), ∥Lgi
Vi∥ > δ,

0, ∥Lgi
Vi∥ 6 δ.

Proof DefineS = {t : ∥Lgi
Vi(t))∥ 6 δ, i ∈ Ip}.

We now split the proof into two cases of S = φ and
S ̸= φ.

Case 1 S = φ. When σ(t) = i, differentiating
Vi(x, x

′) along the trajectory of the switched system (8)
gives

V̇i =
∂Vi

∂x
fi(x) +

∂Vi

∂x′ fi(x
′) +

∂Vi

∂x
gi(x)ui +

∂Vi

∂x′ gi(x
′)u′

i. (12)

Substituting u′
i(t) = 0, x′(t) = x̄(t) yields

V̇i =
∂Vi

∂x
fi(x) +

∂Vi

∂x̄
fi(x̄) +

∂Vi

∂x
gi(x)ui.

(13)

For i ∈ IP, according to Lemma 1, there exist C1 stor-
age function Vi(x, x

′) such that (4) holds for any two
inputs ui(t), u

′
i(t).

Substituting (4) and the controllers (11) into (13)
yields for i ∈ IP,

V̇i 6
∂Vi

∂x
gi (x)ui =

−Lgi
Viλ1(

∥∥Lgi
Vi

∥∥2
)−1Vi(Lgi

Vi)
T =

−λ1Vi. (14)

Similarly, for i ∈ In, it follows from (11) and ui(t) = 0
that

V̇i 6 λ2Vi, (15)

where λ2 = max
i∈I

{λi2}.

Then, using the differential inequality theory for
(14)–(15) gives that for ∀t > s > t0.

Vi(x(t), x̄(t)) 6 e−λi(t−s)Vi(x(s), x̄ (s)), (16)

λi =

{
λ1, when i ∈ IP,
−λ2, when i ∈ In.

Without loss of generality, for any given t > t0, t ∈
[tk, tk+1) , and thus Nσ(t0, t) = k. By (16), we get

Vij−1
(x(tj), x̄(tj)) 6

e−λij
(tj−tj−1)Vij−1

(x(tj−1), x̄(tj−1)),

j = 1, 2, · · · , k − 1,

Vik(x(t), x̄(t)) 6 e−λik
(t−tk)Vik(x(tk), x̄(tk)).

(17)

Since

Vi (x, x
′) 6 µVj (x, x

′) , µ =
α2

α1

> 1

hold according to condition 1. We obtain by induction
that

Vσ(t)(x(t), x̄(t)) = Vik(x(t), x̄(t)) 6

µke
−λik

(t−tk)−
k∑

j=1

λij−1
(tj−tj−1)

Vi0(x(t0), x̄(t0)) 6
µNσ(t0,t)e−λ1Tp[τ,t]+λ2Tn[τ,t]Vi0(x(t0), x̄(t0)) 6
eNσ(t0,t) lnµ−λ1Tp[t0,t]+λ2Tn[t0,t]Vi0(x(t0), x̄(t0)).

(18)

Therefore, from the definitions of the average dwell
time and the passivity rate, we have

(N0 +
t− t0
τa

) lnµ− λ1Tp[t0,t] + λ2Tn[t0,t] 6

(N0 +
t− t0
τa

) lnµ− λ1r(t− t0) +

(λ1 + λ2)T0 + λ2(1− r)(t− t0) 6

N0 lnµ− (λ1r − λ2(1− r)− lnµ

τa
)

(t− t0) + (λ1 + λ2)T0 =

N0 lnµ− λ∗(t− t0) + (λ1 + λ2)T0. (19)

Substituting (19) into (18) gives rise to

Vσ(t)(x(t), x̄(t)) 6
eN0 lnµ−λ∗(t−t0)+(λ1+λ2)T0Vσ(t0)(x(t0), x̄(t0)).

(20)

It is easy to deduce from α1∥x− x′∥2 6 Vi(x, x
′) 6

α2∥x− x′∥2 that

α1(∥x(t)− x̄(t)∥) 6
eN0 lnµ−λ∗(t−t0)+(λ1+λ2)T0α2(∥x(t0)− x̄(t0)∥),
∥x(t)− x̄(t)∥ 6
α−1

1 · α2e
N0 lnµ−λ∗(t−t0)+(λ1+λ2)T0(∥x(t0)−x̄(t0)∥).

(21)

When λ∗ > 0, t → ∞, the state x(t) converge to x̄(t),
namely, ∥x(t)− x̄(t)∥ → 0, t → ∞. Therefore, the
state of the closed-loop system (8) is globally bounded
and hi(x(t)) → hi(x̄(t)), t → ∞.

Case 2 S ̸= φ.
For i ∈ IP, since hi(x) is a continuous function,

Lgi
Vi(x) is continuous when the corresponding subsys-



386 Control Theory & Applications Vol. 35

tem is active. Without loss of generality, we suppose
that the set

{t : ∥Lgi
Vi(x(t))∥ 6 δ} =

[ti1 , t
′
i1
] ∪ [ti2 , t

′
i2
] ∪ · · · ⊂ [t0, t] for δ > 0.

Since each incremental passive subsystem is incremen-
tally exponential small-time norm-observability, we
have

∥x(t′ik)− x̄(t′ik)∥ 6
c e−λ1(t

′
ik

−tik )∥x(tik)− x̄(tik)∥ 6√
α1

α2

e−λ̄(t′ik
−tik )∥x(tik)− x̄(tik)∥,

Vi(x(t
′
ik
), x̄(t′ik)) 6

e−2λ̄(t′ik
−tik )Vi(x(tik), x̄(tik)) 6

e−λ1(t
′
ik

−tik )Vi(x(tik), x̄(tik)). (22)

According to condition (17), when the incremental-
ly passive subsystem is active and ∥Lgi

Vi∥ > δ, for
t ∈ [t′ik , tik+1], k = 1, 2, · · · , we have

Vi(x(tik+1), x̄(tik+1)) 6
e−λ1(tik+1

−t′ik
)Vi(x(t

′
ik
), x̄(t′ik)). (23)

Then,

Vi(x(tik+1), x̄(tik+1)) 6
e−λ1(tik+1

−tik )Vi(x(tik), x̄(tik)). (24)

Using the similar method of the proof for the Case 1,
we can obtain that the state of the closed-loop system
(8) is globally bounded and lim

t→∞
(y(t)− yr(t)) = 0.

This completes the proof of Theorem 1. QED.

Remark 3 The passivity rate is larger than the con-

stant
λ2

λ2 + λ1
. This means that incrementally passive sub-

systems have to be active in some time interval and non-
incrementally-passive subsystems are allowed to be active,
which is not allowed in [26]. When λ2 > λ1, the total acti-
vation time of incrementally-passive subsystems is longer than
the total activation time of non-incrementally-passive subsys-
tems.

Remark 4 If we suppose that at least an exponential-
ly incrementally passive subsystem is required, the property of
incrementally exponential small-time norm-observability is not
needed and the controller gain gets smaller.

Remark 5 For each active non-incrementally passive
subsystem, the energy is increasing and Vi is required to change
no faster than an exponential rate of increase, as shown in (11).
We can design controllers of the corresponding incrementally
passive subsystems and regulate the gains to compensate the
change of the energy function when non-incrementally passive
subsystems are active. Therefore, at least one incrementally
passive subsystem is needed. On the other hand, the gains
of controllers are designed to be larger than a constant that is
determined by the average dwell time and the passivity rate.

This means that, given an average dwell time τα, we can de-
sign feedback controllers with respect to τα for subsystems to
stabilize the switched system.The larger the gains, the faster the
convergence rate of the state.

Corollary 1 Consider a switched system of the
form {

ẋ = Fσ(t)(x) +Bσ(t)uσ(t),

ỹ = Cx,
(25)

where Fi(x) are C1 in x, Bi and C are constant matri-
ces of appropriate dimensions. Suppose that for uσ(t)
= 0, the system (25) has a bound solution x̄(t) with
output ¯̃y = Cx̄ = yr(t) for t > t0, and there exist
positive definite matrices Pi, such that i, j ∈ I .

1) The activation time of the incremental passive
subsystems during [T1, T2], TP [T1,T2] > r(T2 − T1) −
T0 is satisfied for constant T0 > 0, r ∈ (0, 1].

2) For i ∈ In, there exists positive definite matrices
Qi such that the subsystem with ui = 0 satisfy

Pi

∂Fi

∂x
(x) +

∂FT
i

∂x
(x)Pi 6 Qi. (26)

3) For i ∈ IP, the subsystem is exponentially in-
cremental small-time norm-observable with degree

λ̄ > λ1

2
, c 6

√
α1

α2

under ui = 0, where λ∗ = λ1r − λ2(1 − r)−
lnµ/τa for some constants

λ2 =
max
i∈I

{λmax(Qi)}

min
i∈I

{λmin(Pi)}
,

µ =
max
i∈I

{λmax(Pi)}

min
i∈I

{λmin(Pi)}
, λ∗ > 0, λ1 > 0,

where λmin(·) and λmax(·) denote the minimal and the
maximal eigenvalues of a symmetric matrix. Then, the
output tracking control problem is solved under the av-
erage dwell time τa > lnµ/(λ1r−λ2(1−r)) for some
constant λ2 > 0 and the controllers are given by

ui(x) =

{
−ki(x, τa, r)(Lgi

Vi)
T, i ∈ IP,

0, i ∈ In,
(27)

where

ki(x, τa, r) = λ1(∥Lgi
Vi∥2)−1Vi(x, x̄),

∥Lgi
Vi∥ > δ, ki(x, τa, r) = 0, ∥Lgi

Vi∥ 6 δ,

Vi(x, x̄) =
1

2
(x− x̄)TPi(x− x̄),

Lgi
Vi = PiBi(x− x̄).

Proof When σ(t) = i, differentiating Vi(x, x
′)

along the trajectory of the switched system (26) gives

V̇i = (x− x′)TPi(Fi(x)− Fi(x
′)) +

(x− x′)TPiBi(ui − u′
i). (28)
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Substituting u′
i(t) = 0, x′(t) = x̄(t), yields

V̇i = (x− x̄)TPi(Fi(x)− Fi(x̄)) +

(x− x̄)TPiBiui. (29)

Similar to [21], according to the mean value theorem,
we obtain

(x− x̄)TPi(Fi(x)− Fi(x̄)) =

1

2
(x− x̄)TJi(ξ)(x− x̄), (30)

where

Ji(x) = Pi

∂Fi

∂x
(x) +

∂FT
i

∂x
(x)Pi,

ξ is some point between x1 and x2. According to (27),
we obtain

V̇i 6
1

2
(x− x̄)TQi(x− x̄) 6 λ2Vi. (31)

According to Theorem 1, the output tracking problem is
solved. QED.

Remark 6 For i ∈ IP, there exists positive definite
matrices Q′

i such that the subsystem with ui = 0 satisfied

Pi
∂Fi

∂x
(x) +

∂FT
i

∂x
(x)Pi 6 −Q′

i.

The property of incrementally exponential small-time norm-
observability is not needed.

5 Numerical example
In this section, a numerical example will be pre-

sented to demonstrate the potential and validity of our
developed theoretical results.

Consider systems (8) consisting of two subsystems
described by

subsystem1
ẋ1 = −x1 (x

2
1 + 4) +

1

2
x2 + 4 + u1,

ẋ2 =
1

2
x1 − x2 +

3

2
+

1

3
u1,

subsystem2{
ẋ1 = x1 + x2 − 3 + 0.5u2,

ẋ2 = −2x1 + x2 + u2

with the common output y = x1 + x2. yr = 3 is refer-
ence signal.

We choose the storage functions as

S1(x, x̂) =
1

2
(x− x̂)TP1(x− x̂),

S2(x, x̂) =
1

2
(x− x̂)TP2(x− x̂),

where

P1 =

[
1 0
0 3

]
, P2 =

[
2 0
0 1

]
.

Differentiating Si gives

Ṡ1 6 −1.8S1 + (u1 − û1)
T(y − ŷ),

Ṡ2 6 2.1S2 + (u2 − û2)
T(y − ŷ).

Therefore, subsystem 1 is incrementally passive and
subsystem 2 is non-incrementally passive. According
to Theorem 1, the output track problem is solved by
ui = −(y − yr) under the average dwell

τa > lnµ

λPγP − λn(1− γP)
, λP = 1.8, λn = 2.1.

Moreover, let µ = 3 and the incremental passivity rate
γP = 0.8. Then, the average dwell time is chosen as
τa = 1.5 > 1.17. The simulation results are depicted
in Figs. 1–3 for the initial state x(0) = (11.7,−24.7).
It can be seen from Fig.1 and Fig.3 that the global out-
put track problem is solvable under a class of switching
signal σ with average dwell time τa = 1.5. The switch-
ing signal is given by Fig.3. Thus, the simulation results
well illustrate the theory presented.

Fig. 1 State response of the switched system

Fig. 2 The track error of the switched system

Fig. 3 The switching signal of the switched system
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6 Conclusions
This paper investigates the output tracking control

problem for a class of switched nonlinear systems using
incremental passivity concept via average dwell time
method. For any given passivity rate, we can design
feedback controllers of subsystems which make aver-
age dwell time dependent on incremental exponential
small-time norm- observability property of incremen-
tally passive subsystem get smaller to solve the output
tracking control problem for the switched nonlinear sys-
tems.
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