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摘要: 本文对具有群集行为的连续时间多智能体系统的优化问题进行了研究. 考虑具有二阶动力学的多智能体系统,
每个智能体都具有一个局部的时变代价函数. 本文的目标是仅仅依靠局部信息交流使得多智能体在运动的过程中保持

连通性、避免碰撞、总体代价函数最小. 为此本文设计了一种具有群集行为的控制协议, 该协议仅仅依赖于自己和邻居

的速度. 可以证明在该控制协议作用下, 所有智能体在保持连通、避免碰撞的同时, 速度能够跟踪上最优速度. 最后, 通
过一个仿真来说明本文的结果.
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Abstract: This paper studies optimization problem for continuous-time multi-agent systems with flocking behavior.
Multi-agents with second-order dynamics are considered. Each agent is equipped with a local time-varying cost function
which is known only to an individual agent. The objective is to make multi-agents’ velocities minimize the sum of local
functions by local interaction, while avoiding collision and preserving connectivity. A distributed protocol with flocking
behavior is presented, in which each agent depends only on its own velocity and neighbor’s velocities. It can be proved
that under the control protocol, all agents remain connected and avoid collisions while the velocity of the agents tracks the
optimal velocity.
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1 Introduction
Flocking of multi-agents has attracted much atten-

tion in the literature. The aim is that a group of agents
move with local interaction while preserving connec-
tivity, avoiding collisions, and having the same veloc-
ities. For decades, more and more researchers devote
themselves to study flocking[1–8]. Olfati-Saber[2] pro-
posed a framework to design and analyse a scalable
flocking algorithms. Tanner et al.[3] presented a con-
trol rule that makes multi-agents realize flocking mo-
tion in both fixed and switching networks. Su et al.[4]

gave a preserving connectivity flocking algorithm us-
ing only position measurements for multi-agents. Re-

cently, flocking with more complicated dynamics was
researched[5–8]. Su et al.[5] investigated the adaptive
flocking problem for multi-agent systems with local
Lipschitz nonlinearity. Wang[6] investigated the flock-
ing problem with heterogeneous nonlinear dynamics.
Yang and Zhang[7] investigated the flocking with non-
linear inner-coupling functions. Ghapani[8] investigated
a leader-follower flocking problem for networked La-
grange systems having uncertain parameters. In the
aforementioned researches, optimization problem has
not been taken into account. However, in many appli-
cations, it is necessary for agents to cooperatively opti-
mize a certain standard.
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In recent years, the distributed optimization has
been intensively researched. The aim of distributed
optimization is to minimize the sum of convex func-
tions through information exchange with its neighbors.
Results of distributed optimization include two cate-
gories: discrete-time models and continuous-time mod-
els. A distributed optimization method using the local
sub-gradient and local information over a time-varying
topology was presented for unconstrained distributed
optimization in [9]. Nedic proposed a distributed pro-
jected consensus algorithm and researched its conver-
gence properties over constraint sets[10]. Some extend-
ed or modified models were also presented for con-
strained distributed optimization[11–12]. Continuous-
time algorithm for distributed optimization was intro-
duced in [13–14], in which the topology was assumed
to be undirected. Yi[13] proposed a distributed Stocha-
stic sub-gradient algorithm for distributed optimiza-
tion with random sleep scheme. Article [14] pro-
posed a continuous-time algorithm and established the
convergence analysis by LaSalle’s Invariance Principle
for strongly connected and weight-balanced digraphs.
Lin[15] studied the optimization problem with adapti-
vity and finite time convergence for single-integrator
agents. Wang[16] studied the distributed optimization
problem for a class of nonlinear multi-agent systems
in the presence of external disturbances. Zhang[17]

studied the gradient-based optimization design for the
second-order agent dynamics with a general optimiza-
tion setup and gave a Lyapunov-based method with
some modification of existing techniques. A second-
order multi-agent network for bound-constrained dis-
tributed optimization was proposed in [18]. Zhang[19]

discussed the distributed optimal coordination problem
for multi-agent systems with the agents in the form of
Euler-Lagrangian(EL) dynamics. In article[20], a time-
varying distributed convex optimization problem was
studied for continuous-time multi-agent systems, where
the objective is to minimize the sum of the local time-
varying cost functions. With the interest in decentral-
ized architectures and motivated by the problem of dis-
tributed convex optimization, a distributed version of
online optimization is proposed in [21–23]. Yan et al.
in [22] introduced a decentralized online optimization
based on the sub-gradient method in which the agents
interact over a weighted strongly connected directed
graph. The suggested protocol in [23] works on joint-
ly connected weight-balanced digraphs.

There are many results for distributed optimization
of multi-agents, though flocking was not taken into ac-
count. So in this paper, we consider the optimization
problem of time-varying cost function with flocking
behavior. Each agent is equipped with a local time-
varying cost function and second order dynamics. The

objective is to make the velocity of the agents track
the optimal velocity which minimizes the sum of time-
varying cost functions through local interaction, mean-
while, the agents will preserve connectivity and avoid
collision between agents.

We organize the paper as follows. In Section 2,
notations and some basic concepts used in this paper
are introduced. In Section 3, a distributed optimiza-
tion scheme with flocking behavior and time-varying
functions is designed. In Section 4, simulation result is
presented to substantiate the theoretical results. Finally,
conclusions are provided in Section 5.

2 Notations and preliminaries
Notations and concepts from graph theory and con-

vex functions are given, in this section.
Denote 1m = (1 1 · · · 1)T, 0m = (0 0 · · · 0)T.

The transpose of matrix A is AT. The transpose of vec-
tor x is xT. Im denotes the identity matrix in Rm×m.
N denotes the index set {1, 2, · · · , N}. For matrix A
and B, we let A ⊗ B denote their Kronecker product.
The gradient and Hessian of function f are ∇f and H ,
respectively. ∥x∥p denotes the p-norm of the vector x.

Usually, an undirected graph is denoted by
G = (V, E) consisting of a set of vertices V =
{1, 2, · · · , N} and an edge set E = {(i, j) : i, j ∈ V}.
If i, j ∈ V , and (i, j) ∈ E , then we say that j is a
neighbor of i. The neighbors of vertex i are given by
Ni = {j ∈ V : (j, i) ∈ E}. The graph G is con-
nected, if there has a sequence of distinct vertices such
that consecutive vertices are adjacent. The weighted ad-
jacency matrix A = [aij] ∈ RN×N of G is denoted
as aii = 0, aij = aji = 1 if (i, j) ∈ E , otherwise
aij = 0. By arbitrarily assigning an orientation for
the edges in G. Using D = [dik] ∈ RN×|E| repre-
sent the incidence matrix associated with the graph G,
where dik = −1 if the edge ek leaves node i, dik = 1
if it enters node i, and dik = 0 otherwise. The degree
matrix of G is Λ = diag{d1, d2, · · · , dN} ∈ RN×N ,

where di =
N∑

j=1,j ̸=i

aij for i ∈ N. The Laplacian of G

is denoted by

L = Λ−A.

As we know that the Laplacian matrix L is symmetric
positive semi-definite and L = DDT. If we denote the
eigenvalues of Laplacian L associated with G with N
agents by λ1(L), λ2(L), · · · , λN(L), then the follow-
ing result is well-known[24]

λ1(L) = 0 6 λ2(L) 6 · · · 6 λN(L).

Lemma 1 The graph G is connected if and only
if λ1(L) = 0 and 1N = (1 1 · · · 1)T is its eigenvector,
and λ2(L) > 0.

Lemma 2 The second smallest eigenvalue
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λ2(L) of the Laplacian matrix L associated with
the undirected connected graph G satisfies λ2(L) =

min
xT1N=0

xTLx

xTx
.

Lemma 3[25] Let f(x) : Rm → R be a continu-
ously differentiable convex function. f(x) is minimized
if and only if ∇f = 0.

3 Time varying convex optimization with
flocking behavior
In this paper, the dynamics of all the considered

agents can be expressed by the second-order form as
follows: {

ẋi(t) = vi(t),
v̇i(t) = ui(t),

i ∈ N, (1)

where xi(t) ∈ Rm is the position, vi(t) ∈ Rm is the
velocity, and ui(t) ∈ Rm is the control input of agent
i. Because xi(t), vi(t) and ui(t) are functions of time,
we can rewrite them as xi, vi and ui.

In this paper, the sum of local functions

f(v, t) =
N∑
i=1

fi(v, t), (2)

where fi(v, t) : Rm ×R+ → R is a time varying func-
tion. Agent i only knows its individual cost fi(v, t).

Our objective is to devise ui for (1) using its own
cost function and the information gathered from its
neighbors such that all agents track the optimal state
v∗, and the agents maintain connectivity while avoiding
inter-agent collision. Where v∗ satisfying

v∗(t) = arg min
v∈Rm

f(v, t). (3)

The equation defined in (3) is equivalent to

min
vi∈Rm

N∑
i=1

fi(vi, t) subject to vi = vj. (4)

So, the problem is deformed as a minimization prob-
lem of the total cost function (2) and a consensus prob-
lem. We need the following assumption to deal with the
above problem.

Assumption 1 The function fi(v, t) is convex
and continuously twice differentiable with respect to v,
with invertible Hessian Hi(v, t), ∀ v, t.

In the following proposed algorithm, each agent can
only get its own velocity and its neighbor’s velocities.
To solve this problem, we present the algorithm.

ui(t) = −
∑

j∈Ni

∂Vij

∂xi

− α
∑

j∈Ni

(vi − vj)−

β
∑

j∈Ni

sgn(vi − vj) + ϕi, (5)

where

ϕi = −H−1
i (vi, t)[τ∇fi(vi, t) +

∂∇fi(vi, t)

∂t
],

Vij is an artificial potential function of agents i and j

to be designed below, α and β are positive coefficients,
sgn(·) is the signum function. It is worth pointing out
that ϕi depends on only agent i’s velocity. We assume
that each agent has a limited communication capability,
where if ∥xi − xj∥ < R, then agent i and j are neigh-
bors. The presented algorithm guarantees preserving
connectivity which means that if the initial graph G(0)
is connected, G(t) will remain connected for all t. Next,
we give the potential function Vij used in the ref [26].

Definition 1[26] The potential function Vij is a
differentiable nonnegative function of ∥xi − xj∥ which
satisfies the following conditions

1) Vij = Vji has a unique minimum in ∥xi−xj∥ =
dij , where dij is a desired distance between agents i and
j and R > max

i,j
dij .

2) Vij → ∞ if ∥xi − xj∥ → 0.

3)



∂Vij

∂(∥xi − xj∥)
= 0, ∥xi(0)− xj(0)∥ > R,

∥xi − xj∥ > R,
∂Vij

∂(∥xi − xj∥)
→ ∞, ∥xi(0)− xj(0)∥ < R,

∥xi − xj∥ → R.

Theorem 1 Assume that the initial graph G(0)
is connected, The Assumption 1 holds for each agent’s
cost function fi(vi(t), t); and the gradient of the cost
functions can be written as ∇fi(vi, t) = σvi +

gi(t),∀ i ∈ N. If α > 0, and β > 2∥Φ∥2√
λ2(L)

, for

system (1) with the algorithm (5), the agent’s velocities
track the optimal velocity while preserving connectivity
and avoiding collision.

Proof

W1 =
1

2

N∑
i=1

N∑
j=1

Vij +
1

2

N∑
i=1

vTi vi. (6)

Taking time derivative of W1, we can get

Ẇ1 =
N∑
i=1

N∑
j=1

vTi
∂Vij

∂xi

+
N∑
i=1

vTi v̇i =

N∑
i=1

N∑
j=1

vTi
∂Vij

∂xi

+
N∑
i=1

vTi [−
∑

j∈Ni

∂Vij

∂xi

−

α
∑

j∈Ni

(vi−vj)−β
∑

j∈Ni

sgn(vi − vj)+ϕi]=

−β
N∑
i=1

vTi
∑

j∈Ni

sgn(vi − vj)−

α
N∑
i=1

vTi
∑

j∈Ni

(vi − vj) +
N∑
i=1

vTi ϕi. (7)

Because aij = aji = 1, if (i, j) ∈ E , we have
N∑
i=1

vTi
∑

j∈Ni

sgn(vi − vj) =

N∑
i=1

N∑
j=1

aijv
T
i sgn(vi − vj) =
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1

2
[
N∑
i=1

N∑
j=1

aijv
T
i sgn(vi − vj) +

N∑
i=1

N∑
j=1

ajiv
T
j sgn(vj − vi)] =

1

2

N∑
i=1

N∑
j=1

aij(vi − vj)
Tsgn(vi − vj). (8)

Thus the equation (7) can be rewritten by

Ẇ1 = −β

2

N∑
i=1

∑
j∈Ni

(vi − vj)
Tsgn(vi − vj)−

α
N∑
i=1

vTi
∑

j∈Ni

(vi − vj) +
N∑
i=1

vTi ϕi. (9)

If we let V = (vT1 vT2 · · · vTN)T, Φ = (ϕT
1 ϕT

2 · · ·
ϕT
N)

T, then the above equation can be rewritten as

Ẇ1 = −β

2
∥DTV ∥1 − V T(L⊗ Im)V + V Φ 6

−V T(L⊗ Im)V − β

2

√
V T(DDT ⊗ Im)V +

∥V ∥2∥Φ∥2 6

−V T(L⊗ Im)V − β

2

√
λ2(L)∥V ∥2 +

∥V ∥2∥Φ∥2 = −V T(L⊗ Im)V −

(
β

2

√
λ2(L)− ∥Φ∥2)∥V ∥2 6 0. (10)

If β > 2∥Φ∥2√
λ2(L)

, then Ẇ1 is negative semi-definite,

by positive semi-definiteness of the Laplacian matrix L.
So, we have W1 > 0 and Ẇ1 6 0, which implies that
W1(t) 6 W1(0) < ∞. Moreover, since Vij is bound-
ed, based on Definition 1, it is guaranteed that there will
not be inter-agent collision and the connectivity is main-
tained.

On the other hand, define the level set Ω = {(xi −
xj, vi)|W1 6 c, c > 0} which is bounded and closed,
so compact. By LaSalle’s invariance principle, each so-
lution beginning from Ω will converge to the largest in-
variant set {(xi − xj, vi)|Ẇ1 = 0}. This occurs only
when v1 = · · · = vN . Which implies that the velocities
of all agents in the system (1) asymptotically become
the same.

Moreover, in the steady state, becuase vi − vj = 0

for i, j = 1, · · · , N , we can have
d

dt
∥xi − xj∥2 = 2(xi − xj)

T(vi − vj) = 0, (11)

and so the distances between agents are unchanged.
In what follows, we devote to find the relation be-

tween the agent’s velocities and the optimal velocity.
Consider the following Lyapunov function

W2 =
1

2
[
N∑
i=1

∇fi(vi, t)]
T[

N∑
i=1

∇fi(vi, t)], (12)

Ẇ2 = [
N∑
i=1

∇fi(vi, t)]
T[

N∑
i=1

Hi(vi, t)v̇i +

N∑
i=1

∂

∂t
∇fi(vi, t)]. (13)

Because ∇fi(vi, t) = σvi + gi(t), ∀ i ∈ I , we have
Hi(vi, t) = Hj(vj, t). So, we can get

Ẇ2 = [
N∑
i=1

∇fi(vi, t)]
T[Hj(vj, t)

N∑
i=1

v̇i +

N∑
i=1

∂

∂t
∇fi(vi, t)].

By summing both sides of the closed-loop system (1)
with controller (5) for j = 1, 2, · · · , N , we can get
N∑
i=1

v̇i =
N∑
i=1

ϕi. Therefor, we have

Ẇ2 = [
N∑
i=1

∇fi(vi, t)]
T[Hj(vj, t)

N∑
i=1

ϕi +

N∑
i=1

∂

∂t
∇fi(vi, t)] =

−τ [
N∑
i=1

∇fi(vi, t)]
T[

N∑
i=1

∇fi(vi, t)].

So, Ẇ2 < 0 for
N∑
i=1

∇fi(vi, t) ̸= 0. This guar-

antees that
N∑
i=1

∇fi(vi, t) will asymptomatically con-

verge to zero. So, under the assumption that fi(vi, t)
is convex and applying Lemma 2, we know that as

t → ∞,
N∑
i=1

fi(vi, t) will be minimized with vi = vj,

∀ i, j ∈ N.

Remark 1 If ∇fi(vi, t),
∂

∂t
∇fi(vi, t) and

H−1
i (vi, t) are bounded, then ∥ϕi∥2 is bounded. So, the condi-

tion β > 2∥Φ∥2√
λ2(L)

of Theorem 1 can be satisfied if ∥ϕi∥2 has

a bound.

Remark 2 The research of this paper can be extended
to Euler-Lagrangian (EL) systems. That is to say, after the case
of the second order system (1) can be solved, each EL agent
can track its own virtual system in system (1) to achieve the
time-varying optimization. In this way, only local tracking is
added for the case of EL system.

Remark 3 In comparison with the mentioned refer-
ences in the Introduction, the control algorithm (5) enables all
agents to implement flocking. The agent’s velocity can track
the optimal velocity minimizing the sum of time varying cost
functions. Moreover, the algorithm is converge faster than the
algorithms that only use gradients.

4 Numerical simulations and application
In this section, we present a simulation example to

illustrate the theoretical results presented in this paper.
We considered 20 agents in 2D plane. We assumed that
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link range R = 5, which means that two agents are
neighbors if their this distance is less than R. The agen-
t’s task is to have their velocities minimize the total cost

function
20∑
i=1

fi(vi(t), t) where vi(t) = (vxi
(t) vyi

(t))T

is the coordinate of agent i in 2D plane.
In the illustration, the second-order dynamic system

(1) employed by the control algorithm (5) to minimize
the total cost function where the local cost functions are
given by

fi(vi(t), t) = (vxi
(t)− i sin t)2 +

(vyi
(t)− i cos t)2.

For the above local cost functions, Assumption 1
and the conditions for agents’ cost function in Remark 1
hold and the gradient of the cost functions can be rewrit-
ten as ∇fi(xi; t) = xi + gi(t). To guarantee the col-
lision avoidance and connectivity maintenance, the po-
tential function partial derivatives is chosen as Eqs. (36)
and (37) in[26], where dij = 0.5,∀ i, j.

Choosing the coefficients in algorithm (5) as α =
1, β = 8 and τ = 1. Fig.1 shows the final desired
the optimal velocity. Fig.2 gives the final steady state
configuration and the final velocity of the agent group.
Fig.3 plots the velocity error between the agents and the
optimal velocity, and it can be seen that the agent’s ve-
locities can track the optimal velocity in deed.

Fig. 1 The optimal velocity of
20∑
i=1

fi(vi(t), t)

Fig. 2 Final configuration of agents

Fig. 3 Errors between agents and the optimal velocity

5 Conclusion
In this paper, we studied optimization problem for

continuous-time multi-agent systems with flocking be-
havior. Multi-agents with second-order dynamics are
considered. Each agent is equipped with a time-varying
cost function which is known only to an individual
agent. The agent’s task is to make multi-agent’s veloci-
ties minimize the sum of local functions by local inter-
action, while avoiding collision and preserving connec-
tivity. A distributed algorithm with flocking behavior
is presented, in which each agent depends only on its
own velocity and neighbor’s velocities. It is indicated
that the velocities of the agents track the optimal velo-
city. The connectivity of the agents can be maintained
and collision between agents is avoided. Moreover, a
simulation is included to illustrate the results.
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