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Abstract: In the present paper, the optimal control problem of switched singular Boolean control networks (SSBCNs)

with state and input constraints is investigated. By using the semi-tenser product of matrices, the parallel constrained

algebraic form is obtained for constrained SSBCNs. Then a necessary condition for the existence of optimal control is

presented by using an analogous needle variation. An algorithm is proposed to design the proper switching sequence and

control strategy which maximizes the cost functional at a fixed termination time. Finally, a numerical example is given to

show that the new results obtained in this paper are very effective.
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1 Introduction

The study of genetic regulatory networks has be-
come an important part of the biological system, be-
cause it has long been the desire to explore the mys-
teries of living organisms. Many kinds of compu-
tational models have been proposed to simulate the
reproduction of genetic regulatory networks, includ-
ing ordinary differential equations!!!, Boolean networks
(BNs)?, Bayesian networks'®!, Neural networks!*! and
so on. Among these models, BN which was firstly in-
troduced by Kauffman in 1969 has received the most
wide applications as an effective tool for analyzing ge-
netic regulatory networks. In a BN, the state of a gene
is quantized into only two levels (active: 1 or inactive:
0), and the expression level of a given gene can be ob-
tained by using the Boolean function to a plurality of re-
lated gene expression levels. Though BN is a simplified
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model, it becomes a powerful tool in analysing genetic
regulatory networks. And some significant results were
presented>-61.

In recent years, a new matrix product, namely, the
semi-tensor product (STP) of matrices, has been pre-
sented by Cheng!”!, which is a generalization of the
tradition matrix product, and has been successfully ap-
plied to convert a logical function into an algebraic for-
m. Using this new mathematical tool, numerous con-
trol problems about BNs were investigated, such as con-
trollability and observability problems!®!, synchroniza-
tion problem™), consistent stabilizability problem!'",
disturbance decoupling problem!'!!, and so on. Opti-
mal control is one of the fundamental concepts and re-
search topics in control theory. Using the above STP-
based framework, Refs. [12—13] discussed the Pontrya-
gin maximum principle for the Mayer-type optimal con-
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trol of BCNs. Ref. [14] studied optimal infinite-horizon
control problem, motivated by a finite strategy game be-
tween human and machine.

Singular Boolean networks, which are also referred
to as dynamic-algebraic Boolean networks, have attract-
ed much attention in the past several decades due to
the fact that they are much more convenient and effec-
tive than standard models to describe many science and
engineering systems, including biological systems, air-
craft attitude control, power systems, and social eco-
nomic systems!!>. In Ref. [16], the fundamental prob-
lems for singular Boolean networks were discussed by
Feng et al, including the condensed algebraic expres-
sions, normalisation problem, solvability and limit set-
s, which make an important contribution to the further
research on singular Boolean networks. Some other
conclusions about Singular Boolean networks can be
found in [17-19]. It is noticed that switched system-
s play a crucial role in the study of control theory. In
practice, many biological systems appear with different
model structures according to the environment changes.
A practical example is the genetic switch in the bacte-
riophage A, which contains two different models: lysis
and lysogeny?”). When modeling biological systems
as Boolean networks, the dynamics becomes switched
Boolean networks (SBNs), which is governed by differ-
ent Boolean dynamic models. There have been some
recent results about SBNs. For example, Ref. [21] con-
sidered the time-optimal state feedback stabilization of
SBCNs, and an algorithm for finding all time-optimal
switching state feedbacks was proposed. Ref. [22] stud-
ied the complete synchronization problem for the drive-
response SBNs, and some necessary and sufficient con-
ditions were presented. The output tracking problem
of SBNs was discussed in Ref. [23], and a novel de-
sign procedure was established. Ref. [24] investigated
the set stability of SBNs, and a necessary and sufficient
condition for set stability was obtained. On the other
hand, it is well known that some states and inputs of bi-
ological systems are actually undesirable ones because
they correspond to unfavorable situations. For instance,
the state “Wnt5a=1" of the WNTSA gene regulatory
network is undesirable because it may lead to the pos-
sibility of cancer metastasis increased®!. Hence, it is
necessary to put some constraints to the undesirable s-
tates and inputs in biological systems. In Ref. [26], the
authors firstly developed a BN with constraint states and
gained some interesting results. The controllability and
stabilization of SBCNs with state and input constraints
were considered in Ref. [27]. Vast results on SBCNs
and singular Boolean control networks have been ob-
tained, respectively. There are, to the best of our knowl-
edge, no results on the study of SSBCNs with state and
input constraints which are also called the constrained
ones. The presence of state and input constraints makes

the analysis of SSBCNs much more complicated. Fur-
thermore, the results obtained for unconstrained SSBC-
Ns can hardly be applied to constrained ones. There-
fore, either in theory or in practice, it is significant and
necessary to study SSBCNs with state and input con-
straints. This motivates the present work of this paper.

In this paper, using the STP-based framework, we
investigate the optimal control problem of SSBCNs
with state and input constraints. Firstly, we propose a
necessary and sufficient condition for the uniqueness of
solution of a SSBCN under any switching signal and
any control, and convert a SSBCN into an equivalent S-
BCN. Secondly, we consider a constrained SBCN and
convert it into an equivalent constrained algebraic form.
Finally, according to the parallel constrained algebraic
form, we obtain a necessary condition for the existence
of optimal control of the constrained SSBCN.

The remainder of this paper is organized as follows:
Section 2 introduces some preliminaries about STP. In
Section 3, we investigate the optimal control problem
of SSBCN s with state and input constraints and present
the main results of this paper. Section 4 shows an exam-
ple to illustrate the main results obtained in this paper.
Finally, a brief summary is given in Section 5.

2 Preliminaries

In this section, we introduce the semi-tensor pro-
duct of matrices and the matrix expression of logic,
which are summary mainly from Ref. [7].

2.1 Semi-tensor product of matrices

Definition 117! Let A € R™*" and B € RPX9,
and t = lem{n, p} be the least common multiple of n
and p. The semi-tensor product of A and B is defined
as Ax B = (A® Iy,)(B ® Iy), where ® is the
Kronecker product.

Remark 1

conventional matrix product. Thus, all the fundamental proper-

If n = p, the STP of matrices becomes

ties of conventional matrix product remain true. Based on this,
we can omit the symbol i, if no confusion raises.

Next, we introduce some notations, which will be
used throughout this paper.

1) 6% : the ith column of the identity matrix I,,.

2) A, :={d6']i =1,2,--- ,n}. For simplicity, let
A= AQ.

3) Col(A)(Row(A)) is the set of columns (rows)
of A. Col;(A)(Row;(A)) is the ith column (row) of A.

4) A matrix A € R™*" is called a logical matrix,
if the columns of A, denoted by Col(A), are of the form
of 8% . Thatis, Col(A) C A,,. Denote by L, ., the set
of m X n logical matrices.

5 If L € L,,«xn, by definition it can be ex-
pressed as L = [§1 §iz ... §'»] and its shorthand

6) For A € R™*" B € R"*",
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— i { .
AxB = [—] denotes the larger less than or equal to —, and iy =
[Col,(A)x Coly(B) --- Col,(A)xCol,(B)] B 1 B
17— (11 — .

is the Khatri-Rao product of A and B.

7) Let X € R™* ! and Y € R"*! be two colum-
n vectors. Then Y x X = W, ) x X x Y, where
Wimn € Lmnxmn is called the swap matrix, which is
given as

W[m,n]:(smn[l m+1 - (n—l)m+1
2m+2 - (n—1)m+2
m m+m --- (n—1)m+m].

8) Assume X € A,andY € A,. We define two
dummy matrices, named by “front-maintaining opera-
tor” and “rear-maintaining operator” respectively as

q q q
P9 —
DP =3, [12---q12---q---12---¢].
p
Then we have DI XY = X, DP9XY =Y.
2.2 Matrix expression of logic

In this subsection, we recall the vector form of
Boolean variables and the matrix expression of logic.
Using the semi-tensor product of matrices, a logical
function can be converted into an algebraic function.
To do this, we give logical values a vector form as fol-
lows: D := {0,1}, where 1 ~ 7" means “true” and
0 ~ F means “false” . Then the logical variable x(t)
takes value from D, expressed as z(t) € D. Identifying
T =1~ 063, F =0~ 62, according to the variable
types, the “D” and “A” can be used freely, i.e.

z(t) € A= Ay = {83,63}.

Next, we give a lemma that is fundamental for the
matrix expression of logical functions.

Lemma 171 Any logical function f(z1,- -+, z,)
with logical arguments xq,--- ,z, € A can be ex-
pressed in a multi-linear form as f(zy,- - ,2,) =
Mixq, -+, x,, where My € Loy on is unique, called
the structure matrix of logical function f.

To see the results of the structure matrix, please re-
fer to Ref. [8] for details.

In the end, we give a lemma, which will be used in
the sequel.

Lemma 2" For any integer i € {1,--- ,wf},
there exist unique positive integers ¢; and ¢, such that

Ol =00 X 62, (1)
where
k, i=kmy, k=1, ,w;
i = ) (2)

[L] + 1, otherwise.
my

3 Main results

In this section, the main results of this paper are pre-
sented. First the SSBCN is converted into an equivalent
SBCN. Then consider a constrained SBCN and convert
it into an equivalent constrained algebraic form. Finally,
based on the parallel constrained algebraic form, we ob-
tain a necessary condition for the existence of optimal
control of the constrained SSBCN.

3.1 Constrained algebraic form
Consider the following switched Boolean control

network with n nodes, m control inputs and w sub-
networks:

g (X(t+1)) = [F(X(0),U(1)),

g2V (X(t+1) = FOXO,U@), 5

gr (X (t+1)) = f7O(X (), U(1)),
where o : N — 2 = {1,2,---
signal, X (t) = (x1(t), x2(t), -+ ,zn(t)) € D" is the
logical state, U (t) = (u1(t),uz(t), -+ ,um(t)) € D™
is the logical input, and f/ : D"*™ — D, ¢/ : D" —
D,i=1,2,---,n, j =1,2,--- ,w are logic func-
tions.

,w} is the switching

Assume that the structure matrices of g; ® and
77D are G7 and M7, respectively. By setting z:(¢)
= X 2;(t), u(t) = x7 u;(t), using Lemma 1, we
obtain

GTVz(t +1) = M7 Vu(t)z(t),
G5 (t + 1)) = M{Du(t)x(t), @

GoWx(t+1) = MZOu(t)z(t),

where G?(t) € Loyon and Mf(t) € Loyonim, i =1,2,
., n are uniquely determined by g7 and f7"), re-
spectively. Multiplying both sides of Egs. (4), yields
Eomx(t +1) = Fypu(t)z(t), (5)
where Ea(t) € £2" X275 Fa(t) € ‘CQ” x 2ntm,

E,iy=G7Y %G5 - G5O
and
Fopy = M7« My ® 55 MIO.

When rank(E;) < 2", Vi € {2, the SBCN (3) is called
a switched singular Boolean control network. In this
condition, the SSBCN (5) and the general switched sin-
gular systems!'>! have the same form. In this paper, we
assume that rank(E;) < 2", Vi € {2.

Because the solution of the SSBCN (5) may not be
unique just like the ordinary switched singular systems
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for any initial value, we give a necessary and sufficient
condition for the uniqueness of solution of the SSBCN
(5) under any switching signal and any control.

Lemma 3!'°!  Singular Boolean network Em(t +

1) = Fx(t) has a unique solution for any initial val-
ue, if and only if Col(F') C Col(E) and there is only
one integer j € {1,2,---,2"} satisfying Col;(E) =
Col;(F) forevery i € {1,2,---,2"}.

Consider SSBCN (5) again. Split i, ;) € Lan xantm
into 2™ equal-size blocks as

Fouy =
[Blky (Fir)) Blka(Fopy) -+ Blkom (Foq))l,

where BIk; (Fj,)) € Lanxan, i€{1,2,---,2™}. Then,
we have the following solvability result.

Lemma 4 Consider the SSBCN (5). Under any
switching signal o(¢) and any control u(t), the solution
of the SSBCN (5) is unique for any initial value, if and
only if the following two conditions hold:

Al) Col(F;) C Col(E;), Vi € (2,

A2) there is only one integer j € {1,2,---,2"}
satisfying Col;(E;) = Col,(F;), Vi € 2, Vh €
{1,2,---,2"*tm},

Proof Seto(t) =i € 2, u(t) = 0%, then the
SSBCN (5) becomes singular Boolean network F;x(t+
1) = F;, x(t), where F;, denotes the kth block of the
matrix F;. Thus, Under any switching signal o(t)
and any control u(t), the solution of the SSBCN (5)
is unique for any initial value if and only if for every
i€ andevery k € {1,2,---,2™}, singular Boolean
network E;x(t + 1) = F;, x(t), has a unique solu-
tion for any initial value. Based on Proposition 1, we
know that under any switching signal o (¢) and any con-
trol u(t), the solution of the SSBCN (5) is unique for
any initial value if and only for every i € (2, every
ke {1,2,---,2™},1) Col(F;,) C Col(E;), and ii)
there is only one integer j € {1,2,---,2"} satisfying

Col;(E;) = Coly(F;,) forevery h € {1,2,---,2"}.
It is equivalent to that Col(F;) C Col(E ) Vi € 2,
and there is only one integer j € {1,2,---,2"} sat-

isfying Col;(E;) = Col,(F,

,ntmy QED.

In the following, we always assume that Lemma 4
holds.

For ease of research, we first convert the SSBCN
(5) into an equivalent SBCN.

For each i € (2, we define a matrix L; € Lon yontm

)VZEQ Vhe{12

as
Col,(L;) = b3, if Col,(F;) = Col,: (E,),
j:1’2’”.’2n+m' (6)

Then, we can obtain the following conclusion.

Theorem 1  Assume that Lemma 4 holds. The
SSBCN (5) is equal to the following SBCN:

z(t + 1) = Lyyu(t)x(t). (7

Proof For any initial value x(0), any switch-
ing signal o(t) and any control u(t), let Z(t) =
Z(t;2(0), o, u) be the solution of the SSBCN (5), and
x(t) = x(t;x2(0),0,u) be the solution of the SBCN
(7). We need to prove that

&(t) = z(t), Vt € Z". (8)

By induction on ¢, assume ¢(0) = 4%, u(0)z(0)
= 5;?n+n. We first consider ¢ = 1. For one thing, with
simple calculation,

17(1) = LU(Q)U(O)SC(O) =

For another, since
Eq0)2(1) = Foo)u(0)z(0) =
Col;y(F,) = Col, i (i),

Coly, (Li,) = 0y

we obtain (1) = 5;9. This proves (8) for ¢ = 1.
Assume that the result holds for ¢ = k. Setting
o(k) = 6l and u(k)z(k) = u(k)x(k) = 63nin, we
now consider the case of ¢ = k£ + 1. For the SSBCN
(5), since
Eg(k)@(k + 1) = Fa(k)u(k)i(k) =
COljl (le) = COlrfl (Ei1)7

1
we obtain &(k + 1) = 050!
calculation shows that
.l
2(k +1) = Logyu(k)x(k) = Col;, (L;,) = 652",
which means that 2(k + 1) = z(k + 1).

By induction, (8) holds for any t € Z™. QED.

It is noted that some states and inputs may corre-
spond to unfavorable or dangerous situations in biolog-
ical systems, thus, we need to put some constraints to
these undesirable states and inputs. We now consider
the SBCN (7) with state and input constraints, i.e. the
constrained SBCN (7).

For any ¢ € N, assume that z(t) € Cy, C A,. and
u(t) € Cy C Agm, where Cy with 1 < |Cy| < 2" de-
notes the state’s constraint set, C, with 1 < |Cy| <
2™ denotes the input’s constraint set, and |Cy| and
|C,| stand for the cardinalities of the sets Cy and C,,
respectively. Set |Cy| = « and |C,| = 3, then C, and
C,, can be expressed as

C, = {8it, 0! %...
Cy = {63,652, .-

. For the SBCN (7), a simple

Ok iy <y < e <),
Oy J1 < 2 < -+ < ja}
9

Next, the constrained SBCN (7) is converted into an
equivalent constrained algebraic form.
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Construct the following block selection matrices:

J_(IMI) e

[quq quq Iq quq' ' 0qxq]7 (10)
~—
ith
p

where Ji(p’q) € R»*P4 ¢ = 1,2,--- ,p, Oyxq is the
g X q zero matrix, and I, € L, denotes g X g identity
matrix.

Lemma 52”7 1) Given amatrix A € RP?*", split
Aas
Ay
Ap

where A; € R?7*", Then,
JPDA = A, (11)

2) Given a matrix B € R"™*P¢ gplit B as: B =
[B; --- B,], where B, € R"*%. Then,

B(J*?)" =B, (12)
According to Lemma 3.1, let

'Ji(f",l)

Oy = , (13)
_Ji(j",l)
U

Pu = : . (14)
£

Denote §;, = Oqx1 and 03 = 0Ogy1. Then, the state
x(t) € Agn and control u(t) € Agm of the constrained
SBCN (7) can be converted into the following form:

Z(t) = pxx(t) € C,
(t) = SOuu(t) € C_'ua
{61, ,62YU{s°}and C, = {4, - -,

15)

I

where C,, =

35} U {83},
Consider the SBCN (7). For each i € (2, setting

L; = [Blky(L;) --- Blkym(L;)] and using the block

selection matrices, we have the following matrix

L;=[BIK (L) - Blkyn (L)][(JE")"

J1

m T
(Jj(j 7(1)) ] € Baxafh @ = 1727' W, (16)

where
@y

BIE(L)=| | Bl (L))
gy
(Ji(j",l))T] GBQXQ’ Ss= 1, 27 e om.

(17)
Identifying the switching signalc =i ~ 6}, € A,,, i €

(2, and defining L = [L, --- L], by the above trans-
formation, the SBCN (7) can be converted into the fol-
lowing form:

(t+1) =
where L € Baxwaps-

Theorem 2  The state trajectories of the SBCN
(7) with C, and C,, are equal to those of the SBCN (18)
with C, and C,.

Proof LetZ(t) = z(¢;z(0), 0, u) denote the tra-
jectory of the SBCN (18) corresponding to initial val-
ue Z(0) € C, switching signal o € A, and control
@ € Cy. We need to prove that

Zt+1)=gat+1), VtEN,  (19)
where @, is given in (13).

First, for V& € N, Vo(t) € A, Yu(t) € C,
and Yz (t) € C,, setting o(t) = d7,, u(t) = 03% and
z(t) = o5, if x(t + 1) = Lypyu(t)z(t) € Cx, say,
z(t+1) =04, h € {1,---,a}, one can easily obtain
that

z(t+1) = Lo(t)u(t)z(t) = 0, € Cx \ {da},
where Z(t) = 65 € Cx and u(t) = 6% € C..

Ifa(t+1) = U@ u(t)z(t) = oy ¢ O, then

z(t+1) = Lo(t)u(t)z(t) = 6°.

Thus, in both cases, Z(t + 1) = ¢, x(t + 1). Then, for

Vt e N, Vo(t) € A, Vu(t) € Cy \ {55}
and VZ(t) € Cy \ {62}, setting o (t) = 07, u(t) = 0f
and T(t) = 02, if

z(t+1) = Lo(t)u(t
say, T(t + 1) = %, h € {1,--- ,a}, it is easy to
achieve that z(t + 1) = Lyyu(t)z(t) = d5n € Ci.
If Z(t + 1) = Lo(t)u(t)z(t) = 02, then x(t + 1)
= Lowyu(t)z(t) ¢ Ck. Thus, one can know that Z(¢
+1) = pex(t+1), Vt € N.

Based on the above analysis, Theorem 2 holds.

QED.

Remark 2 By Theorem 1 and Theorem 2, we can ob-
tain that the state trajectories of the SSBCN (5) with Cx and

C\, are parellel to those of the SBCN (18) with Cx and Ci.
And (18) is called the parellel constrained algebraic form of

Lo(t)u(t)z(t), (18)

)z(t) € C\ {da},

the original network. Thus, we can convert the optimal control
problem of the SSBCN (5) with state and input constraints into
that of the SBCN (18).

Before the end of this subsection, we propose the
definition of the transition matrix for the SBCN (18),
which will be used in the sequel. Considering the SBC-
N (18), for [ < s, we obtain

#(s) = Lo(s — V)a(s — 1) - -- Lo()a(D)z(l) :==

H(s,l;0,u)z(l), (20)
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where Proof Fix an any integer [ € {0,1,---,s — 1}
H(s,l;0,a) = Lo(s — )a(s — 1) - - Lo(l)a(l) and an any vector v € A,s. A new vector ) € A,z is
Q1) defined as:

with H(s,l;0,u) = I,, if s = l. The matrix H (s,
l;0,u) € Layxe is called the transition matrix of the
SBCN (18) from time [ to time s corresponding to the
switching signal o and the control %. For any [ < k <
s, a simple calculation shows that

H(s,kyo,u)H
3.2 Optimal control

H(s,l;o,u) = (k,l;0,a). (22)

In this subsection, we investigate the Mayer-type
optimal control problem of the SSBCN (5) with state
and input constraints and provide a necessary condition
for the existence of optimal control.

Consider the SSBCN (5) with the initial state 2:(0)
€ C,. Fix a termination time s > 1. Let 7 = {(0,
0(0))a 7((5 - 1),0’(8 - 1))} and U = {{U(O)v
ey u(s— 1)} ru(t) e Gy, t=0,1,--- .5 — 1}
denote the sets of switching sequence and admissible
control sequence, respectively. The Mayer-type optimal
control problem is to find a proper switching sequence
and a control strategy that maximize (or minimize) the
cost functional

J(o,u) = rfa(s), (23)
where z(t) € Cy, t = 0,1, ,s,andr = [ry ---
ron]T € R?"*1 is a given constant vector.

According to Remark 2 , we can convert the Mayer-
type optimal control problem of the SSBCN (5) with

state and input constraints into that of the SBCN (18).
That is, the cost functional .J(-) in (23) becomes

J(o, 1) =7 a(s), (24)
where 7 = @, 1, Z(t) = p.x(t) € C \ {0°}, u(t) =
euu(t) € Cy \ {08}, t = 0,1,--- 5, and , and @,
are given in (13) and (14), respectively.

Remark 3  Since z(t) € Cx and u(t) € Cu, t =
0,1,---,s, a simple calculation shows that Z(t) = @xx(t) €
Cx \ {62} and a(t) = puu(t) € Cu\ {53}, t =0,1,--+ s

Theorem 3  Consider the SBCN (18). Denote a
proper switching sequence by 7* = {(0,0*(0)),-- -,
((s—1),0*(s— 1))} and an optimal control sequence

by u* = {u*(0), ---, u*(s — 1)}. Define the adjoint
y:{1,2,--- s} — R“ as the solution of
T % — % T
{ y(t) = (Lo" 0@ (1)) yt+1), o

y(s) =7,
and functions Z; : {0,1,--- ,s—1} > R, i=1,---,
wf, by

Zi(l) =g (1 +1) L o5 2"(1). (26)

For any [ € {0,1,---,s — 1}, if for some integer 1,
Z;(1) > Z;(1) forall j 75 i, we take o™ (1)u* (1) = 0, 5.
Then o™ (1) =67, a* (1) =63, where (i1 —1)+iy = i.

w !

N )Y J =1, 27
2 o*(j)u*(j), otherwise. 7

That is, 1) is equal to the product of the proper switch-
ing signal o* and the optimal control 4" except at the
time [. Let 2*(t) = z*(t;0,u) be the corresponding
trajectory of the SBCN (18). By Eq.(20), we have

z(s) =
Lo*(s — 1) (s — 1)+ Lo* (D (D" () =
H(s,l+1;0%,4")Lo* (l)ﬂ Dz (1).
Similarly,
z(s)=Lo(s — 1)u(s — 1) --- Lo(Da(l)
Lo*(s—1Du*(s—1)--- Lo
H(s,l 4+ 1;0",u")Lvz*(l).

8l
-~

Thus,
J(o",u") = J(o,u) =
(37 (s) — 2(s))
FUH (s, L+ 10", @) L(o™(1)a (1) — v)z* (1)
g (L + Lo () (1) — v)z* (1),

where gT(I+1) = 7T H(s,l4+1;0*,a*), then g™ (s) =

7T, According to (22), we obtain

H(s,l;0",u") = H(s,l + 1507,

Hence,

a*)Lo*()u*(1).

() ( (77 *_*))TF:
(Lo ) g+ 1),

“(Hu*
which means that (1) = y(I) foralll € {0, 1,- -
1}. Then

J(o*,u*) — J(o,u)

y L+ Lo (Da*(l) —v)z (). (@28)

Assume that there is an integer i € {1,2,--- ,wf} sat-
isfying Zi(l) > Z;(l) forall j = 1,2,- wﬁ and
Jj #i. We need to show that o*(l)u (l) = 5’

Assuming o*(1)a*(l) = &5, j # i, and setting
v = 6.,3, (28) becomes
J(o*,u*) — J(o,u) =
y (1 + 1)E(5Z)B — 05T (1) < 0.
This contradicts the optimality of ¢* and @*. Hence,
o*(l)u*(l) = 0.5. By Lemma 2, calculate i, and i,
such that 67} x 677 = 6.5~ Then, the proper switching
signal is 0 (1) = 4;! and the optimal control is u*(l) =
o5, where (i; — 1)8 + iy = i. QED.
Remark 4  If there is no integer i satisfying Z; (1) >
Z; (1) for all j # 4, Theorem 3 will not be able to achieve the

proper switching signal o* () and the optimal control @*(l).
In fact, assume that there exists a set I = {I1,I2,--- , I} C
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{1,2,--- ,wp} satisfying Zr, (I) = Zr,(I) = ---
Zj(l) forall j ¢ I. Set

Zlh (l) >

Ip s —].
W) = {5wﬂ’. =t 29)

a*(j)a*(j), otherwise,

w2 = { % i=1 o)
o*(j)u"(j), otherwise,

where Ip, I € I, and I, # I,. Based on the proof of Theorem
3, we obtain that the values of the cost functional J(-) in (29)
and (30) are equal. Hence,

o ()a* (1) € {00, 6}, 1=0 - s—1.
According to Lemma 2, we can obtain the corresponding
switching signal o* (1) and control @*(l). Moreover, if o™ is
a proper switching signal and " is an optimal control, let

c(j):{”’ A=k G1)

a*(j)a*(j), otherwise,

where v € {55} ) 51" } then ¢ can also maximize the cost

function J(-).

According to the above analysis, we will provide
an algorithm to design the proper switching sequence
and control strategy such that the cost functional .J(-)
in (24) is maximized at the fixed termination time s.

Algorithm 1

Step 1 Calculate the matrix L by (16)—(18).

Step 2 With L, we can first gain all the functions
Zi(s—=1)(i = 1, -+ ,wpP) in (26). If there exists an
integer i,_; satisfying Z;, | (s—1) > Z;(s—1) forall
je{1,2, - ,wB} theno*(s—1)u*(s—1) = 5“ L
Compute 4 __, by Lemma 2 such that 5;6 Y =
5;15‘15;2'*‘1. Set o*(s — 1) = 50" and a*(s —1)
=6,

Step 3 Calculate y(s — 1) by submitting o*(s —
1)u*(s — 1) to(25). Setl = s — 2.

Step 4 Calculate the functions Z;(I) in (26). If
there exists an integer i; satisfying Z;, (I) > Z;(l) for
all j, then o*(I)a*(l) = 6.!5. Compute i1, and iy, by
Lemma 2 such that 0, = S 5;21. Set o*(1) = 6o
and u*(l) = (5;32’.

Step 5 1If [ = 0, Stop. Otherwise, calculate y({)
in (25), setl = [ — 1, and return to Step 4.

Remark 5 It should be pointed out that Ref. [13] in-
vestigated a Mayer-type optimal control problem for Boolean

and zo,_,

control networks and derived a necessary condition for optimal-
ity via the Pontryagin maximum principle. Compared with Re-
f. [13], our main results have the following advantages: i) our
results can be applied to the optimality analysis of switched
singular Boolean control networks with both state and input
constraints, while the results in Ref. [13] are only applicable to
unconstrained Boolean control networks; ii) the computation
O(a3), which is much less than
o™,

complexity of Theorem 3 is
the computation complexity of the results in [13],

when o < 2" and B < 2™.

4 Illustrative example
In this section, we present an illustrative example to
show how to use the results achieved in this paper to s-
tudy the optimal control problem of SSBCNs with state
and input constraints.
Example 1 Consider the following SSBCN:
gl (X (t+1)) = V(X (1), U(1)),
o(t o’ t)
g5 (X (t+ 1) = [7O(X(1),U(t), (32)
g5 (X (t+1)) = “(t (X (), U(1)),
where X () = (21(t), z2(t), 25(t)), U(t) =
and

u(t),

g1 =71 V [~x1 A (mx9 A —T3)],
gy =21 A (22 V 23) V (m21 A 23),
g3 =71 A (22V23) V —y,
fi=un{z, V[~2 A (22 V —23)]}V
{~u A {[z; A (22 = —23)]V
[y A (22 = 3)]},
fr =un{[z1 A (520 A z3)]V
[Cx1 A (D2 A —x3)] }V
{—u A {(x1 A —z2)V
[y A (m@2 A as)]}
fa =uA{[x1 A (29 Axs)] V (m1 A 3) PV
{—u A {[x1 A (x2 A z3)]V
[y A (z2Vas)]}
g =z1 Axs V [~2y A (22 V 23)],
g5 =1 A (29 A —x3) V (21 A —23),
g5 =1 A (29 Aw3) V [m21 A (—z0 A 23)],
?=u A {z A (19 = 23) V [T A
(x2V —x3)]} V{—u A [y V(—xy A —x3)]},
2 =un(z; AxyV—z1) V{—uA
{lz1 A (z2 V 2as)] V [y A (22 V @s)]
3 =unzy A(my = 23) V (m21 A )]V
{~u A [x1 A (x2V3) V (21 A —23)] )
Firstly, we convert the SSBCN (32) into an equiv-

alent SBCN. Setting z:(t) = x?_,x;(t), we have the
following algebraic form:

Ea(t (t + 1)

F, t)u(t)m(t), (33)
where
E,=6[21145753],
E,=105[38462418],
Fy =03[4423347274224732],
F,=06[163311622132616 3].

Obviously, Lemma 3 holds for the SSBCN (33). Ac-
cording to Theorem 1, we obtain the equivalent SBCN
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for (33): At this time,
z(t+1) = Lyyu(t)z(t), (34) y(2) = (Lo™ (2)a"(2)) y(3)
where L; = 65(4418846164114681]and (LshH' 00000 1"
Lo=08[7411774557154741]. [001100]T (41
Secondly, consider the constrained SBCN (34). As- ’
sume that C, = {8}, 63,0%,62,67,6%} and C, = {5}, 2d
d2}. By Theorem 2, the state trajectories of the SBC- Zi(1) =y"(2 )L5Z z*(1) =
N (34) with C, and C|, are equivalent to those of the 000 0 0 1)L&iz*(1), i =1,2,3,4. (42)
following SBCN with Cy and C.: ’ o
OTOWIRE SER W TAc e P Thatis, Z;(1) = [L 0 0 0 0 0]z*(1), Zs(1) =
Z(t+1) = Lo(t)u(t)z(t), (35 00010 0]z(1), Zs(1) =100 0 0 1 1]z*(1)
where and Z,(1) =[1 0 1 0]z*(1). Assummgz (1)

L=6[3166010113615115
34414331] € Bsxou

Finally, we consider the Mayer-type optimal con-
trol problem of the SSBCN (33) with C, and C\,. The
given vector 7 = [000 0 1 00 0], and we aim to find
the maximum value of the cost functional

J(o,u;x(0)) = r'a(s) (36)
under the initial value z(0) = 63 and s = 4. This
is equivalent to determining a proper switching se-
quence and a control strategy steering the initial value
tox1(4) =0, z2(4) = x3(4) = 1, if they exist.

Based on Eq.(24), the cost functional J(-) in (36)
becomes

J(o,;2(0)) = 7 2(s), (37)
where Z(0) = 67 and 7' =
Consider the functions
Z;(3) =7 L8 5z%(3) =
000100]L5iz*(3), i = 1,2,3,4.  (38)
With simple calculation, we obtain Z;(3) = Z»(3) =
0, Zs(3) = [000001]z*(3) and Z,(3) = [L0 10
00]z*(3). Assuming Z*(3) = 0¢, then Z3(3) = 1 and
Z;(3) = 0 for any 7 # 3. Based on Algorithm 1, we
get 0*(3)a*(3) = 43, which means that 6*(3) = 43
and ©*(3) = 9,.
Using (25) yields

y(3) = (Lo™(3)u"(3))' 7 =
(L6 [000100]" =
00000 1], (39)
thus
Zi(2) =y" (3)Lo,57"(2) =
00000 1]L&z*(2), (40)

and this yields Z;(2) = [001 10 0]z*(2), Z2(2) =
[000010]z*(2) and Z5(2) = Z4(2) = 0. Assume
that z*(2) = 3. Then Z;(2) > Z;(2) for any j # 1,
so Algorithm 1 means that o*(2)u*(2) = d;. By Lem-
ma 2, we have 6*(2) = 63 and u*(2) = 3.

[ 11
= dg, then Z,(1) = Z4(1) = 1 and Z»(1) = Z3(1
0. According to Remark 4 , we have o*(1)u*(1) €
{61,041} Take o*(1)u*(1) = 4}, then o*(1) = &
@*(1) = 43. This yields

y(1) = (Lo™(1)a"(1)) ' y(2) =
(LsH*oo1100"
100000, (43)
and
Zi(0) = y" (1) Lo.57°(0) =
[100O0O0O0JLSSE, i =1,2,3,4.  (44)
A simple calculation shows that Z;(0) = 1, ¢ =

1,2, 3, 4. Similarly, we obtain o*(0)a*(0) € Ay. Take
a*(0)u*(0) = &3, then 0*(0) = §2 and u*(0) = 43.

Summarizing, we obtain a proper switching se-
quence ™ = {(0,43),(1,83),(2,65),(3,03)} and a
w(l) = b, u*(2) =
63, @*(3) = 64} that maximize the cost functional .J(.)
at time s = 4.

control strategy {@*(0) = 43,

In fact, the proper switching sequence and con-
trol strategy are not unique. For example, when
a*(0)u*(0) € Ay, we can also take o*(0)@*(0) = 43,
which means the switching signal 6*(0) = 4, and the
control @*(0) = 4.

It is easy to get that the corresponding state tra-
jectories of the SSBCN (33) are z(0) = 43, z(1) =
6, z(2) = 64, x(3) = &8, x(4) = 65. Obvious-
ly, all z(s) € Cy, s = 0,1,2,3,4. At this time,
J(o*,u*;2(0)) = rTz(4) = 1, so the proper switch-
ing sequence and control strategy obtained from the
above analysis indeed force the SSBCN (33) to the de-
sired location.

5 Conclusions

In this paper, using the STP-based framework, we
have investigated the optimal control problem of SS-
BCNs with state and input constraints. Based on the
algebraic form, a necessary and sufficient condition for
the uniqueness of solution of the SSBCN has been dis-
cussed. The paralled constrained algebraic form of the
constrained SSBCN has been obtained by converting
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a SSBCN into an equivalent SBCN. Then a necessary
condition for the existence of optimal control has been
proposed via a homologous needle variation. In addi-
tion, an algorithm has been given to design the proper
switching sequence and control strategy that maximizes
the cost functional at a fixed termination time.
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