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1 Introduction
With the increasing demand of researchers in to-

day’s technological revolution, stochastic differential
game (SDG) theory has emerged to better grasp of the
real world and played a distinguished role in many fiel-
ds, especially in economics, finance, control theory and
behavioral science. The pioneering work of SDGs was
established by Ho[1]. Over recent years, SDG theory has
became a very active area of research, such as An and
Øksendal[2], Wang and Yu[3], Zhu and Zhang[4], and Wu
and Liu[5].

Because of the continuing global financial crisis
in recent years, some investigators have questioned
whether current theories of risk management are appro-
priate and paid more attention to develop prudent meth-
ods of assessing risks. The theory of g-expectations is a
fairly new research topic to avoid risks in mathematical
finance and was first introduced by Peng[6] as particular

nonlinear expectations depending on backward stochas-
tic differential equations. As an application, the model
of risk minimizing portfolios was studied by Øksendal
and Sulem[7], where the risk is represented in terms of
g-expectations. For a comprehensive survey of theories
on g-expectations and relevant applications, one can re-
fer to the paper by Peng[8]. In fact, combining SDG sys-
tems with cost functionals defined by g-expectations,
one can naturally obtain forward-backward stochastic
differential games (FBSDGs).

The theory of FBSDGs has got a rapid development
of late years due to its widely applications in risk mea-
sures, for example, the optimal portfolio-consumption
problem under model uncertainty[9]. The FBSDG sys-
tems are given by forward-backward stochastic dif-
ferential equations (FBSDEs), which include stochas-
tic differential equations (SDEs) as a special case.
Yu[10] dealt with a linear-quadratic nonzero-sum FBS-
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DG problem and derived an explicit form of the unique
Nash equilibrium point. Hui and Xiao[11] considered
both zero-sum and nonzero-sum FBSDGs and obtained
the maximum principles and the verification theorems.
An and Øksendal[12] discussed the sufficient maximum
principles for both zero-sum and nonzero-sum SDGs of
Itô-Lévy processes with g-expectations and partial in-
formation.

In practice, the controllers generally can not ob-
serve complete information, but they are able to get
the related information, which is called the correlated
noise, for instance, the recursive utility optimization
problem[13]. Inspired by this phenomenon, many inves-
tigators have set out to study partially observed systems.
Wu[14] first devoted to the maximum principle for par-
tially observed forward-backward stochastic control
systems. As a generalization of results of [14], Xiao[15]

considered a partially observed forward-backward sto-
chastic optimal control system with jumps and obtained
the necessary maximum principle and the sufficient ver-
ification theorem. Xiong et al.[16] analyzed a necessary
and sufficient maximum principle for partially observed
nonzero-sum differential game system of FBSDEs.

To the best of our knowledge, the maximum princi-
ple and the verification theorem for a partially observed
nonzero-sum SDG system with g-expectation have not
been established in earlier work, and are entirely new.
The main contributions are described as follows. On
the one hand, our work extends the results of [12]
to a partially observed nonzero-sum differential game,
where the state is described by a Itô-Lévy process and
the cost functionals are defined by g-expectations, i.e.,
FBSDEs. On the other hand, for the partially observed
game system, we suppose that each player has his own
observation process to serve as the available informa-
tion, which is distinguished from the model of partial
information in [12]. What’s more, we solve a partially
observed asset-liability management game problem,
where the information filtration can be generated by ob-
servable stock price processes.

The rest of this paper is organized as follows: In
Section 2, we introduce some notions and formulate the
game system; In Sections 3 and 4, we establish a maxi-
mum principle and a verification theorem for the game
system, respectively; Section 5 provides an example of
the partially observed asset-liability management game
model; Some conclusions are drawn in Section 6.

2 Statement of the game problem
Let T > 0 be a finite time duration and (Ω,F ,

{Ft}t>0, P ) be a complete filtered probability space
equipped with three mutually independent 1-dimensi-
onal standard Brownian motions W (·), Y1(·) and Y2(·)
defined on [0, T ] and an independent Poisson random
measure N(dt, dη) defined on [0, T ] × R0, where

R0 := R \ {0}. Denote the compensated Poisson ran-
dom measure by Ñ(dt, dη) := N(dt,dη)− ν(dη)dt,

where ν is the Lévy measure of N satisfying
w
R0

(1∧

|η|2)ν(dη) < ∞. In addition, let FW
t , F1

t , F2
t and

FN
t be the P -completed natural filtration generated by

W (·), Y1(·), Y2(·) and N(·, ·), respectively. We as-
sume that Ft := FW

t ∨F1
t ∨F2

t ∨FN
t ∨N , F := FT ,

where N denotes the totality of P -null sets.
Let R be the 1-dimensional Euclidean space, | · | the

Euclidean norm. In the sequel, we denote by L2(FT ;
R) the space of R-valued FT -measurable random vari-
ables ξ such that E[|ξ|2] < ∞, by L2

F(s1, s2;R) the
space of R-valued Ft-adapted processes (l(t))t∈[s1,s2]

such that E[
w s2

s1
|l(t)|2dt] <∞, by L2(ν) the space of

integrable functions k : R0→R with norm ||k(η)||2ν :=w
R0

|k(η)|2ν(dη)<∞, and by F 2
ν (s1, s2;R) the space

of R-valued Ft-predictable processes (l(t, η))t∈[s1,s2]

such that E[
w s2

s1

w
R0

|l(t, η)|2ν(η)dt] <∞.

Suppose that the state of a stochastic game system
is described by the following jump-diffusion SDE:

dx(t) = b(t, x(t), υ1(t), υ2(t))dt+

σ(t, x(t), υ1(t), υ2(t))dW (t)+w
R0

γ(t, x(t), υ1(t), υ2(t), η)Ñ(dt,dη),

t ∈ [0, T ],

x(0) = x0 ∈ R,
(1)

where υ1 : Ω×[0, T ] 7→ U1, and υ2 : Ω×[0, T ] 7→ U2

are control processes of Player 1 and Player 2, respec-
tively. Here, U1 and U2 are nonempty convex subsets
of R. b, σ : Ω × [0, T ] × R × U1 × U2 7→ R, and
γ : Ω × [0, T ] × R × U1 × U2 × R0 7→ R are given
mappings, which satisfy

A1) The functions b, σ and γ are continuously
differentiable with respect to (x, υ1, υ2); b and σ have
a linear growth in (x, υ1, υ2), and their partial derivati-
ves are uniformly bounded and Lipschitz continuous;

there exists a constant C > 0 such that (
w
R0

|γ(t, x,
υ1, υ2, η)|2ν(η))

1
2 is bounded by C(1 + |x| + |υ1|+

|υ2|), and
w
R0

|∂γ
∂x

(t, x, υ1, υ2, η)|2ν(η) and
w
R0

| ∂γ
∂υi

(t, x, υ1, υ2, η)|2ν(η) (i = 1, 2) are uniformly bound-
ed and Lipschitz continuous; for any (x, υ1, υ2) ∈ R×
U1×U2, b(·, x, υ1, υ2), σ(·, x, υ1, υ2) ∈ L2

F(0, T ;R),
and γ(·, x, υ1, υ2, ·) ∈ F 2

ν (0, T ;R).
We suppose that the state x(·) can not be observed

directly, but Player i can observe his own related pro-
cess Yi(·), which is governed by:
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dYi(t) = ϱi(t, x(t), υ1(t), υ2(t))dt+ dW υ1,υ2

i (t),

Yi(0) = 0, i = 1, 2,

(2)

where W υ1,υ2

1 (·),W υ1,υ2

2 (·) are R-valued stochastic
processes depending on υ1(·) and υ2(·). ϱi : Ω× [0, T ]
× R × U1 × U2 7→ R is a continuous function, which
satisfies

A2) The function ϱi is continuously differentiable
with respect to (x, υ1, υ2), and its partial derivatives
and ϱi are all uniformly bounded.

The admissible control sets for each player are giv-
en by:

Ai ={υi(·) ∈ Ui | υi(·) is an F i
t -adapted process and

satisfies sup
06t6T

E|υi(t)|2 <∞}, i = 1, 2.

Every element of Ai is called an admissible control for
Player i(i = 1, 2). A1 × A2 is said to be the set of
admissible controls for the players.

For any (υ1(·), υ2(·)) ∈ A1 × A2, A1) implies
that (1) admits a unique strong solution x(·) ∈ L2

F(0,
T ;R) (see Tang and Li[17]). Now, we define a new

probability measure P υ1,υ2 by
dP υ1,υ2

dP

∣∣
Ft
=Zυ1,υ2(t),

where
dZυ1,υ2(t) =

ϱ1(t, x(t), υ1(t), υ2(t))Z
υ1,υ2(t)dY1(t)+

ϱ2(t, x(t), υ1(t), υ2(t))Z
υ1,υ2(t)dY2(t),

Zυ1,υ2(0) = 1,

(3)

that is

Zυ1,υ2(t) =

exp(
2∑

m=1

w t

0
ϱm(s, x(s), υ1(s), υ2(s)) · dYm(s)−

1

2

2∑
m=1

w t

0
ϱ2m(s, x(s), υ1(s), υ2(s))ds).

Based on Girsanov’s theorem and A2), (W (·),
W υ1,υ2

1 (·),W υ1,υ2

2 (·)) is a 3-dimensional standard
Brownian motion and Ñ(·, ·) is still a compensated
Poisson random measure defined on (Ω,F , {Ft}t>0,
P υ1,υ2).

The cost functional of Player i is defined by

Ji(υ1(·), υ2(·)) =

Eυ1,υ2 [
w T

0
fi(t, x(t), υ1(t), υ2(t))dt+ ψi(x(T ))],

i = 1, 2, (4)

where Eυ1,υ2 is the expectation with respect to P υ1,υ2 .
fi : Ω×[0, T ]×R×U1×U2 7→ R, andψi : Ω×R 7→ R
satisfy

A3) The functions fi and ψi are continuously dif-
ferentiable with respect to (x, υ1, υ2) and x, respective-
ly, and partial derivatives of fi and derivative of ψi have

a linear growth in (x, υ1, υ2) and x, respectively; fi and
ψi are uniformly Lipschitz with respect to (x, υ1, υ2)

and x, respectively; for any (x, υ1, υ2) ∈ R×U1 ×U2

and x ∈ R, fi(·, x, υ1, υ2) ∈ L2
F(0, T ;R), and

ψi(x) ∈ L2(FT ;R).
It is well known that the linear expectation Eυ1,υ2

in (4) does not express investors’ performances (see
Chen and Epstein[18]). In what follows, we introduce
a nonlinear expectation (i.e., a g-expectation) to replace
Eυ1,υ2 .

We consider the following backward SDEs with
random jumps under θi ∈ L2(FT ;R):

−dyi(t) = gi(t, yi(t), zi(t), ki(t, ·))dt−

zi(t)dW (t)−
w
R0

ki(t, η)Ñ(dt,dη),

t ∈ [0, T ],

yi(T ) = θi, i = 1, 2,

(5)

where gi : Ω× [0, T ]×R×R×L2(ν) 7→ R is a given
mapping, which satisfies

A4) The function gi is continuously differentiable
with respect to (yi, zi, ki), and the partial derivatives
of gi are uniformly bounded and Lipschitz continuous;
gi(·, 0, 0, 0) ∈ L2

F(0, T ;R).
From Theorem 2.1 in [19] and A4), we know that

(5) exists a unique strong solution (yi(·), zi(·), ki(·, ·))
∈ L2

F(0, T ;R) × L2
F(0, T ;R) × F 2

ν (0, T ;R). If gi(·,
yi, 0, 0) ≡ 0 for any yi ∈ R, then we define the g-
expectation Eυ1,υ2

gi
of θi related to gi by

Eυ1,υ2
gi

(θi) = yi(0), i = 1, 2.

With the g-expectations, we introduce the new cost
functionals Jgi (i = 1, 2) as follows:

Jgi(υ1(·), υ2(·)) =

Eυ1,υ2
gi

[
w T

0
fi(t, x(t), υ1(t), υ2(t))dt+ ψi(x(T ))].

Thus, the partially observed nonzero-sum differen-
tial game problem with g-expectation is to find (u1(·),
u2(·)) ∈ A1 ×A2 such that

Jg1(u1(·), u2(·)) = min
υ1(·)∈A1

Jg1(υ1(·), u2(·)),

Jg2(u1(·), u2(·)) = min
υ2(·)∈A2

Jg2(u1(·), υ2(·)).

The pair of admissible controls (u1(·), u2(·)) is called
a Nash equilibrium point of the game system.

From the theory of backward SDEs and the defi-
nition of g-expectations, we can reformulate the par-
tially observed game problem as follows: let (βi(·),
ιi(·), ςi(·, ·)) be the adapted solution of the following
backward SDE:
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−dβi(t) = gi(t, βi(t), ιi(t), ςi(t, ·))dt−

ιi(t)dW (t)−
w
R0

ςi(t, η)Ñ(dt, dη),

t ∈ [0, T ],

βi(T ) = θi(x, υ1, υ2),

where

θi(x, υ1, υ2) =
w T

0
fi(t, x(t), υ1(t), υ2(t))dt+

ψi(x(T )).

For any t ∈ [0, T ], we defineyi(t) = βi(t)−
w t

0
fi(s, x(s), υ1(s), υ2(s))ds,

zi(t) = ιi(t), ki(t, η) = ςi(t, η).

It is easy to obtain that (yi(·), zi(·), ki(·, ·)) is the uni-
que solution of the following backward SDE:

−dyi(t) = [gi(t, yi(t), zi(t), ki(t, ·))+
fi(t, x(t), υ1(t), υ2(t))]dt−

zi(t)dW (t)−
w
R0

ki(t, η)Ñ(dt, dη),

t ∈ [0, T ],

yi(T ) = ψi(x(T )).

Hence, the state equations can be rewritten by the
following FBSDEs:

dx(t) = b(t, x(t), υ1(t), υ2(t))dt+

σ(t, x(t), υ1(t), υ2(t))dW (t)+w
R0

γ(t, x(t), υ1(t), υ2(t), η)Ñ(dt, dη),

−dyi(t) = [gi(t, yi(t), zi(t), ki(t, ·))+
fi(t, x(t), υ1(t), υ2(t))]dt−

zi(t)dW (t)−
w
R0

ki(t, η)Ñ(dt, dη),

t ∈ [0, T ],

x(0) = x0, yi(T ) = ψi(x(T )), i = 1, 2,

(6)

and observation processes Yi(·) (i = 1, 2) satisfy (2).
The cost functionals Jgi (i = 1, 2) are given by:

Jgi(υ1(·), υ2(·)) =

Eυ1,υ2 [
w T

0
(fi(t, x(t), υ1(t), υ2(t)) +

gi(t, yi(t), zi(t), ki(t, ·)))dt+ ψi(x(T ))] =

E[
w T

0
Zυ1,υ2(t)(fi(t, x(t), υ1(t), υ2(t)) +

gi(t, yi(t), zi(t), ki(t, ·)))dt+ Zυ1,υ2(T )ψi(x(T ))].

The game problem is to find (u1(·), u2(·)) ∈ A1 ×A2

such thatJg1(u1(·), u2(·)) = min
υ1(·)∈A1

Jg1(υ1(·), u2(·)),

Jg2(u1(·), u2(·)) = min
υ2(·)∈A2

Jg2(u1(·), υ2(·)).

(7)

We denote by (x̂(·), ŷ1(·), ẑ1(·), k̂1(·, ·), ŷ2(·), ẑ2(·),
k̂2(·, ·)) and Z(·) the corresponding state processes a-
long with the optimal controls (u1(·), u2(·)).
3 Maximum principle

In this section, we prove a maximum principle for
the game system expressed by Theorem 1.

For any (ϵ, υ1(·), υ2(·)) ∈ [0, 1] × A1 × A2, we
take the perturbations uϵ

1(·) = u1(·) + ϵυ1(·) and
uϵ
2(·) = u2(·) + ϵυ2(·). Since both U1 and U2 are con-

vex sets, (uϵ
1(·), uϵ

2(·)) is an element of A1 ×A2. Sup-
pose that the processes (xϵ1(·), yϵ1i (·), zϵ1i (·), kϵ1i (·, ·))
((xϵ2(·), yϵ2i (·), zϵ2i (·), kϵ2i (·, ·))) (i = 1, 2) and Zϵ1(·)
(Zϵ2(·)) are the solutions of (6) and (3) along with
(uϵ

1(·), u2(·)) ((u1(·), uϵ
2(·))), respectively.

For simplicity, we employ some notations as fol-
lows:

χ(t) = χ(t, x̂(t), u1(t), u2(t)), χ = b, σ, fi, ϱi,

γ(t) = γ(t, x̂(t), u1(t), u2(t), ·),

gi(t) = gi(t, ŷi(t), ẑi(t), k̂i(t, ·)), i = 1, 2,

∂b

∂x
(t) = [

∂b

∂x
(t, x, u1(t), u2(t))]x=x̂(t).

We introduce the variational equations:

dxi(t) = [
∂b

∂x
(t)xi(t) +

∂b

∂υi
(t)υi(t)]dt+

[
∂σ

∂x
(t)xi(t) +

∂σ

∂υi
(t)υi(t)]dW (t)+

w
R0

[
∂γ

∂x
(t, η)xi(t) +

∂γ

∂υi
(t, η)υi(t)]·

Ñ(dt,dη),

−dyij(t) = [
∂gj
∂yj

(t)yij(t) +
∂gj
∂zj

(t)zij(t)+

w
R0

d∇kj
gj

dν
(t, η)kij(t, η)ν(dη)+

∂fj
∂x

(t)xi(t) +
∂fj
∂υi

(t)υi(t)]dt−

zij(t)dW (t)−
w
R0

kij(t, η)Ñ(dt, dη),

t ∈ [0, T ],

xi(0) = 0, yij(T ) = ψ′
j(x̂(T ))x

i(T ),

i, j = 1, 2,

(8)

where
d∇kj

gj

dν
(t, η) is the Radom-Nikodym derivative

of ∇kj
gj(t, η) with respect to ν(η). Here, ∇kj

gj(t, η)

stands for the Fréchet derivative of gj with respect to
kj ∈ L2(ν), and we assume that ∇kj

gj(t, η) as a
random measure is absolutely continuous with respect
to ν.



No. 1 YANG Bi-xuan et al: Partially observed nonzero-sum stochastic differential games with g-expectations 17
dZi(t) =

2∑
m=1

[Zi(t)ϱm(t) + Z(t)(
∂ϱm
∂x

(t)xi(t)+

∂ϱm
∂υi

(t)υi(t))]dYm(t), t ∈ [0, T ],

Zi(0) = 0, i = 1, 2.
(9)

Since (8) and (9) are a linear FBSDE with random
jumps and a linear SDE, we can easily derive that both
of them exist a unique adapted solution, respectively,
under A1)–A4) and for any (υ1(·), υ2(·)) ∈ A1 × A2

(see Wu[19] and Øksendal[20]).
Similarly to Lemmas 1–3 in [15], we can obtain the

following Lemmas 1–2. Thus, we omit the details for
simplicity.

Lemma 1 Under A1)–A4), for i, j = 1, 2, we
have

lim
ϵ→0

sup
06t6T

E|x
ϵi(t)− x̂(t)

ϵ
− xi(t)|2 = 0,

lim
ϵ→0

sup
06t6T

E|
yϵij (t)− ŷj(t)

ϵ
− yij(t)|2 = 0,

lim
ϵ→0

E
w T

0
|
zϵij (t)− ẑj(t)

ϵ
− zij(t)|2dt = 0,

lim
ϵ→0

E
w T

0

w
R0

|
kϵij (t, η)− k̂j(t, η)

ϵ
−

kij(t, η)|2ν(dη)dt = 0,

lim
ϵ→0

sup
06t6T

E|Z
ϵi(t)− Z(t)

ϵ
− Zi(t)|2 = 0.

Since (u1(·), u2(·)) is a Nash equilibrium point of
the game problem (7), it is clear that{

ϵ−1[Jg1(u
ϵ
1(·), u2(·))− Jg1(u1(·), u2(·))] > 0,

ϵ−1[Jg2(u1(·), uϵ
2(·))− Jg2(u1(·), u2(·))] > 0.

(10)

Besides, let Z̃i(·) = Z−1(·)Zi(·) (i = 1, 2). For
the optimal controls (u1(·), u2(·)), we have

dZ̃i(t) =
2∑

m=1

[
∂ϱm
∂x

(t)xi(t) +
∂ϱm
∂υi

(t)υi(t)]·

dW u1,u2
m (t), t ∈ [0, T ],

Z̃i(0) = 0, i = 1, 2.

According to the inequality (10), and by Lemma 1
and Taloy’s expansion, we derive the following inequal-
ities.

Lemma 2 Suppose that A2)–A4) hold and
(u1(·), u2(·)) is a Nash equilibrium point. Then, it
yields the variational inequalities as follows:

Eu1,u2 [
w T

0
((fi(t) + gi(t))Z̃

i(t) +
∂fi
∂x

(t)xi(t) +

∂fi
∂υi

(t)υi(t) +
∂gi
∂yi

(t)yii(t) +
∂gi
∂zi

(t)zii(t) +

w
R0

d∇ki
gi

dν
(t, η)kii(t, η)ν(dη))dt+ ψi(x̂(T )) ·

Z̃i(T ) + ψ′
i(x̂(T ))x

i(T )] > 0, i = 1, 2.

(11)

The Hamiltonian functions Hi : Ω × [0, T ]× R×
R×R×L2(ν)×U1×U2×R×R×R×L2(ν)×R×R 7→
R (i = 1, 2) are defined by

Hi(t, x, yi, zi, ki, υ1, υ2; pi, qi, si, µi, β1i, β2i) =

(gi(t, yi, zi, ki) + fi(t, x, υ1, υ2))(1− pi) +

b(t, x, υ1, υ2)qi + σ(t, x, υ1, υ2)si +w
R0

γ(t, x, υ1, υ2, η)µi(η)ν(dη) +

ϱ1(t, x, υ1, υ2)β1i + ϱ2(t, x, υ1, υ2)β2i.

To establish the maximum principle, we introduce
the adjoint equations as follows:

−dLi(t) = [gi(t) + fi(t)]dt−
2∑

m=1

βmi(t)·

dW u1,u2
m (t), t ∈ [0, T ],

Li(T ) = ψi(x̂(T )), i = 1, 2,

(12)



dpi(t) =−∂Hi

∂yi
(t)dt− ∂Hi

∂zi
(t)dW (t)−

w
R0

d∇ki
Hi

dν
(t, η)Ñ(dt,dη),

−dqi(t) =
∂Hi

∂x
(t)dt− si(t)dW (t)−w

R0

µi(t, η)Ñ(dt, dη), t ∈ [0, T ],

pi(0) = 0,

qi(T ) = (1− pi(T ))ψ
′
i(x̂(T )), i = 1, 2,

(13)

where
∂Hi

∂yi
(t) =

[
∂Hi

∂yi
(t, x̂(t), yi, ẑi(t), k̂i(t, ·), u1(t), u2(t),

pi(t), qi(t), si(t), µi(t, ·), β1i(t), β2i(t))]yi=ŷi(t).

If A1)–A4) hold, then (12) and (13) admit a uni-
que adapted solution, respectively (see Wu [19]). Note
that 1 − pi(·) is a geometric Lévy process with initial
value 1− pi(0) = 1 (i = 1, 2).

We state the maximum principle for the game sys-
tem.

Theorem 1 Suppose that A1)–A4) hold and
(u1(·), u2(·)) is a Nash equilibrium point of the non-
zero-sum game problem (7) with the corresponding
state process (x̂(·), ŷ1(·), ẑ1(·), k̂1(·, ·), ŷ2(·), ẑ2(·),
k̂2(·, ·)). Let (Li(·), β1i(·), β2i(·)) and (pi(·), qi(·),
si(·), µi(·, ·)) (i = 1, 2) be the solutions of (12) and
(13), respectively. Then we have
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Eu1,u2 [
∂H1

∂υ1
(t)(υ1 − u1(t))|F1

t ] > 0,

Eu1,u2 [
∂H2

∂υ2
(t)(υ2 − u2(t))|F2

t ] > 0,

for any (υ1, υ2) ∈ U1 × U2, a.e. t ∈ [0, T ], P u1,u2 –
a.s..

Proof We only consider the case i = 1. Applying
Itô’s formula to Z̃1(t)L1(t)+x

1(t)q1(t)+y
1
1(t)p1(t),

we get

Eu1,u2 [ψ1(x̂(T ))Z̃
1(T )+ψ′

1(x̂(T ))x
1(T )] =

Eu1,u2

w T

0
[

2∑
m=1

βm1(t)
∂ϱm
∂υ1

(t)υ1(t)−Z̃1(t)·

(g1(t)+f1(t))−p1(t)
∂f1
∂υ1

(t)υ1(t)+q1(t)
∂b

∂υ1
(t)·

υ1(t)+s1(t)
∂σ

∂υ1
(t)υ1(t)+

w
R0

µ1(t, η)
∂γ

∂υ1
(t, η)·

υ1(t)ν(dη)−x1(t)
∂f1
∂x

(t)−y11(t)
∂g1
∂y1

(t)−z11(t)·

∂g1
∂z1

(t)−
w
R0

k11(t, η)
∂g1
∂k1

(t, η)ν(dη)]dt. (14)

Substituting (14) into (11), we derive that

Eu1,u2

w T

0

∂H1

∂υ1
(t)υ1(t)dt > 0, (15)

for any υ1(·) such that u1(·)+υ1(·) ∈ A1. Let π1(·) =
u1(·) + υ1(·). From (15), it implies that

Eu1,u2 [
∂H1

∂υ1
(t)(π1(t)− u1(t))] > 0, a.e.. (16)

Moreover, for any υ1 ∈ U1, A ∈ F1
t , we sup-

pose that χ1(t) = υ1IA + u1(t)IAc . It is obvious that
χ1(·) ∈ A1. Thus, inserting χ1 into (16) yields

Eu1,u2 [
∂H1

∂υ1
(t)(υ1 − u1(t))IA] > 0, a.e.,

for any A ∈ F1
t . Therefore, we have

Eu1,u2 [
∂H1

∂υ1
(t)(υ1 − u1(t))|F1

t ] > 0,

a.e., P u1,u2 – a.s.. QED.

4 Verification theorem
In this section, we build a sufficient verification the-

orem for the game problem under some convexity con-
ditions.

Theorem 2 Let A1)–A4) hold. Let (u1(·),
u2(·)) ∈ A1×A2, and (x̂(·), ŷ1(·), ẑ1(·), k̂1(·, ·), ŷ2(·),
ẑ2(·), k̂2(·, ·)) be the corresponding trajectory. Suppose
that (Li(·), β1i(·), β2i(·)) and (pi(·), qi(·), si(·), µi(·,
·)) (i = 1, 2) satisfy (12) and (13), respectively. Fur-
thermore, suppose that for all t ∈ [0, T ], Hi(t, ·, ·, ·, ·,
·, ·; pi(t), qi(t), si(t), µi(t, ·), β1i(t), β2i(t)) and ψi(·)
are convex respect to the corresponding variables, re-

spectively, and the following conditions hold:

E[H1(t)|F1
t ] = min

υ1∈U1

E[Hυ1
1 (t)|F1

t ],

E[H2(t)|F2
t ] = min

υ2∈U2

E[Hυ2
2 (t)|F2

t ],
(17)

where

Hi(t) = Hi(t, x̂(t), ŷi(t), ẑi(t), k̂i(t, ·), u1(t), u2(t);
pi(t), qi(t), si(t), µi(t, ·), β1i(t), β2i(t)),
i = 1, 2,

Hυ1
1 (t) =H1(t, x

υ1(t), yυ1
1 (t), zυ1

1 (t), kυ1
1 (t, ·),

υ1(t), u2(t); p1(t), q1(t), s1(t), µ1(t, ·),
β11(t), β21(t)),

Hυ2
2 (t) =H2(t, x

υ2(t), yυ2
2 (t), zυ2

2 (t), kυ2
2 (t, ·),

u1(t), υ2(t); p2(t), q2(t), s2(t), µ2(t, ·),
β12(t), β22(t))

and (xυ1(·), yυ1
1 (·), zυ1

1 (·), kυ1
1 (·, ·)) is the correspond-

ing solution of (6) along with (υ1(·), u2(·)) and simi-
larly with (xυ2(·), yυ2

2 (·), zυ2
2 (·), kυ2

2 (·, ·)).
Then, (u1(·), u2(·)) is a Nash equilibrium point for

the nonzero-sum game system.
Proof We only consider the case i = 1. Let

oυ1(t) = o(t, xυ1(t), υ1(t), u2(t)), for o = b, σ, f1

and similarly with γυ1(t), gυ1
1 (t), ϱυ1

m (t) (m = 1, 2).
By the definition of Jg1 , we deduce that

Jg1(υ1(·), u2(·))− Jg1(u1(·), u2(·)) =
R1 +R2 +R3,

where

R1 =Eυ1,u2 [ψ1(x
υ1(T ))− ψ1(x̂(T ))],

R2 =E
w T

0
(g1(t) + f1(t))(Z

υ1,u2(t)− Z(t))dt+

E[ψ1(x̂(T ))(Z
υ1,u2(T )− Z(T ))],

R3 =Eυ1,u2

w T

0
(gυ1

1 (t)− g1(t) + fυ1
1 (t)− f1(t))dt.

From (13), we have

R1 =Eυ1,u2 [ψ1(x
υ1(T ))− ψ1(x̂(T ))]−

Eυ1,u2 [p1(0)(y
υ1
1 (0)− ŷ1(0))].

Using Itô’s formula to p1(t)(y
υ1
1 (t)− ŷ1(t)), and by the

convexity of ψ1 with noticing that 1 − p1(T ) > 0, we
get

R1 >Eυ1,u2 [ψ′
1(x̂(T ))(1− p1(T ))(x

υ1(T )−
x̂(T ))]−R4, (18)

where

R4 =

Eυ1,u2

w T

0
p1(t)(g

υ1
1 (t)− g1(t) + fυ1

1 (t)−

f1(t))dt+ Eυ1,u2

w T

0

∂H1

∂y1
(t)(yυ1

1 (t)− ŷ1(t))dt+
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Eυ1,u2

w T

0

∂H1

∂z1
(t)(zυ1

1 (t)− ẑ1(t))dt+

Eυ1,u2

w T

0

w
R0

d∇k1
H1

dν
(t, η)(kυ1

1 (t, η)−

k̂1(t, η))ν(dη)dt. (19)

Applying Itô’s formula to q1(t)(x
υ1(t) − x̂(t))

leads to

Eυ1,u2 [ψ′
1(x̂(T ))(1− p1(T ))(x

υ1(T )− x̂(T ))] =

Eυ1,u2

w T

0
q1(t)(b

υ1(t)− b(t))dt+

Eυ1,u2

w T

0
s1(t)(σ

υ1(t)− σ(t))dt+

Eυ1,u2

w T

0

w
R0

µ1(t, η)(γ
υ1(t, η)−γ(t, η))ν(dη)dt−

Eυ1,u2

w T

0

∂H1

∂x
(t)(xυ1(t)− x̂(t))dt.

(20)

Using Itô’s formula to L1(t)(Z
υ1,u2(t)−Z(t)), we ob-

tain

R2 =
2∑

m=1

Eυ1,u2

w T

0
βm1(t)(ϱ

υ1
m (t)− ϱm(t))dt.

(21)

By the definition and convexity of H1, we derive that

R3 >

Eυ1,u2

w T

0
[
∂H1

∂x
(t)(xυ1(t)−x̂(t))+ ∂H1

∂y1
(t) ·

(yυ1
1 (t)−ŷ1(t))+

∂H1

∂z1
(t)(zυ1

1 (t)−ẑ1(t))+

∂H1

∂υ1
(t)(υ1(t)−u1(t))+

w
R0

d∇k1
H1

dν
(t, η) ·

(kυ1
1 (t, η)−k̂1(t, η))ν(dη)]dt+Eυ1,u2

w T

0
[p1(t) ·

(gυ1
1 (t)−g1(t)+fυ1

1 (t)−f1(t))−q1(t)(bυ1(t)−

b(t))−s1(t)(συ1(t)−σ(t))−
w
R0

µ1(t, η) ·

(γυ1(t, η)−γ(t, η))ν(dη)−
2∑

m=1

βm1(t)(ϱ
υ1
m (t)−

ϱm(t))]dt. (22)

Combining (18)–(22), we have

Jg1(υ1(·), u2(·))− Jg1(u1(·), u2(·)) >

Eυ1,u2

w T

0

∂H1

∂υ1
(t)(υ1(t)− u1(t))dt =

E
w T

0
Zυ1,u2(t)E[

∂H1

∂υ1
(t)(υ1(t)− u1(t))|F1

t ]dt.

From (17), we deduce that

E[
∂H1

∂υ1
(t)(υ1(t)− u1(t))|F1

t ] > 0.

Since Zυ1,u2(·) > 0, we conclude that

Jg1(u1(·), u2(·)) = min
υ1(·)∈A1

Jg1(υ1(·), u2(·)).

In the same way, we obtain

Jg2(u1(·), u2(·)) = min
υ2(·)∈A2

Jg2(u1(·), υ2(·)).

Hence, (u1(·), u2(·)) is a Nash equilibrium point.
QED.

5 Application to finance
Motivated by Huang et al.[21], Xiong and Zhou[22],

we consider a partially observed game problem about
the asset-liability management of a firm. Suppose that
the liability process F (·) of the firm is described by

−dF (t) = [b1(t)υ1(t) + b2(t)υ2(t)− b(t)]dt+

σ(t)dW (t) +
w
R0

γ(t, η)Ñ(dt, dη),

where υ1(t) and υ2(t) are the rates of capital injec-
tion or withdrawal, and serve as the control strategies of
two policymakers; b(t) > 0 is the expected liability
rate; σ(t) > 0 and γ(t, η) > 0 are the liability risks;
b1(t) > 0 and b2(t) > 0 are bounded coefficients.

We introduce the cash balance process x(·) deduced
from the liability process F (·) as follows:

x(t) = e
r t
0
b0(s)ds(x0 −

w t

0
e−

r s
0
b0(r)drdF (s)).

It can be written in the following form:

dx(t) = [b0(t)x(t) + b1(t)υ1(t) + b2(t)υ2(t)−
b(t)]dt+ σ(t)dW (t)+w
R0

γ(t, η)Ñ(dt, dη),

t ∈ [0, T ],

x(0) = x0,

where x0 is the initial investment of the firm in a money
account, and b0(t) > 0 is the compounded interest rate.

Then, the observation equations are governed by{
dYi(t) = ci(t)b(t)dt+ dW υ1,υ2

i (t),

Yi(0) = 1, i = 1, 2,
(23)

where ci(t) is a bounded and deterministic function.
We define a new probability measure P υ1,υ2 by

dP υ1,υ2

dP

∣∣
Ft

= Zυ1,υ2(t), wheredZυ1,υ2(t) =
2∑

i=1

Zυ1,υ2(t)ci(t)b(t)dYi(t),

Zυ1,υ2(0) = 1.

Hence, (W (·),W υ1,υ2

1 (·),W υ1,υ2

2 (·)) is a 3-dimensi-
onal standard Brownian motion and Ñ(·, ·) is a com-
pensated Poisson random measure defined on (Ω, F ,
{Ft}t>0, P

υ1,υ2).
Assume that the two policymakers can only observe

the related stock price processes by their own:
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dSi(t) =Si(t)[(αici(t)b(t) +

1

2
α2

i )dt+

αidW
υ1,υ2

i (t)],

Si(0) = 1, i = 1, 2,

where αici(t)b(t) +
1

2
α2

i is an appreciation rate of the

stock, and αi > 0 is a volatility coefficient of the stock.
Thus, σ{Si(s); 0 6 s 6 t} is the information fil-

tration for policymaker i(i = 1, 2) at time t. Since

dYi(t) =
1

αi

d logSi(t), we get

F i
t = σ{Yi(s); 0 6 s 6 t} = σ{Si(s); 0 6 s 6 t}.
The cost functionals Jgi (i = 1, 2) are defined by

Jgi(υ1(·), υ2(·)) =

Eυ1,υ2
gi

[
w T

0
fi(t, υ1(t), υ2(t))dt− x(T )].

Now, we suppose that gi is independent of yi. That
is to say, gi = gi(t, zi, ki). By the similar method in
Section 2, we can rewrite the cost functional Jgi as fol-
lows:

Jgi(υ1(·), υ2(·)) =

Eυ1,υ2 [
w T

0
(fi(t, υ1(t), υ2(t)) +

gi(t, zi(t), ki(t, ·)))dt− x(T )], i = 1, 2

with the corresponding state equations

dx(t) = [b0(t)x(t) + b1(t)υ1(t) + b2(t)υ2(t)−
b(t)]dt+ σ(t)dW (t)+w
R0

γ(t, η)Ñ(dt, dη),

−dyi(t) = [gi(t, zi(t), ki(t, ·)) + fi(t, υ1(t),

υ2(t))]dt− zi(t)dW (t)−w
R0

ki(t, η)Ñ(dt, dη),

t ∈ [0, T ],

x(0) = x0, yi(T ) = −x(T ), i = 1, 2,

where gi : Ω× [0, T ]×R×L2(ν) 7→ R is convex with

respect to zi and ki, and satisfies
d∇ki

gi
dν

(t, η) > −1

for all t, η a.s.; fi : Ω × [0, T ] × U1 × U2 7→ R is
convex and quadratic differentiable with respect to υ1
and υ2.

Our aim is to find a pair of F1
t ∨ F2

t -adapted and
square integrable processes (u1(·), u2(·)) such thatJg1(u1(·), u2(·)) = min

υ1(·)∈A1

Jg1(υ1(·), u2(·)),

Jg2(u1(·), u2(·)) = min
υ2(·)∈A2

Jg2(u1(·), υ2(·)).

(24)

The Hamiltonian functions Hi(i = 1, 2) are given
by

Hi(t, x, yi, zi, ki, υ1, υ2; pi, qi, si, µi, β1i, β2i) =

(gi(t, zi, ki) + fi(t, υ1, υ2))(1− pi) + (b0(t)x+

b1(t)υ1 + b2(t)υ2 − b(t))qi + σ(t)si +
w
R0

γ(t, η) ·

µi(η)ν(dη) + c1(t)b(t)β1i + c2(t)b(t)β2i.

The adjoint process (pi(·), qi(·), si(·), µi(·, ·)) satis-
fies:

dpi(t) = (pi(t)− 1)[
∂gi
∂zi

(t)dW (t)+w
R0

d∇ki
gi

dν
(t, η)Ñ(dt,dη)],

−dqi(t) = b0(t)qi(t)dt− si(t)dW (t)−w
R0

µi(t, η)Ñ(dt, dη), t ∈ [0, T ],

pi(0) = 0, qi(T ) = pi(T )− 1, i = 1, 2.

(25)

Since 1 − pi(t) is a geometric Lévy process, we
derive the solution of the forward equation in (25):

pi(t) = 1− exp{−1

2

w t

0
|∂gi
∂zi

(s)|2ds+
w t

0

∂gi
∂zi

(s) ·

dW (s) +
w t

0

w
R0

[ln(1 +
d∇ki

gi
dν

(s, η))−

d∇ki
gi

dν
(s, η)]ν(dη)ds+

w t

0

w
R0

ln(1 +

d∇ki
gi

dν
(s, η))Ñ(ds, dη)}, i = 1, 2.

Suppose

qi(t) = λi(t)(pi(t)− 1),

where λi(t) is deterministic, and λi(T ) = 1. Then,
applying Itô’s formula to qi(t), we derive

dqi(t) = λ′
i(t)(pi(t)− 1)dt+ λi(t)(pi(t)− 1)·

(
∂gi
∂zi

(t)dW (t) +
w
R0

d∇ki
gi

dν
(t, η)·

Ñ(dt,dη)).
(26)

Comparing (26) with the backward equation in (25) by
equating the dt coefficient, we have{

λ′
i(t) + b0(t)λi(t) = 0,

λi(T ) = 1.

The above equation admits the following solution:

λi(t) = e
r T
t

b0(s)ds.

The solution of the backward equation in (25) is given
by

qi(t) = e
r T
t

b0(s)ds(pi(t)− 1), i = 1, 2.

From Theorem 1, if (u1(·), u2(·)) is a Nash equi-
librium point, then for i = 1, 2, we get
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Eu1,u2 [(1−pi(t))(
∂fi
∂υi

(t)−bi(t)e
r T
t

b0(s)ds)|F i
t ]=0.

(27)
Since

∂2Hi

∂υ2
i

(t) = (1− pi(t))
∂2fi
∂υ2

i

(t) > 0,

based on Theorem 2, we conclude that (u1(·), u2(·)) is
indeed a Nash equilibrium point for the game problem.

Proposition 1 For the partially observed asset-
liability management game problem (24), a Nash equi-
librium point (u1(·), u2(·)) satisfies (27).

Remark 1 There is few general filtering results for
FBSDEs with jumps, and the generators (i.e., f and g) are non-
linear functions, so we only study the case that the observation
processes are independent of the state in (23).

6 Conclusions
This paper discussed the maximum principle and

the verification theorem for a partially observed
nonzero-sum SDG with g-expectation. Owing to the
complexity of computing the optimal filtering of adjoint
processes, we solved a special case for the asset-liability
management game problem. It would be desirable to
research the general filtering theory for FBSDEs with
jumps in future work.
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