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Optimal control on infinite-dimensional continuous-time
regular state signal systems
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Abstract: This paper considers the linear quadratic regulator (LQR) optimal control problem and Kalman filtering
problem for a regular state signal (s/s) system. The solvability of the optimal control problems for the regular s/s system
is equivalent to that for some regular i/s/o representation of the regular s/s system. The connection on optimal future costs
between the regular s/s system and some regular i/s/o representation with a nonempty resolvent set is proposed. Two
examples are given to illustrate the results.
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1 Introduction

The optimal control problems are important sub-
jects in control theory. Kalman!!! has used the Hamilton
-Jacobi theory to arrive at RDE and to deduce optimal-
ity of the linear quadratic (LQ) control gain for time-
varying systems. Lions!?! has examined the optimal
control problems for deterministic distributed parame-
ter systems by exploiting the properties of the partial d-
ifferential equations. Many researchers have considered
the optimal control problems by using the semigroup
approach®#.  The linear quadratic regulator (LQR)
problem for a regular i/s/o system is to minimize the
future quadratic cost function. It is shown that the fi-
nite future cost condition for a discrete-time i/s/o sys-
tem holds if and only if the control Riccati equation
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has a classical solution. In this setting, the solvabili-
ty of the LQR problem for the discrete-time i/s/0 sys-
tem is equivalent to the existence of a right factoriza-
tion of its transfer function®!. Opmeer and Staffans!®!
have considered the LQR problem for the discrete-time
i/s/o system by defining the finite future incremental
cost condition and rewriting the control Riccati equa-
tion in terms of sesquilinear forms. These foundations
are used in [7] to study the optimal control problems for
the continuous-time regular i/s/o system. The control
Riccati equation has been extended to the generalized
control Riccati equation which consists of unbounded
operators, and the finite future cost condition has been
reduced to the input finite future cost condition. The
Kalman filtering problem for a regular i/s/o system is
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to find a control such that the past quadratic cost func-
tion is minimal. The Kalman filtering problem is related
to the filter Riccati equation and the factorization theo-
ry. It is shown in [8] that if the output coercive past
cost condition holds for a discrete-time linear system,
then it is equivalent to the filter Riccati equation hav-
ing a solution. Opmeer and Staffans!’! have defined the
output coercive past cost condition for the continuous-
time regular i/s/o system. If this condition holds, then
it is equivalent to the generalized filter Riccati equation
having a solution, and another equivalent condition is
that the transfer function of the regular i/s/o system has
a weakly coprime left H -factorization.

Arov and Staffans have put forward the regular s/s
system, which does not distinguish the input u from the
output y. The state space X shows the internal prop-
erties of the system and the signal space W describes
interactions with the surrounding world. The s/s system
is a more generalized system, it is necessary to consid-
er the optimal control problems for regular s/s systems.
Arov and Staffans!®! have shown that the optimal signal
of the LQR problem for a discrete-time s/s system is in
the form of state feedback. In addition, the optimal sig-
nal of the Kalman filtering problem for a discrete-time
s/s system is in the form of signal injection.

The generalized stable trajectory theory and multi-
valued operator theory have not been considered to
solve the optimal problem for regular s/s systems yet.
Following Opmeer!>® 1% and Staffans!!!~!2], this paper
considers the optimal control problems for continuous-
time regular s/s systems. The generalized stable future
(past) trajectories of the regular s/s system are defined
to give its optimal future (past) cost. The equivalence
of the solvability of the optimal problem for the regular
s/s system and the solvability of the optimal problems
for some regular i/s/o representations is obtained. In the
case that the regular s/s system allows a regular i/s/o
representation with a nonempty resolvent set, the rela-
tionship between the optimal future cost of the regular
s/s system and that of the regular i/s/o representation is
given.

This paper is structured as follows: Section 2 in-
troduces some preliminaries; Section 3 and Section 4
show the main results on the optimal problems; Section
5 gives two examples; Section 6 concludes the paper.

2 Preliminaries

The symbols C and C* denote the complex plane
and the right plane of the complex plane, respectively.
Rt =[0,400), R~ = (—00,0]andZ = RT or R™.

A linear continuous-time regular i/s/o system!”! is
defined by the equations

S [ﬁ'«“(t)}

y(t)] =% [m(t)} , (0) =z, t €T,

u(t)
)

on a triple of Hilbert spaces, namely, the input space
U, the state space X and the output space Y, where

(1), 2(t) € X, u(t) € U, y(t) €Y, S= {égg :
X

U
tor with dense domain. A is the generator of a Cjy-
semigroup in X, B : U — X is the control oper-
ator, C : X — Y is the observation operator, and
D : U — Y is the feedthrough operator. The regular
i/s/o system (1) is denoted by Xy = (5;X,U,Y).
The transfer function of the system X, (1) is the
operator-valued function © :C — B(U;Y’) with D(\)
—1

=C&D [()\ B fi’;) B] , A € p(A), where p(A)
denotes the resolvent set of A.

A linear continuous-time regular s/s system!'] is
defined by the equations

dom(S) C { } — Eﬂ is a closed linear opera-

oy — |2 _

Zs/s . x(t) =F |:U)(t):| ’ te I7 J"(O) = Zo, (2)
where the initial (final) state 7o € X, z(t) € X, w(t)
€ W, X is the state space, W is the signal space, X

and W are Hilbert spaces. F' : dom(F') C [X} — X

w
is a closed linear operator with dense domain. Replace
gph(F') with V, the graph form of the regular s/s sys-
tem Xy (2) is

i(t)

ES/S . [L‘(t)

w(t)

where the generating subspace V' is a closed subspace
X

of | X |, and the subspace X consisting of the second
W

elements of V' is dense in X. This regular s/s system is

denoted by Xy, = (V; X, W).
Definition 1'%

e‘/vw(o):x07tez7 (3)

A multi-valued operator 7' : X
— Y is a subspace Vr of B;:] The operator 7' is

closed if Vi is closed. The domain, kernel, range, and
multi-valued part of 7" are given by

dom(7T) = {z € X| B] € Vrforsomey € Y};
0

ker(T) = {z € X| [m] € Vr};

ran(T) ={y € Y| B] € Vp for some z € X };

mul(T) = {y € Y| [g] € Vi)

Vr is the graph of 7" denoted by gph(7'). The in-
verse of T'is T~ : Y — X whose graph is given by
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eb() = (1] € [F]1]Y] < ewbirn). 7

single-valued if mul(7") = 0. Let Z be a closed sub-
space of X, P denotes the projection from X onto Z.
Ty = Puuer)+T is a single-valued operator which is
called the operator part of 7.

Definition 2!'>!  Let W be a Hilbert space.

1) A vector bundle is given by a family of subspaces
9 = {Q(N) }rcdom(n) of W parameterized by a com-
plex parameter A € dom () C C. The subspace Q(\)
of W is called the fiber of 9.

ii) The vector bundle £ is analytic at a point
Ao € dom(9) if there exists a neighborhood O(\)
of )\ and some direct sum decomposition W = U+Y
such that the restriction of 9 to O()\) is the graph of
an analytic B(U;Y')—valued function in O()\).

3 The LQR problem for the regular s/s sys-
tem

The LQR problem for the system Xy (3)
is to minimize the cost function Jp,(zo,w) =

—+oo
jo lw(t)||3-dt. In this section, we first find out the

optimal signal w°" of the LQR problem for the sys-
tem Xy (3). Then, we prove that the solvability of the
LQR problem for the system Yy (3) and that for its
regular i/s/o representations are equivalent. An element
o € X has a finite future cost if there exists a signal
w € L*(R*T; W) such that the system Yy (3) holds.
The set of finite future cost states is denoted by =, .
The system Y (3) is said to satisfy the finite future
cost condition if =, = X. For the existence of an op-
timal signal, the finite future cost condition holds, i.e.,
for every zo € X, there exists a signal w such that

+oo
Jtut (T, w) = fo lw(t)||}ydt < oo. The character-

istic node bAundle pf the system Y (3) is the family of
subspaces € = {&(\) } ec, where

R Zo )\jf()\) — Xy
e ={zN) || ()
w(A) w(A)

and x is the initial state, £ and w are the Laplace trans-

forms of x and w, respectively. The characteristic signal

‘tA)undlerf the system Y (3) is the family of subspaces
§ = {§(\) } rec of the signal space W, where

0
FN =100 1w](€N)N|X]|), reC.
1%

eV} AeC,

The characteristic node bundle & of the system Xy (3)
is analytic in C. Each fiber of an analytic vector bundle
is closed.

The set of the resolvent set of the regular s/s system
Xys is denoted by p(Xys), more details, see [13].

Definition 3  Given an open subset (2 in p(Xys)

NCt.
i) The set of generalized stable future trajectories of

the system Es/s (3) denoted by m+ is all pairs |::Z~()):| ©

Lo
X ] . . X -
2 (ot which satisfy | Z(A) | € €(A) for some
{L (R W) (N

z(\) e X, Ae L.

ii) The set of the stable future behavior of the
system Y (3) denoted by S)Jti is all elements w €

0

L2(R*; W) which satisfy |#(\)| € &(\) for some
w(A)
Tz(\) e X, Ae (.

Remark 1

N CT is connected and nonempty. In this case, Definition 3 is

Throughout this paper assume that p( Xs)

independent of the choice of (2.

Lemma 113! Let Xy = (V; X, W) be a regular
s/s system. The following statements are equivalent:

i) A E p(ES/S).

ii) There exists a continuous linear operator £(\) :

dom(£(\)) C [;[(/] — X with closed domain such
that £(\) = £(\) {wfg\)],where sz((g)\\)) € &)

Lemma?2 91, isclosed.
o

Proof Fixa \ € 2. If [w"

] € M, converges

x o
to [u?] as n — 00, then there exist Z:(\)™ such that

#(A\)™ | € &()\). According to Lemma 1,

n i)
Lo
Itis clear that | £(\)™ | convergesto | £()\) [wa(;(j\)]
e a0y
Zo
. o . xo R
Since E(\) is closed, | £(\) [w(/\)} € ¢(\). Hence,
w(A)

M, is closed when A takes over all 2. QED.

Lemma 3/®'  Let A be a Hilbert space and K a
nonempty closed subspace of H. For hy € H, define
the affine set

K(ho) ={h € H: h = ho+ k for some k € K}.
Then there exists a unique Ay, € K(hg) such that
[minll = min|[A].

heK (ho)
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The vector h;, is characterized by the fact that
K(ho) N ICJ' == hmin-

Theorem 1 Let ¥ be a multi-valued operator
from X to L2(R*; W) with gph(T~1) =9M,. Az €
X has a finite future cost if and only if zy € dom(%).
The optimal future cost of x; is

Jfrfftin(%a w) = ||P[‘Io]i3$0||%2(ﬂ{+;w)-

Proof By Lemma 2, T~! is a closed operator
and mul(T) = M. If zp € dom(%). Let H =
L*(R*; W) and K = 9, in Lemma 3. For wy € H, it
is clear that K(wg) = {Txg|xo € dom(T)}, then there
exists a unique Wyin = Pigor Ty € K(wy) N K-
Hence, Ji" (20, w) = || Pizoj+ Tx0|72 g+ .y If 20 €
X has a finite future cost. xy € dom(%¥) is obvious.

QED.

Remark 2
the finite future cost condition if and only if the LQR problem

By Theorem 1, the system Y (3) satisfies

for the system Xy (3) has a solution.

In the following, we consider the relationship be-
tween the LQR problem for the system Y (3) and that
for its regular i/s/o representations.

Definition 4!!>-131  Let W be a Hilbert space.

i) By an i/o representation of W it means the or-
dered pair (U,Y") of two closed subspaces U and Y of
W such that W = U+Y is an ordered direct sum de-
composition of W.

ii) By the transition matrix @ from (Ui, Y]) to
(Us, Ys) it means the bounded operator @ defined by

o — [911 @12] _ PI},;’Ul PI},;‘Yl
P\[(I;’Ul P\[(Igz‘Yl 7

821 822

where (U, Y1), (Us, Y2) are two i/o representations of
W, ng is the projection to U, along Y5, ng is the
projection to Y5 along Us.

iii) By a regular i/s/o representation of the reg-
ular s/s system J it means a regular i/s/o system
Yo = (8; X,U,Y), where U+Y is a direct sum de-
composition of W and V and S are connected to each
other by

x| |ph,] € aom
V= x| C | X v
xr

z
wl W fand {wa} :S{Pgw}

Lemma 43 Let 2, = (S;X,U,,Y)), i =
1, 2 be two regular i/s/o representations with the transi-

tion matrix @ from (U3, Y7) to (Us, Y2). Then

1x 0 0 O
0 6, 0 6
0 912 0 911

Lemma5 Let X, = (S;X,U,,Y:),i=1,2
be two regular i/s/o representations of the system X
(3). If the system X satisfies the finite future cost
condition, then the system X7, also satisfies the finite
future cost condition.
Uo (t) _ ul(t)
Proof By Lemma 4, [yg(t)] = O {yl (t)} for

some ©. Forany x( € X, there exists a control u; such

that Jy (o, ur) = fo (e ®z, + Ny @)3,)dt <

oo. Then, Jo (g, us) < ||O]|*J1 (w0, u1) < oo.

QED.

Theorem 2  The following statements are equiv-
alent:

i) The regular s/s system X (3) satisfies the finite
future cost condition.

ii) For some regular i/s/o representation of the sys-
tem X satisfies the finite future cost condition.

iii) Every regular i/s/o representation of the system
Xy satisfies the finite future cost condition. QED.

Proof i) = ii). By [13, Theorem 2.2.18], there

exists a regular i/s/o representation Xy, = (5; X, U,
X

Y), where U = Wy, Wy = [0 0 1w] (VN | 0 |)and
w

Y be an arbitrary direct complement to U.
x(t)
Hence, P[}/ w(t)| is a trajectory of the i/s/o rep-
Pyw(t)
resentation Yj, when [w (t) is a trajectory of the sys-

tem

Xys. Since [IU IY] : — W is one to one and

U
Y
onto and || [Iy Iy] [;ﬂ 1?2 < 2| B] ||?, there exists a

m > 0 such that || [y Iy] [;ﬂ || = ml| [;ﬂ ||. For any

xo € X, there exists a w such that fooo lw(t)||3dt <
co. Take u(t) = Piw(t) and y(t) = PYw(t),
then J(xo,u) = fo (@G + ly@®I)dt <

1 o
— | Iyt < oo

ii) < iii). It is obvious by Lemma 5.

i) = 1). Yo = (5;X,U,Y) is a regular i/s/o
representation of the system Yy (3). X = (Vi3
X,W,) denotes the regular s/s system induced
by the i/s/o representation Y, where V3 =

1x 0 0 0
0 0 1x 0

I

gph(S). For any zy € X,
0 [0Iy] 0 {g]
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there exists a control u such that jooo I [Zgﬂ |?dt < co.
Take wy(t) = [Zgg] then J;(xg,w;) < oo. By
1x 0 0
01 0
[13, Proposition 2.2.15], V; = X pY V.
U
00 [

Take w(t) = [Iv Iy]wi(t), then J(zp,w) =

J, Mw®IRedt <2 [~ o) [dt < oc.

QED.

The connection on optimal future costs between the
system Yy (3) and some regular i/s/o representation of
the system Yy (3) is given in the following. p(Xyso)
denotes the resolvent set of the regular i/s/o system
Yisio- Assume that p(Xig,) N CT is connected and
nonempty. {2; is an open subset of p( Xi,) N CT.

Lemma 63! Let Yy, = (S; X,U,Y) be a reg-
ular i/s/o system. Then the following statements are e-
quivalent:

) A€ p(Ziso)
ii) There exists a bounded linear operators &(\) =

AN BON)| | [X X N _
CA()\)@(A)] : [U] — [Y] such that { ()\)} =
() {ﬂf;)] , where SI(A) = (A — A)~1, C(\) =
CA— A

Lemma 7! Let X be a regular s/s system,

then p(Xys) is the union of the resolvent sets p(Xygo)
over all i/s/o representations Y, of the system Y.

Sy & ©»

G

Theorem 3  The following statements are equiv-
alent:

i) The LQR problem for the regular s/s system Yy
(3) has a solution.

ii) The LQR problem for some regular i/s/o repre-
sentation of the system 2 has a solution.

iii) The LQR problem for every regular i/s/o repre-
sentation of the system Y/ has a solution.

Moreover, if the system Xy has a regular i/s/o
representation Y, with a nonempty resolvent set,

then Jii™ (w0, w) = || Pizojr T2l 72+, Whenever

anulén(xoau) = HP[‘Z'O]LK/‘TOHQQ(R#U) ,  where
[L2<R+;Y>]

(Txo)(t) = [Ty Iv] (F'x0)(t).  QED.

Proof It is obvious that i) ii) and iii) are e-
quivalent by Theorem 2 and Remark 2. According
to [7, Definition 3.2], gph(T'~') is the set of all

To X
triples | u | € |L*(R*;U)| which satisfy g(\) =
y L*(R*;Y)

C\— A)'zg + DN)a(N), A € 2. It is clear that

(Txo)(t) = [Iu Iy] (T'xo)(t). Forany A € (2, it
follows from Lemma 6 that

s =180 3015 ][] @

Zo
By (4) and the system Yy (3), € ¢(\). By

Lemma 7, £, C p(Xys) N C*. By Definition 3, the
set of [iﬂ denoted by gph(T~1) is generalized sta-

ble future trajectories of the system Xy, where w(t) =

Lo
Iy Iy] [u(t)} and | #(\) | € &(\) for some &(\)
y(t) W(N)

€ X, A € (4. By Theorem 1, the optimal future cost
Jhi" (o, w) is HP[TO]L‘L’UO||%2(R+;W)- QED.
4 The Kalman filtering problem for the reg-

ular s/s system

In this section, we solve the Kalman filtering prob-
lem for the regular s/s system. For the convenience of
defining generalized stable past trajectories of the regu-
lar s/s system, we consider the regular s/s system (2).

Definition 5 Lete, : t — e, t € R™.

i) The set of generalized stable past trajectories of
the system Xy (2) denoted by 9i_ is the closure of

o [
L2 (R—; W) |
€ \Wqo

where A € {2 and wg € W.

ii) The stable past behavior of the system X (2)
denoted by MY is the closure of

span{ewy € L*(R™; W)|wy € W, X € 2}.

An elements xy € X has a finite past cost if
there exists a signal w € L*(R™; W) with ||zo]|x <

c|lwl| 2 k- ,w) for some ¢ > 0 such that the system X
(2) holds. The Kalman filtering problem for the system
Yys (2) is to minimize the cost function J,s (20, w) =

span{

0
f lw(t)||%dt. A necessary condition to the Kalman

filtering problem for the system Xy (2) is the coercive
past cost condition, i.e., there exists a ¢ > 0 such that
lzollx < cl|w||L2@r-;w) for every generalized stable
past trajectory of the system Y (2).

Theorem 4 Let 3 be a multi-valued operator
from L?(R™; W) to X withgph(B) =N_. Az € X
has a finite past cost if and only if o € ran(3). The
optimal past cost of x is

Tt (@0, ) = 1| P10y B o Fae-am

Proof It is similar to the proof of Theorem 1.
QED.
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Theorem 5 The following statements are equiv-
alent:

i) The regular s/s system Y (2) satisfies the coer-
cive past cost condition.

i) For some regular i/s/o representation with a
nonempty resolvent set of the system Y satisfies the
state coercive past cost condition.

Proof i) = ii). Let Xy, be the regular i/s/o rep-
resentation with a nonempty resolvent set of the system
Yys- Given a A € {2, by Lemma 7, A € p( i) NCT.

1Ix 0 0 O Zo
By gph(F)=| 0 0 1x 0 |gph(S), |PJexwo
0 Iy 0 Iy PYeywy

is a generalized stable past trajectory of the i/s/o repre-

sentation Xy, whenever [ 0 ] is a generalized sta-

ExWo
ble past trajectory of the system Y. Since there exists
ac > 0 such that ||zo||x < c|lexwo||r2®-,w), then we
have

PY
lzollx < Ve { U““’O]

P\[,JeAwo

2®=[Y))
il) = 1). Yy denotes the regular i/s/o representa-

tion with a nonempty resolvent set of the system 3
(2), by [7, Definition 3.8], the closure of the set

Zo
ExUo
eki‘j(/\)uo
is the generalized stable past trajectories of the i/s/o

representation Yig,. By Lemma 7, {2 is a subset of
p(Xys) N Ct. According to Definition 5, the closure

u
of the set span{ LTS)J |lwy = [IU IY] {@(/\O)UJ}

is the generalized stable past trajectories of the system
Xys,» where A € 2y, wo € W. Since there exists a

¢ > 0 such that
€\Ug
ex®(N)ug

o [P0
Hence, [lzo][x < €[ | pu| llllexwollz-w)-
Y

QED.
The following theorem holds by Theorem 5.

span{ A€ 2y, up e U}

[l zollx < ¢

2@ [7])

Theorem 6 The Kalman filtering problem for
the system Xy (2) has a solution if and only if the
Kalman filtering problem for some regular i/s/o repre-
sentation with a nonempty resolvent set of the system
Xys (2) has a solution.

5 Example

In this section, we give two examples to show the
application of Theorem 2 and Theorem 3.

Example 1 Let X, W be Hilbert spaces. The
second order differential equation with signal w(t) €
W is given by

() + 2(t) = T2(t) = Taw(?),

w(t) = =22(t) + (1),
where T € L(X), T; : dom(Ty) C W — Wisa
closed operator with closed range and dense domain,
and z(t), 2(t), 2(t) € X. Take the state to be x(t) :=

R

] . This gives the system equation

s L. s
where 2(t) ¢ [ﬁ and w(?) € dom(Ty).

Take U = ran(7}) and Y as an arbitrary closed
subspace of W such that W = ran(7})+Y, then there

exists a regular i/s/o system with A = [3 _I I] , B=

1

tion 4 iii), the regular i/s/o system is a regular i/s/o rep-
resentation of the regular s/s system (5).

LetT =T, =1,then A = [(1) _11],3: {0]7

[0} , C = [—2[ I] and D = —1I in (1). By Defini-

1
C = [—2 1} and D = —1. Inthiscase, U = W
and Y = {0}. The control Riccati equation of the

regular i/s/o system is ) [8 ﬂ Q-Q {8 _21} _

0 0 4
b A=

. _[V1I0+1 2 -
solution ) = [ 5 JIo 1| For any zy =

zgg;] € {?} the optimal cost of the regular i/s/o
system is (2o, Qxo) . The optimal costs of the regular
i/s/o system and the system (5) are the same. Hence,
the optimal cost of the regular s/s system (5) is (\/ﬁ +

1)[2(0)[2 + 4Re (2(0), £(0)) + (VIO — D)|(0)[2.

_12}. We get a nonnegative

Example 2 Let Yy, = (V;R?*R?) be a
regular s/s system with its signal bundle §()\) =
1
1
ran | | A+ 2 , then there exists a regu-
1
A+3
lar i/s/o representation Xy, = ( A B R2ULY)
1/8/0 C D ? ) 9
1
A A4 2 0
with the transfer function ®(\) = + 1
0 R
A+3
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-2 0
, B =1,
-3

C = I, D = 0. The control Riccati equation of the

and W = U+Y, where A =

regular i/s/o representation X, is @ [2 0 } +

0 -3
-2 0 .
0 3 Q = @Q* — I. We get a nonnegative solu-
5—2 0 T
tion Q = \[ . For any zy = o

0 v10 -3 ZTo2
€ R?, the optimal input and the optimal output are
— (V5 —2)e oz,

uoPt(t) = and y°Pt(t) =
Q —(v/10 — 3)e~ V10 g, (
e Vozy . .
/ot , respectively. Hence, the optimal future
e ZTo2

cost of the regular i/s/o representation Xy, is ( V5 —
2)x2, + (/10 — 3)x2,. Then the regular i/s/o repre-
sentation Y}, satisfies the finite future cost condition.
By Theorem 2, the regular s/s system XYy satisfies the
finite future cost condition. By Remark 2 and Theorem
3, the LQR problem for the regular s/s system XY has
a solution.

By Lemma 7 and the eigenvalues of A are 2 and 3,

p(Ss) = p(A) # {@}. Then
wr(t) = [Tv Iy “z O _
yri(t)
(3 —VB)e Vot
(4 - \/m)e_mtxw
Therefore, the optimal future cost of the regular s/s sys-

1
tem Ly, is 1—0[(14\/5 —30)z2, + (13v/10 — 40)z2,].

6 Conclusion

This paper has dealt with the optimal control prob-
lems for infinite-dimensional continuous-time regular
s/s systems. The optimal control problems for regular
s/s systems are solved. It is shown that the solvability
of the optimal control problems for the regular s/s sys-

tem and that for some regular i/s/o representations of
the regular s/s system are equivalent.
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