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Smart variable structure control of complex network with
time-varying inner-coupling matrix to its equilibrium
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Abstract: The novelty in this paper lies in the establishment of smart controller and suitable multiple sliding mode
manifolds according to node chaos dynamics of complex networks with time-varying inner-coupling configuration. The
smart variable structure control for asymptotical synchronization to its equilibrium is developed based on the ergodicity
characteristic of chaos nodes, without the involvement of linearization and other ideal assumptions. The scheme enables the
behavior of complex networks to approach the desired manifolds, and eventually realizes the asymptotical synchronization.
Finally, the simulations based on the Lorenz chaos complex network under three topological configurations further verify
the robustness and effectiveness of the proposed scheme.
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摘要:当前同步控制问题是复杂网络研究的热点之一.本文针对具有时变内耦合结构的复杂网络,利用结点混
沌动态的各态历经性,通过构造合适的滑模面,提出了smart变结构控制器的设计策略.该策略可使复杂网络动态
行为趋向于所构造的全局吸引区域, 从而最终实现复杂网络在平衡态的渐近同步. 最后, 基于3种不同拓扑结构
的Lorenz结点动态的复杂网络进行仿真实验表明该控制方案具有较好的鲁棒性和有效性.
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1 Introduction
To gain an insight into the mechanism of complex

network operation and even control and prediction of
network behavior, complex network systems have been
extensively studied recently. Increasing research atten-
tion has been drawn to the control and analysis of com-
plex network systems. Complex network systems are
ubiquitous, including many natural or man-made sys-
tems, such as social network systems, neural network
systems, the Internet, logistic network systems, electri-
cal power grids, satellite network guidance systems, and
so on. In general, network systems can be represented
by means of graphs in mathematical terms where many

nodes are inter-connected by directed or undirected
edges or links with different topological structures. Cur-
rently, main complex networks models are regular net-
works model, random network model, small-world net-
work model, and scale free network model[1∼8].

Collective motions of complex networks have been
the subject of considerable interest within the science
and technology communities over last decade. Espe-
cially, one of the interesting and significant phenomena
in complex networks is the synchronization. Recently,
synchronization research of complex networks has been
reported in the literature[9∼21]. The study of the syn-
chronization in a scale-free dynamical network has been
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made, and a positive threshold of coupling strength
of scale-free networks has been obtained which can
guarantee the synchronization of the network systems
in [9]. For the characteristics of small-world dynam-
ical networks, some important concepts such as syn-
chronization matrix, associated feedback system, sen-
sitive and robust edge, have been initially given, and ro-
bustness analysis of networks synchronization has been
made in [10]. Introducing the coupling delays into
complex networks for both continuous-time case and
discrete-time case, the synchronization conditions for
delay-dependent and delay-independent have been de-
rived in [11], respectively. Several criteria for both
robust local and robust global impulsive synchroniza-
tion for uncertain dynamical networks have been estab-
lished using the impulsive control systems theory[14].
Based on hybrid control strategy, complex networks
of directed time-varying network and undirected time-
invariant network with constant edge weights have been
studied, and the sufficient conditions for the global ex-
ponential and asymptotical synchronization have been
developed in [15]. Especially, in [16], a more uni-
fied criterion of synchronization for complex network
with time-invariant, time-varying and switching config-
uration has been proposed by using the matrix mea-
sure of complex matrices, and an M-synchronization
conception is provided firstly for the complex network
with time-varying and switching configurations. In
[17], the master stability function has been established
to decide whether or not any linear coupling arrange-
ment produces stable synchronization dynamics, while
variations of desynchronization bifurcation modes have
been revealed with change of coupling scheme and cou-
pling strength. Based on master stability function ra-
tionale, synchronizablity and synchronization enhance-
ment of some complex networks have been discussed
using eigenratio of out-coupling matrix by rewiring
links and/or assigning proper weights for the existing
links[18∼21]. Though, the main methodology of syn-
chronization of complex networks is by means of lin-
earization around the desired equilibrium in these liter-
atures.

The main contribution in this paper is that a novel
smart variable structure controller channeling into the
corresponding chaos nodes for the synchronization of
chaos dynamic complex network systems is initially de-
veloped by employing pinning control scheme. Variable

structure control is a kind of control strategy that ex-
hibits discontinuity on certain predefined manifolds[22].
Yu has initiated the idea of the smart variable structure
control in [23,24]. The main advantages of such control
mechanism are robustness and easily realization. On the
one hand, variable structure control is robust to certain
system parameter variations and external disturbance,
which is to be verified by employing time-varying in-
ner matrix in this note. On the other hand, the con-
troller is designed based on the desired sliding mode
manifolds. For a general chaos node subsystem of com-
plex networks, multiple sliding mode manifolds are to
be established to generate a dimension attraction region
which includes the intersection of multiple manifolds.
For the sensitive characteristics of chaos systems, we
propose a new smart sliding mode control with limited
small control magnitude. Besides, motivated by pin-
ning control method introduced in [8,9], smart variable
structure controllers pinning to multiple nodes are also
to be discussed and tested in the simulation section in
this paper.

2 Model description and preliminaries
In general, complex network system consisted of

identically linearly and diffusively coupled nodes is
considered in most works, with an individual node dy-
namics as follows

ẋi(t) = f(xi(t)) + c
N∑

j=1

aijΓ (t)xj(t), (1)

where xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn is
the state of the ith node, f(·) : Rn → Rn, c is the
coupling strength, Γ (t) = (Γij(t)) ∈ Rn×n is a con-
stant 0-1 inner-coupling matrix linking coupled vari-
ables with time, A = (aij)N×N is the out-coupling
configuration matrix of the network. As far as out-
coupling matrix, it has general form with aij = aji = 1
if there is a connection node i and node j, and aij =
aji = 0 otherwise.

Remark 1 The variant forms of inner-coupling
matrix Γ (t) and out-coupling matrix A are discussed
here. The time-invariant form has been usually stud-
ied, that is, Γ (t) ≡ Γ . In practice, inner-coupling ma-
trix and out-coupling matrix often alter for many spe-
cial reasons, so it is often time-varying, such as the as-
sumption of the periodic switching[16]. The influence
of time-varying out-coupling matrix will be studied in
forthcoming publications.
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Simply speaking, A is symmetric for an undirected
network while A becomes asymmetric if the network
is a directed graph. Here assume A is an irreducible
symmetric matrix, which means the complex network
is connected without isolated clusters. And, the diago-

nal elements of matrix A are defined as
N∑

j=1,j 6=i

aij =

N∑
j=1,j 6=i

aji = −aii, i = 1, 2, · · · , N .

Defintion 1 Time-varying inner-coupling matrix
sequence IMSΓ is defined as

IMSΓ : {(t0, Γ0), · · · , (tk, Γk), · · ·}, (2)

where tkis a switching time instance, k = 0, 1, · · · .
For notation simplicity, represent the network sys-

tem (1) in the compact form

ẋ(t) = F (x) + c(A(t)⊗ Γ )x(t), (3)

where x(t) =
(
xT

1
(t), xT

2
(t), · · · , xT

N(t)
)
, F (x) =

(fT(x1), fT(x2), · · · , fT(xN))T, ⊗ denotes the ma-
trix Kronecker product operator.

Defintion 2 The complex network system (3) is
called globally asymptotic synchronization to its equi-
librium, if there exists the control law u(t) which acti-
vates the system (3)

ẋ(t) = F (x, u(t)) + c(A(t)⊗ Γ )x(t). (4)

such that

x1(t) = x2(t) = · · · = xN(t) = s as t →∞,

where s is an equilibrium.

Remark 2 The controllers u(t) in (4) might be
pinned for partial nodes in [9], even for only one node
discussed in [8]. Here, employing the idea introduced
in [7], we will apply a novel smart variable structure
control scheme for complex network to observe the
asymptotical synchronization behavior by channeling
controllers into chaos node dynamics.

Further, denote the state error of ith node as ei(t) =
xi(t)− s(t). Then the error dynamics is

ėi =f(s(t)+ei)−f(s(t))+c
N∑

j=1

aijΓ (t)ej(t). (5)

Then the global form of error dynamics is

ė(t)=F (s(t)+e(t))−F (s(t))+c(A(t)⊗Γ )e(t), (6)

where e(t) = (eT
1 (t), eT

2 (t) · · · , eT
N(t))T.

Remark 3 The synchronization analysis of the

complex network is most based on the representation
through linearization[7∼21]

ėi(t) = Jfei(t) + c
N∑

j=1

aijΓej(t),

and the utilization of the non-positive property of eigen-
values of out-coupling matrix A, where Jf represents
Jocobian matrix of f(x(t)) at xi(t) = s(t). The lin-
earization for node chaos dynamics is not needed in this
note.

3 Smart variable structure control
Employing the channel idea in [7], we apply it to the

control of complex networks with time-varying inner-
coupling case. The design of variable structure control
strategy involves selecting a switching manifold and de-
signing a switching control strategy, which guarantee
the realization that the switching manifold is reached
and maintained. For the sensitive characteristic of chaos
systems, the gain of controller can not be a very large
magnitude. Therefore, a novel smart sliding mode con-
troller for chaos complex network systems is proposed
for the limitation of gain value of sliding mode con-
troller here.

The case to control chaos dynamical systems via
complex network to a fixed equilibrium is to investi-
gated. The periodic orbit case for synchronization be-
havior will be discussed in forthcoming papers. Con-
sider a general chaotic dynamic in (1) represented as

ẋi(t) = f(xi(t)). (7)

The equilibrium set of (7) is determined as

Ms = {xi(t) ∈ Rn|f(xi(t)) = 0}. (8)

For the chaos property mainly depends on the nonlinear
parts of the chaos system, (7) is represented with two
parts as follows




ẋi1(t) = l1(xi(t)) + ζ1(xi(t)),
...

ẋip(t) = lp(xi(t)) + ζp(xi(t)),
ẋi(p+1)(t) = lp+1(xi(t)),

...
ẋin(t) = ln(xi(t)),

(9)

where lk(·) is the linear part of the controlled chaos
systems, ζk(·) is the nonlinear part of the same one,
k = 1, 2, · · · , n. Assume there exist nonlinear dy-
namic terms in the p right parts of the system (1). With-
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out loss of generality, suppose they all lie in the preced-
ing p subsystems, which is represented in (9).

Similarly in [7], attach p controller terms us
ik(t)

into these nonlinear terms of ζk(·). Then we have



ẋi1(t) = l1(xi(t)) + ζ1(xi(t), us
i1(t)),

...
ẋip(t) = lp(xi(t)) + ζp(xi(t), us

ip(t)),
ẋi(p+1)(t) = lp+1(xi(t)),

...
ẋin(t) = ln(xi(t)).

(10)

The next task includes two aspects. One is to estab-
lish manifolds, and the other is to design smart vari-
able structure controllers. According to (8), suppose a
chaotic equilibrium or attractor xeq ∈ Ms.

To stabilize the chaos node, define the set of the p

switching manifolds as follows

Si ={
(xi1, · · · , xin) ∈ Rn

∣∣∣∣∣
sik =xik(t)−xeq

ik =0,

k=1, 2, · · · , p

}
.

(11)

From (11), it is apparent that the chaotic attractor lies
in the intersect part of the p multiple manifolds, that is,
xeq ∈ Si. For each manifold sik = 0, considering the
influence of the coupling nodes of complex network (5),
then (9) is represented as

ẋi(t) = ψik(·) + gik(·, us
p(t)) + Ξi, (12)

where

ψik(·) =
k−1∑
j=1

(lj(·)+ζj(·)) bj +
p∑

j=k+1

(lj(·)+

ζj(·))bj +
n∑

j=p+1

lj(·)bj,

gik(·, us
ik) = [lk(xi(t)) + ζk(xi(t), us

ik(t))]bk,

Ξi = c
N∑

j=1

aijΓ (t)ej(t).

And b1, b2, · · · , bn are assumed as the unit vectors in
the directions of the n dimension space bases. Ξi is sup-
posed as the disturbance term from the coupling nodes
of the chaos complex network system. Then obtain the
equivalent control

ueq
i

(t)=̂ arg
us

ik

{ṡik = lk(xi)+ζk(xi, u
s
k)+Ξik =0},

(13)

where Ξik is the kth row entry of the known term Ξi,

that is, Ξik = c
N∑

j=1

aijΓk(t)ej(t), Γk(t) is the k row

vector.

Design the variable structure controller as follows

us
ik =

{
u+, sik > 0,

u−, sik < 0.
(14)

Here: restrict the difference and magnitudes of upper

control force u+ and the down control force u− for the

sensitive property of chaos dynamic system. Accord-

ing to the necessary and sufficient condition of sliding

mode in [22], it requires the following conditions

lim
s→0+

〈
ρik, ψik(·) + gik(·, u+) + Ξi

〉
< 0

and

lim
s→0−

〈
ρik, ψik(·) + gik(·, u+) + Ξi

〉
> 0,

where ρikis a norm vector of manifold sik = 0, 〈·, ·〉 is

an inner product operator. Hence, the attraction region

towards the sliding region can be defined as

Ωik = Ω+
ik ∪Ω−

ik, (15)

where

Ω+
ik =

{
xi(t) ∈ Rn

∣∣∣∣∣
lk + ζk + Ξik < 0,

xik(t)− xeq
ik > 0

}
,

and

Ω−
ik =

{
xi(t) ∈ Rn

∣∣∣∣∣
lk + ζk + Ξik > 0,

xik(t)− xeq
ik < 0

}
.

Then the global attraction region is obtained as

Ωi = ∪Ωik. (16)

With multiple sliding mode manifolds, it can easily en-

sure that the system state will enter the intersection (11)

while the system state falls into the global attraction re-

gion (16). Moreover, when the partial states approach

to their corresponding parts of the unstable equilibrium

xik(t) = xeq
ik , k = 1, 2, · · · , p,

the rest parts will reach fast to their corresponding ones

of the equilibrium as well under suitable conditions[23].

Similarly in [7], we have the following result.

Theorem 1 Employing the smart variable struc-
ture controller (13) and (14), the complex network (1) is
globally asymptotic synchronization to its equilibrium,
when the system state enters the attraction region (16)
if the following autonomous linear subsystem
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ẋi(p+1)(t) = lp+1(xi(t)),
...

ẋin(t) = ln(xi(t))

(17)

is asymptotical stable to the manifolds Si, i = 1,

2, · · · , N .

Remark 4 Motivated by the idea in [8,9], the
partial pinning smart variable structure control for the
global the synchronization of general complex network
can be designed, which mainly depends upon the cou-
pling strength and topological property of complex net-
works. The simulation for partial nodes pinning vari-
able structure controllers is to provided in next section.
But the synchronization analysis of pinning partially
sliding mode controllers is still an open problem.

4 Simulation tests
In this section, the Lorenz chaos via complex net-

work is considered. The complex network based on ER
random model, star model and ring model here are es-
tablished with 50 nodes, respectively.

The Lorenz chaos subsystem of the ith node is



ẋi1 = σ(xi2 − xi1),
ẋi2 = rxi1 − xi2 − xi1xi3,

ẋi3 = xi1xi2 − bxi3,

(18)

where σ is called Prandtl number and assumed as σ >

1, and r > 1. There are the three equilibriums which
are the origin, p = [

√
b(r − 1)

√
b(r − 1) r − 1]T,

and q = [−
√

b(r − 1) −
√

b(r − 1) r − 1]T. The
Lorenz system is symmetrical with respect to the xi3

axis. Denote r∗ =
σ(σ + b + 3)

σ − b− 1
. It is known that p

and q are unstable and chaos occurs if r > r∗.

Let σ = 10, r = 28, and b = 8/3, which means
p and q are unstable equilibria, and chaos occurs at the
same time. A typical behavior of a Lorenz chaos system
is the butterfly effect shown in Fig.1.

Fig. 1 Lorenz chaos

Now the objective here is to make the synchroniza-

tion behavior of complex network approach to the un-
stable equilibrium q. The initial state of the complex
network is set with random bounded real for the bound-
ary of the chaos states. Let c = 2, and the out-coupling

matrix satisfies
N∑

j=1,j 6=i

aij = −aii. The IMSΓ is con-

structed as follows

IMSΓ : {(0, Γ1), (5, Γ2), (10, Γ3)} , (19)

where Γ1 =




1 0 0
0 1 0
0 0 1


, Γ2 =




0 0 0
0 1 0
0 0 0


, Γ3 =




0 0 0
0 0 0
0 0 1


, respectively.

Employing the smart variable structure control
scheme, we may channel an controller for correspond-
ing chaos node

ẋi2 = rxi1 − xi2 − xi1xi3u
s
i .

The smart variable structure controller is designed as

us
i =

{
1.55, si > 0,

0.55, si < 0.

and the sliding manifolds are designed like this

si = {(x(1), x(2), x(3))|x(2)− py = 0}.

As shown above, Fig.2 exhibits synchronization
behavior of the complex network by employing the
all nodes pinning smart variable structure controllers,
which fast approaches the unstable equilibrium. While
partial nodes are pinned smart variable structure con-
trollers, without loss of generality, i = 1, · · · , 5,
the synchronization behaviors eventually approach the
desired synchronization equilibrium shown in Fig.3,
which experiences more time.

Fig. 2 Trajectories with the all pinning controllers
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Fig. 3 Trajectories with the partial pinning controllers

In addition, consider two special complex networks
such as star and ring topological configure with time-
varying inner-coupled matrices IMSΓ . The asymptoti-
cal behaviors under the corresponding complex network
are shown in Fig.4 and Fig.5, respectively.

Fig. 4 Trajectories with ring topology configure

Fig. 5 Trajectories with star topology configure

From the above tests, it is explicitly found that the
control scheme proposed here has good robust perfor-
mance in time-varying inner-coupling situations even
with very small control magnitude.

5 Conclusions
In this note, a smart variable structure control strat-

egy was proposed for the synchronization to an unstable

equilibrium of chaos complex network. To our knowl-
edge, it is a novel scheme that smart variable structure
control was explored in synchronization analysis and
control for complex networks. Compared with other
synchronization analyses and control methods, the ad-
vantages of the smart control scheme are not only ro-
bust to time-varying complex network configuration,
but also non-involved in local linearization around an
unstable equilibrium or attractor. Further research is un-
dertaken to investigate synchronization control for a pe-
riodic orbit case by employing the idea proposed here.
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