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Synchronization of multi-chaotic systems
via ring impulsive control
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Abstract: The ring control approach to multi-chaotic systems synchronization based on the impulsive control theory is
presented in this article. The operator differential mid-value theorem and the matrix operations are applied to them. With
the help of Gronwall Inequality, the controller is thus obtained according to the jumped impulsive response. The global
synchronization of multi-chaotic systems via ring impulsive control is derived. Finally, the simulation results of a typical
time-delay chaotic Hopfield neural networks and chaotic Lorenz system demonstrate that the proposed approach is effective
and feasible, and has strong robust performance.
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摘要:针对多个混沌系统同步问题,提出了一种基于脉冲控制理论环状控制方法. 利用微分算子中值定理和矩阵
运算,通过Gronwall不等式和跳跃的脉冲响应设计控制器,从而推导出了环状脉冲控制下多个混沌系统全局同步.
典型的时滞混沌Hopfield神经网络和Lorenz混沌系统仿真结果表明,该方法有效、可靠,且具有强鲁棒性.
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1 Introduction
Since its introduction by Pecora and Carrol[1] in

1990, chaos synchronization of coupled systems is of
great practical significance and has aroused great inter-
est in recent years[2∼6]. However, most synchroniza-
tion is realized between two chaotic systems. The prob-
lem for the chaotic synchronization control is proved
to have many applications[7∼9]. In this paper, the syn-
chronization problem for multi-chaotic systems will be
considered by designing linear ring impulsive error con-
trol terms and using impulsive control theory with the
help of the operator differential mid-value theorem and
Gronwall Inequality.

This paper is organized as follows. Some prelimi-
naries are given in Section 2. Section 3 deals with multi-
chaos synchronization. The theoretical results and sim-
ulations are applied to typical time-delay chaotic Hop-

field neural networks and Lorenz system. Finally, some
concluding remarks are given in Section 4.

2 Preliminaries
First, we consider a class of recurrently delayed sys-

tem, which is described by the following set of differ-
ential equations with delays[10∼15]:

ẋi(t) =

−cixi(t) +
n∑

j=1

aijfj(xj(t)) +

n∑
j=1

bijfj(xj(t− τij)) + ui, i = 1, 2, · · · , n, (1)

or, in a compact form:

ẋ(t)=−Cx(t)+Af(x(t))+Bf(x(t−τ))+U, (2)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the
state vector of the neural networks, C = diag{c1, c2,

· · · , cn} is a diagonal matrix, A = (aij)n×n is a
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weight matrix, B = (bij)n×n is the delay weight ma-
trix, U = diag{u1, u2, · · · , un}T ∈ Rn is the input
vector function, τ(r) = (τij) with the delays τij >

0(i, j = 1, 2, · · · , n), and f(x(t)) = (f1(x1(t)),
f2(x2(t)), · · · , fn(xn(t)))T. The initial conditions of
(1) are given by xi(t) = φi(t) ∈ C([−ρ, 0], R) with
ρ = max

16i,j6n
τij , C([−ρ, 0], R) denotes the set of all

continuous functions from [−ρ, 0] to R.

The system with linear ring impulsive control terms
is 




ẏ1(t) = −Cy1(t) + Af(y1(t))+
Bf(y1(t− τ)) + U,

t 6= tk, k = 1, 2, 3, · · · ,

∆y1(t) = B1k(y2(t)− y1(t)), t = tk,

y1(t+0 ) = y10,

ẏ2(t) = −Cy2(t) + Af(y2(t))+
Bf(y2(t− τ)) + U,

t 6= tk, k = 1, 2, 3, · · · ,

∆y2(t) = B2k(y3(t)− y2(t)), t = tk,

y2(t+0 ) = y20,
...

ẏn(t) = −Cyn(t) + Af(yn(t))+
Bf(yn(t− τ)) + U,

t 6= tk, k = 1, 2, 3, · · · ,

∆yn(t) = B1k(y1(t)− yn(t)), t = tk,

yn(t+0 ) = yn0,

(3)

where yi = (yi1, yi2, · · · , yin)T ∈ Rn is the state vec-
tor of node i, f : Rn → Rn is a nonlinear vector func-
tion and f(0) = 0.



ė1(t) = −Ce1(t) + A(f(y2(t))− f(y1(t)))+
B(f(y2(t− τ))− f(y1(t− τ))),
t 6= tk, k = 1, 2, 3, · · · ,

∆e1(t) = B2ke2(t)−B1ke1(t), t = tk,

e1(t+0 ) = e10,

ė2(t) = −Ce2(t) + A(f(y3(t))− f(y2(t)))+
B(f(y3(t− τ))− f(y2(t− τ))),
t 6= tk, k = 1, 2, 3, · · · ,

∆e2(t) = B3ke3(t)−B2ke2(t), t = tk,

e2(t+0 ) = e20,
...

ėn(t) = −Cen(t) + A(f(y1(t))− f(yn(t)))+
B(f(y1(t− τ))− f(yn(t− τ))),
t 6= tk, k = 1, 2, 3, · · · ,

∆en(t) = B1ke1(t)−Bnken(t), t = tk,

en(t+0 ) = en0.

Where e1 = y2 − y1, e2 = y3 − y2, · · · , en−1 =
yn − yn−1, en = y1 − yn.

Using the operator differential mid-value
theorem[16,17], we have




ė1(t) =
−Ce1(t)+

A
w 1

0

∂f(βy2(t)+(1−β)y1(t))
∂y1(t)

dβ · e1(t)+

B
w 1

0

∂f(βy2(t−τ)+(1−β)y1(t−τ))
∂y1(t−τ)

dβ ·
e1(t− τ), t 6= tk, k = 1, 2, 3, · · · ,

∆e1(t) = B2ke2(t)−B1ke1(t), t = tk,

e1(t+0 ) = e10,

ė2(t) =
−Ce2(t)+

A
w 1

0

∂f(βy3(t)+(1−β)y2(t))
∂y2(t)

dβ · e2(t)+

B
w 1

0

∂f(βy3(t−τ)+(1−β)y2(t−τ))
∂y2(t−τ)

dβ ·
e2(t− τ), t 6= tk, k = 1, 2, 3, · · · ,

∆e2(t) = B3ke3(t)−B2ke2(t), t = tk,

e2(t+0 ) = e20,
...

ėn(t) =
−Cen(t)+

A
w 1

0

∂f(βy1(t)+(1−β)yn(t))
∂yn(t)

dβ · en(t)+

B
w 1

0

∂f(βy1(t−τ)+(1−β)yn(t−τ))
∂yn(t−τ)

dβ ·
en(t− τ), t 6= tk, k = 1, 2, 3, · · · ,

∆en(t) = B1ke1(t)−Bnken(t), t = tk,

en(t+0 ) = en0,

(4)

where
∂f(βy2(t)+(1−β)y1(t))

∂y1(t)
is the value which

∂f(x(t))
∂x(t)

is on βy2(t) + (1− β)y1(t).

Note

P1(t, β) =
∂f(βy2(t)+(1−β)y1(t))

∂y1(t)
,

P2(t, β) =
∂f(βy3(t) + (1− β)y2(t))

∂y2(t)
,

...

Pn(t, β) =
∂f(βy1(t) + (1− β)yn(t))

∂yn(t)
,

Q1(t, β) =
∂f(βy2(t− τ) + (1− β)y1(t− τ))

∂y1(t− τ)
,
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Q2(t, β) =
∂f(βy3(t− τ) + (1− β)y2(t− τ))

∂y2(t− τ)
,

...

Qn(t, β) =
∂f(βy1(t− τ) + (1− β)yn(t− τ))

∂yn(t− τ)
,

then the error system (4) is rewritten:



ė1(t)=
w 1

0
(−C+AP1(t, β))dβ · e1(t)+

w 1

0
BQ1(t, β)dβ · e1(t− τ),

t 6= tk, k = 1, 2, 3, · · · ,

∆e1(t) = B2ke2(t)−B1ke1(t), t = tk,

e1(t+0 ) = e10,
...

ėn(t) =
w 1

0
(−C + APn(t, β))dβ · en(t)+

w 1

0
BQn(t, β)dβ · en(t− τ),

t 6= tk, k = 1, 2, 3, · · · ,

∆en(t) = B1ke1(t)−Bnken(t), t = tk,

en(t+0 ) = en0.

(5)

Let e(t) = (eT
1 (t), eT

2 (t), · · · , eT
n(t))T, and differenti-

ating ‖e(t)‖2 with respect to time along the solution of
(5), we have the following result:

d‖e(t)‖2

dt
=

n∑
i=1

eT
i (t)

w 1

0
(−C + APi(t, β))dβ · ei(t) +

n∑
i=1

eT
i (t)

w 1

0
BQi(t, β)dβ · ei(t− τ) +

n∑
i=1

eT
i (t)

w 1

0
(−C + APi(t, β))Tdβ · ei(t) +

n∑
i=1

eT
i (t− τ)

w 1

0
(BQi(t, β))Tdβ · ei(t) =

w 1

0
(eT(t) eT(t−τ))P (t, β)(eT(t) eT(t−τ))Tdβ,

where
P (t, β) = diag{D1(t, β), · · · , Dn(t, β)},

Di(t, β) =

(
Mi(t, β) BQi(t, β)

QT
i (t, β)BT 0

)
,

Mi(t, β)=−C+APi(t, β)−CT+(APi(t, β))T.

Let λ(t, β) be the largest eigenvalue of P (t, β), and
there is a positive constant α such that λ(t, β) 6 α for
any t > t0, then the conclusion is

d‖e(t)‖2

dt
6
w 1

0

(
e(t)

e(t− τ)

)T

α

(
e(t)

e(t− τ)

)
dβ =

α‖e(t)‖2 + α‖e(t− τ)‖2.

For any t ∈ (tk−1, tk],

‖e(t)‖2 6 ‖e(t+k−1)‖2exp{α(t− tk−1)}+
w t

tk−1

exp{α(t− s)}α‖e(s− τ)‖2ds,

then

exp{−α(t− tk−1)}‖e(t)‖2 6

‖e(t+k−1)‖2+
w t

tk−1

exp{−α(s−tk−1)}α‖e(s−τ)‖2ds=

‖e(t+k−1)‖2+
w t−τ

tk−1−τ
exp{−α(s+τ−tk−1)}α‖e(s)‖2ds.

Using the Gronwall Inequality[18], we obtain



exp{−α(t− tk−1)}‖e(t)‖2 6
‖e(t+k−1)‖2exp{αexp{−ατ}(t− tk−1)},
‖e(t)‖2 6
‖e(t+k−1)‖2exp{α(1+exp{−ατ})(t−tk−1)},
t ∈ (tk−1, tk], k = 1, 2, · · · .

(6)

3 Impulsive synchronization
Theorem 1 Suppose 0 < ωk = tk − tk−1 <

∞(k = 1, 2, · · · ), γk is the largest eigenvalue of
(I + Bk)T(I + Bk), the impulsive synchronization of
Eq.(3) is achieved if there exists a constant θ > 1 such
that

ln(θγk)+α(1+exp{−ατ})ωk 60, k=1, 2, · · · ,

(7)

where

Bk =




−B1k B2k 0 · · · 0
0 −B2k B3k · · · 0
...

...
...

...
B1k 0 0 · · · −Bnk


 .

Proof we have known the conclusion (6). When
t = tk, we obtain

‖e(t+k )‖2 = eT(tk)(I + Bk)T(I + Bk)e(tk) 6
γk‖e(tk)‖2. (8)

Considering the conditions (6)(7) and (8), we have

‖e(t)‖2 6
γ1γ2 · · · γk‖e(t+0 )‖2exp{µ(t− t0)} 6
1
θk
‖e(t+0 )‖2exp{µ(t− tk)}, t ∈ (tk, tk+1],

where µ = α(1 + exp{−ατ}). When t → ∞,
‖e(t)‖2 → 0, say ‖e(t)‖ → 0, and makes system (3)
synchronization.
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When B = 0 in system (2), system (5) becomes the

following:



ė1(t) =
w 1

0
(−C + AP1(t, β))dβ · e1(t),

t 6= tk, k = 1, 2, 3, · · · ,

∆e1(t) = B2ke2(t)−B1ke1(t), t = tk,

e1(t+0 ) = e10,

ė2(t) =
w 1

0
(−C + AP2(t, β))dβ · e2(t),

t 6= tk, k = 1, 2, 3, · · · ,

∆e2(t) = B3ke3(t)−B2ke2(t), t = tk,

e2(t+0 ) = e20,
...

ėn(t) =
w 1

0
(−C + APn(t, β))dβ · en(t),

t 6= tk, k = 1, 2, 3, · · · ,

∆en(t) = B1ke1(t)−Bnken(t), t = tk,

en(t+0 ) = en0.

(9)

So the following Corollary is obtained.

Corollary 1 Suppose 0 < ωk = tk − tk−1 <

∞ (k = 1, 2, · · · ), γk is the largest eigenvalue of

(I + Bk)T(I + Bk), λ(t, β) is the largest eigenvalue

of P (t, β), and λ(t, β) 6 α, where α is a positive

constant, the impulsive synchronization of Eq.(9) is

achieved if there exists a constant θ > 1 such that

ln(θγk) + α ωk 6 0, k = 1, 2, · · · . (10)

Example 1 Consider a typical delayed Hopfield

neural networks[12,14] with two neurons:

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t− τ)),(11)

where

x(t) = (x1(t), x2(t))T,

f(x(t)) = (tanh(x1(t)), tanh(x2(t)))T,

τ = (1) and C =

(
1 0
0 1

)
,

A =

(
2.0 −0.1

−5.0 3.0

)
, B =

(
−1.5 −0.1
−0.2 −2.5

)
.

It should be noted that the network is actually a

chaotic delayed Hopfield neural network.

In system (3), suppose each yi(i = 1, 2, · · · , n) is
x(t) as the system (11) stated. Choose

ωk = tk − tk−1 = 0.005,

B1k = diag{−(1− 0.58)2,−(1− 0.6)2}T,

B2k = diag{−(1− 0.8),−(1− 0.8)}T,

B3k = diag{−(1− 0.75)2,−(1− 0.56)}T,

B4k = diag{−(1− 0.58),−(1− 0.6)}T,

B5k = diag{−(1− 0.65),−(1− 0.48)}T,

B6k = diag{−(1− 0.57),−(1− 0.65)}T,

B7k = diag{−(1− 0.8),−(1− 0.6)}T,

B8k = diag{−(1− 0.7),−(1− 0.7)}T,

B9k = B10k = B11k =

B12k = B13k = B14k =

diag{−(1− 0.8),−(1− 0.8)}T,

B15k = B16k = B17k = B18k = B19k =

B20k = B21k = B22k = B23k =

diag{−(1− 0.6),−(1− 0.6)}T,

r1 = (34, 4.3, 17, 12.8, 27, 49, 1.2, 2.4, 0.8,

9.6, 11, 16, 21, 33, 8, 3)T,

r2 = (−12,−11,−12, 28, 27, 26, 15.4,

9, 11, 0.1, 0.3, 0.6)T,

r3 = (2,−1,−2, 8, 7, 6, 15.4, 9, 11, 0.1, 0.3, 0.6,

21, 17, 19,−1,−2, 8)T,

respectively. Let the initial conditions be r1, (rT
1 , rT

2 )T,

(rT
1 , rT

2 , rT
3 )T, then it can be clearly seen in Fig.1∼

Fig.3 that the impulsive synchronization is achieved
when n = 8, n = 14, n = 23, respectively.

Fig. 1(a) Impulsive synchronization of one-component of

each sub-system (n = 8)

Fig. 1(b) Impulsive synchronization of two-component of

each sub-system (n = 8)



230 Control Theory & Applications Vol.27

Fig. 2(a) Impulsive synchronization of one-component of

each sub-system (n = 14)

Fig. 2(b) Impulsive synchronization of two-component of

each sub-system (n = 14)

Fig. 3(a) Impulsive synchronization of one-component of

each sub-system (n = 23)

Fig. 3(b) Impulsive synchronization of two-component of

each sub-system (n = 23)

Example 2 Consider chaotic Lorenz system:



ẋ = −10(x− y),
ẏ = 28x− y − xz,

ż = xy − 8
3
z.

(12)

In system (3), suppose each yi(i = 1, 2, · · · , n) is
(x(t), y(t), z(t))T as system (12) stated. Choose

ωk = tk − tk−1 = 0.005,

B1k =

diag{−(1−0.58)2,−(1−0.6)2,−(1−0.75)2}T,

B2k =

diag{−(1− 0.58),−(1− 0.8),−(1− 0.65)}T,

B3k =

diag{−(1− 0.48),−(1− 0.58),−(1− 0.58)}T,

B4k =

diag{−(1− 0.28),−(1− 0.48)2,−(1− 0.5)}T,

B5k =

diag{−(1− 0.48)2,−(1− 0.78),−(1− 0.61)}T,

B6k =

diag{−(1− 0.58),−(1− 0.8),−(1− 0.65)}T,

B7k =

diag(−(1− 0.48),−(1− 0.58),−(1− 0.58)}T,

B8k =

diag{−(1− 0.28),−(1− 0.38)2,−(1− 0.3)}T,

B9k =

diag{−(1− 0.68),−(1− 0.8)2,−(1− 0.8)}T,

B10k =

diag{−(1− 0.78)2,−(1− 0.88)2,−(1− 0.5)3}T,

B11k =

diag{−(1− 0.68)3,−(1− 0.96)2,−(1− 0.63)3}T,

B12k =

diag{−(1− 0.58)2,−(1− 0.6)2,−(1− 0.75)2}T,

B13k =

diag{−(1− 0.58),−(1− 0.8),−(1− 0.65)}T,

B14k =

diag{−(1− 0.48),−(1− 0.58),−(1− 0.58)}T,

B15k =

diag{−(1− 0.28),−(1− 0.48)2,−(1− 0.5)}T,

B16k =

diag{−(1− 0.48)2,−(1− 0.78),−(1− 0.6)}T,

r1 = (2,−1,−2, 8, 7, 6, 15.4, 9, 11, 0.1,

0.3, 0.6, 21, 17, 19)T,

r2 = (−1,−2, 8, 1, 2, 3, 17, 19, 34, 12, 15, 20)T,

r3 = (27, 21, 3.04, 6, 3.97,−6,−1,−2, 8, 7, 6, 15.4,

9, 11,−2.1, 34.8, 12.6, 15,−2,−3,−4)T,
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respectively. Let the initial conditions be r1, (rT
1 , rT

2 )T,

(rT
1 , rT

2 , rT
3 )T, then it can be clearly seen in Fig.4∼

Fig.6 that the impulsive synchronization is achieved
when n = 5, n = 9, n = 16, respectively.

Fig. 4(a) Impulsive synchronization of one-component of

each sub-system (n = 5)

Fig. 4(b) Impulsive synchronization of two-component of

each sub-system (n = 5)

Fig. 4(c) Impulsive synchronization of three-component of

each sub-system (n = 5)

Fig. 5(a) Impulsive synchronization of one-component of

each sub-system (n = 9)

Fig. 5(b) Impulsive synchronization of two-component of
each sub-system (n = 9)

Fig. 5(c) Impulsive synchronization of three-component of
each sub-system (n = 9)

Fig. 6(a) Impulsive synchronization of one-component of
each sub-system (n = 16)

Fig. 6(b) Impulsive synchronization of two-component of
each sub-system (n = 16)

Fig. 6(c) Impulsive synchronization of three-component of
each sub-system (n = 16)
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4 Conclusion
Approaches to impulsive synchronization of multi-

chaotic systems have been presented in this paper.
Strong properties of global and asymptotic impulsive
synchronization have been achieved in a finite number
of steps. The techniques have been successfully ap-
plied to a typical delayed Hopfield neural networks and
Lorenz system. Numerical simulations have verified the
effectiveness of the method.
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