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Synchronization of multi-chaotic systems

via ring impulsive control
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Abstract: The ring control approach to multi-chaotic systems synchronization based on the impulsive control theory is
presented in this article. The operator differential mid-value theorem and the matrix operations are applied to them. With
the help of Gronwall Inequality, the controller is thus obtained according to the jumped impulsive response. The global
synchronization of multi-chaotic systems via ring impulsive control is derived. Finally, the simulation results of a typical
time-delay chaotic Hopfield neural networks and chaotic Lorenz system demonstrate that the proposed approach is effective
and feasible, and has strong robust performance.
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1 Introduction

Since its introduction by Pecora and Carroll! in
1990, chaos synchronization of coupled systems is of
great practical significance and has aroused great inter-

est in recent years(>~9l.

However, most synchroniza-
tion is realized between two chaotic systems. The prob-
lem for the chaotic synchronization control is proved

to have many applications!/"~.

In this paper, the syn-
chronization problem for multi-chaotic systems will be
considered by designing linear ring impulsive error con-
trol terms and using impulsive control theory with the
help of the operator differential mid-value theorem and
Gronwall Inequality.

This paper is organized as follows. Some prelimi-
naries are given in Section 2. Section 3 deals with multi-
chaos synchronization. The theoretical results and sim-

ulations are applied to typical time-delay chaotic Hop-
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field neural networks and Lorenz system. Finally, some
concluding remarks are given in Section 4.
2 Preliminaries

First, we consider a class of recurrently delayed sys-

tem, which is described by the following set of differ-
ential equations with delays%~5!:
ai(t) =

—c;wi(t) + jé aij fi(z;(t)) +

i bijfi(z;(t —735)) + w1 =1,2,-+-,n, (1)
j=1
or, in a compact form:
z(t)=—Cx(t)+Af(z(t))+Bf(x(t—7))+U, (2)

where z(t) = (x1(t), z2(t), -+ ,x,(t))" € R™is the
state vector of the neural networks, C' = diag{cy, ca,
-, ¢} is a diagonal matrix, A = (aij)nxn i @
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weight matrix, B =
trix, U = diag{u,uq, -

(bij)nxn is the delay weight ma-
,Up }T € R™ is the input

vector function, 7(r) = (7;;) with the delays 7;; >

0(i,j = 1,2,
fa(za(t)), - -
(1) are given by z;(t) = ¢4(t) €

,n), and f(z(t)) = (fi(z:(?)),
y fa(x,(t)))T. The initial conditions of
C([=p,0], R) with

p = max 7, C([—p,0], R) denotes the set of all

continuous functions from [—

is

1<i,j<n

p,0] to R.

The system with linear ring impulsive control terms

;

9i(t) = —Cy(t) + Af (ya (8)+
Bf<y1(t_7—))+U7
t?étk, k’:1,2,3,"',

Ayi(t) = Bi(y2(t) — y1(2)), t = ti,
y1(tg) = Y10,
Y2(t) = —Cya(t) + Af(y2(2))+
Bf(y2(t — 7)) + U,
t£ty, k=1,2,3,---,
Ays(t) = Bor(ys(t) — ya(t)), t = ti, 3)
= Y20,

Y2 (té)

Un(t) = =Cyn(t) + Af (yn(t))+
tA bk =1,2,3,-

Ay, (t) = Bik(yi(t) —yn(t)), t =ty,
yn(t(J)r) = Yno,
where y; = (Y1, iz, - - - ,ym)T € R™ is the state vec-

tor of node 4, f : R™ — R" is a nonlinear vector func-
tion and f(0) = 0.

;

é1(t) = —Cei(t) + A(f(y2(1)) — f(y: (D)) +
B(f(y2(t = 7)) = f(ya(t = 7)),
t£ty, k=1,2,3,---,

1(t) = Baopea(t) — Bires(t), t = ty,

3) = €10,

) = —Ces(t) + A(f(ys(t)) — f(y2(t)))+
B(f(ys(t = 7)) = f(y2(t — 7)),

t £ty k=1,2,3,---,

Aey(t) = Bares(t) — Bages(t), t = ty,

ex(ty) = e,

(
éx(t

én(t) = —Cen(t) + A(f(y1(t)) — f(yn(t)))+
B(f(yi(t = 7)) = f(yn(t —7))),
t £ty k=1,2,3,--,

Ae, (t) = Birei(t) — Buren(t), t = ty,

en(td) = eno.

Where €1 = Y2 — Y1, €2 = Y3 — Yo, " ;€41 =
Yn — Yn—1y En = Y1 — Yn.
Using the operator differential mid-value

theorem[16:17] we have

éi(t) =

*Cel(t)+

LOf(By2(t)+(1—B)yi (1))
Ajl OFBli) L (1=5) iﬁ 6>1>(t)+
y2 7) Yi(l—7

B, Dy (t—7) dp

el(t )7t#tk7k_12377

Ael(t) = ngeg(t) — Blkel(t), t= tk-,

ei(ty) = enos

éQ(t) -

—Ceg(t)+

LOf(Bys(t)+(1—B)y2(t))
Afl OF Bl L) iﬁ T)W
y3 7' Yo (T—T

BJ Oya(t—7) 4

et —7), t #tp, k=1,2,3,---,

Aeg(t) = ngeg(t> — ngeg(t), t= tk,

es(ty) = e,

én(t) =
—Ce,(t)+

LOf(Byr () +(1=B)yn(t))
Af ay (t) dﬁ'en(t)"i_

LOf(By(t—7)+(1=B)ya(t—7))
BI 8yn t—7) -
en( - ) t#tkv 172737"'7
Aen(t) = Blkel (t) — Bnken(t), t= tk,

€n(t3_) = €n0,

“4)

Of (Bya(t) +(1—B)yi (1))
Oy (t)

+ (1 = By (2).

where is the value which

af (z(t))
ox(t)
Note

Pl(t75) =

is on By, (t)

Of (Bya(t) +(1—B)ui (1))
oy (t) ’

Af (Bys(t) + (1 — B)ya(t))
Oy (1) ’

PZ(t76) =

Af (Byr(t) + (1 = B)yn(t))
Iyn(t) ’
Of (Bya(t —7) + (1 = By (t — 7))
Oy (t — ) ’

Pn(taﬁ) =

Ql(tﬁ) =
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Of (Bys(t —7) + (1 — B)ya(t — 7))

Q2(t76) = ay2(t_7_) )

af(/By1<t — T) + (1 B B)yn(t — 7))
8yn(t - T) ,

then the error system (4) is rewritten:

(1) = [ (~O+AP(t, 8))dB - ex (1)

1
J, B@i(t,8)aB-ex(t = 7),
t#tkak: 172737"' )
Ael(t) = ngeg(t) — Blkel(t), t= tk,

61@3) = €10,

Qn(ta/@) -

: 5)
én(t) = jol(—c + AP,(t,3))dB - en(t)+

1
J;) BQn(t7ﬁ)dﬁ . en(t - T)a
t#tkak: 1,2737"' ’

A@n(t) = Blkel(t) — Bnken(t), t= tk,

en(td) = eno.

Lete(t) = (ef (t),e5(t), - ,en(t)"

ating [|e(t)|]?

(5), we have the following result:

dlle@®)|* _

, and differenti-
with respect to time along the solution of

(t
dt
K1) [ (~C + AP, 5))d8 - ex(t) +

NgE
D
=

o
Il
_

eT (1) fol BQi(t, $)dB - ei(t — 7) +

-

h
Il
—

Xt) [(~C + AP(1.5))"dB - e,(1) +

-

h
Il
—

NgE

() [ (Bt B a5 elt) =
(e (t) e

where

P(taﬁ) = diag{Dl(t’ﬁ)’ T ?Dn(t7ﬂ)}a
_ [ Mi(t,8) BQi(t,p)
Dt = (Q?(t,ﬁ)BT 0 ) |
M1, B)= T (AP B)T.

_C+APL(t7 5) -
Let \(¢, 3) be the largest eigenvalue of P(¢, (3), and
there is a positive constant « such that A(¢, §) < « for

o
Il

==

(t=7)P(t, B)(e" (t) e’ (t—7))"dB,

S —

0

any t > tg, then the conclusion is

dH H2 e(t) _
\f ( t_7> a(e(t—7)>dﬁ_

alle(t)|[* + alle(t = )]
Forany t € (t,_y, 1),
le(t) < Nl Pexplalt - ti-1)} +
[} explatt - s)}alle(s - 1)l *ds,
then
exp{-alt =~ t)}e(t)]” <
le(th-) P+ [exp{—a(s—ti)}alle(s—7)|Pds=

DI

Using the Gronwall Inequality*®, we obtain
exp{—a(t — ti—1)He®)[]* <
le(ti_ )| *exp{aexp{—aT}(t — tx—1)},
le@I* < (©6)
le(ti_)Pexp{a(l+exp{—aT})(t—tr-1)},

[t € (b te], k=1,2,---

exp{—a(s+7—tr1)}alle(s)|*ds.

3 Impulsive synchronization

Theorem 1 Suppose 0 < wp = tp — tpo1 <
ook = 1,2,--+), v, is the largest eigenvalue of
(I + By)™(I + By), the impulsive synchronization of
Eq.(3) is achieved if there exists a constant # > 1 such
that

ln(ef)lk)—i_a(l—i_exp{_cm—})wk goa k: 17 27 )

(7
where
—Byr, By, 0 -+ 0
0 —BoyBs,--- 0
By, = ) ) } .
B 0 0 - — B,k

Proof we have known the conclusion (6). When
t = t;, we obtain

le(tOI* =™ (te) (I + By) (I + By)e(ty) <
melleCt)ll*. ®)
Considering the conditions (6)(7) and (8), we have
le()]* <
MYz welle(ts) Pexp{u(t — to)} <
el Pexp it — 1)) 1 € (ts i)

where 1 = «a(l + exp{—ar}).

le(t)||* — 0, say ||e(t)|| — 0, and makes system (3)
synchronization.

When t — o0,
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When B = 0 in system (2), system (5) becomes the

following:

([ 6t) = [+ APt 3)d5 - (1),
t#tlm k:172737”'7

e1(t) = Bagea(t) — Birei(t), t = ty,
( (T) = €10,
a(t) = [ (~C + APy(t, 6))dB - ea(t),
t£ty, k=1,2,3,---,
Aey(t) = Bares(t) — Boges(t), t =t, (9)

es(td) = e,

éult) = [ (~C + AP, )5 en(t),
t%tkak: 172737"' )
Aen(t) = Blkel(t) — Bnken(t), t= tk,

en(td) = eno-

So the following Corollary is obtained.

Corollary 1 Suppose 0 < wy = t — tp_1 <
oo (k = 1,2,--+), ~y is the largest eigenvalue of
(I + By)™(I + By), A
of P(t,[3), and \(t,3) < «, where « is a positive

constant, the impulsive synchronization of Eq.(9) is

(t,3) is the largest eigenvalue

achieved if there exists a constant # > 1 such that

In(fy) +aw, <0, k=1,2,- (10)

Example 1  Consider a typical delayed Hopfield

[12,14]

neural networks with two neurons:

i(t) = =Cu(t) + Af (z(t)) + Bf (z(t — 7)),(11)

x(t) = (21 (t), 22(t))",
f(a(t)) = (tanh(z, (1)), tanh(z2(t)))",

10
=(1)and C = ( ) ,
01
A 2.0 =0.1 B= —-1.5 -0.1 .
-5.0 3.0 —-0.2 =25

It should be noted that the network is actually a
chaotic delayed Hopfield neural network.
In system (3), suppose each y;(i = 1,2,--- ,n) is
x(t) as the system (11) stated. Choose
wy =t — tp—1 = 0.005,

By, = diag{—(1 — 0.58)%, —(1 — 0.6)*} T,

By, = diag{—(1 — 0.8), —(1 — 0.8)}",
By, = diag{—(1 — 0.75)%, —(1 — 0.56)}
By, = diag{—(1 — 0.58), —(1 — 0.6)} ",
B, = diag{—(1 — 0.65), —(1 — 0.48)} ",
Bgi, = diag{—(1 — 0.57), —(1 — 0.65)} ",
Bz, = diag{—(1 - 0.8), —(1 — 0.6)}",
Bgy, = diag{—(1 - 0.7), —(1 — 0.7)} ",

BQk - BlOk - Bllk -
Ble = Bl3k = Bl4k =
diag{—(1 —0.8), —(1 — 0.8)}",
B15k = Ble = Bl7k = B18k = Ble =
B2Ok - B21k - BQQk - B23k -
diag{—(1 —0.6), —(1 — 0.6)}",
r = (34,4.3,17,12.8,27,49,1.2,2.4,0.8,
9.6,11,16,21,33,8,3)",
ry = (=12, —11,—12,28,27,26,15.4,
9,11,0.1,0.3,0.6)",
rs = (2,-1,-2,8,7,6,15.4,9,11,0.1,0.3, 0.6,
21,17,19, -1, -2,8)T,

respectively. Let the initial conditions be 71, (r1,73)",

(rf,ry,r3)"T, then it can be clearly seen in Fig.1~
Fig.3 that the impulsive synchronization is achieved

whenn = 8, n = 14, n = 23, respectively.

Component

tl's
Fig. 1(a) Impulsive synchronization of one-component of

each sub-system (n = 8)
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= 40[ 1
E |
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& i
g 20 i
O
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0 1 1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10
t/s
Fig. 1(b) Impulsive synchronization of two-component of

each sub-system (n = 8)
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Fig. 2(a) Impulsive synchronization of one-component of

each sub-system (n = 14)

Component

t/s

Fig. 2(b) Impulsive synchronization of two-component of

each sub-system (n = 14)

30 b

20 7

10 7

Component

,IOII
0o 1 2 3 4 5 6 7 8 9 10

t/s

Fig. 3(a) Impulsive synchronization of one-component of

each sub-system (n = 23)

Component

t/s

Fig. 3(b) Impulsive synchronization of two-component of

each sub-system (n = 23)

Example 2  Consider chaotic Lorenz system:
i = —10(z — ),
Yy =28z —y—xz, (12)
=2y — -2

3

In system (3), suppose each y;(i = 1,2,--- ,n) is
(x(t),y(t), 2(t))" as system (12) stated. Choose

wy, =t — t,_, = 0.005,

By, =

diag{—(1-0.58) —(1-0.6)%, —(1—-0.75)*} ",

By, =

diag{—(1 —0.58), —(1 — 0.8), —(1 — 0.65)} ",

B3k =

diag{—(1 —0.48), —(1 — 0.58), —(1 — 0.58)} T,

By =

diag{—(1 — 0.28), —(1 — 0.48)*, — (1 — 0.5)} T,

B5k =

diag{—(1 — 0.48), —(1 - 0.78), —(1 — 0.61)}",

Bey. =

diag{—(1 - 0.58), —(1 — 0.8), —(1 — 0.65)} ",

By, =

diag(—(1 — 0.48), —(1 — 0.58), —(1 — 0.58)} T,

Bgj, =

diag{—(1 - 0.28), —(1 — 0.38)*,—(1 - 0.3)} ",

By, =

diag{—(1 — 0.68), —(1 — 0.8)*, —(1 — 0.8)} ",

Biox =

diag{—(1 —0.78), —(1 — 0.88)%, —(1 — 0.5)%}",

Bllk =

diag{—(1 — 0.68)% —(1 —0.96)%, —(1 — 0.63)*} T,

Bl2k =

diag{—(1 — 0.58)%, —(1 — 0.6)2, —(1 — 0.75)*}",

BlSk =

diag{—(1 — 0.58), —(1 — 0.8), —(1 — 0.65)} T,

Bl4k =

diag{—(1 — 0.48), —(1 — 0.58), —(1 — 0.58)}*,

Bisi, =

diag{—(1 — 0.28), —(1 — 0.48)*, —(1 - 0.5)}T,

Bigi, =

diag{—(1 — 0.48)%, —(1 — 0.78), —(1 — 0.6)},

r=(2,-1,-2,8,7,6,15.4,9,11,0.1,
0.3,0.6,21,17,19)T,

ry = (—1,-2,8,1,2,3,17,19, 34,12, 15,20)",

ry = (27,21,3.04,6,3.97, -6, -1, —2,8,7,6,15.4,
9,11,-2.1,34.8,12.6,15, -2, —3, —4)",
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respectively. Let the initial conditions be r, (rT, 7T, 25 ' ' ' ' ‘
(rf,ry,7r3)", then it can be clearly seen in Fig.4~

Fig.6 that the impulsive synchronization is achieved

component

when n = 5,n = 9,n = 16, respectively.

g Fig. 5(b) Impulsive synchronization of two-component of
g each sub-system (n = 9)
3

45

40

30 i

20

component

Fig. 4(a) Impulsive synchronization of one-component of

each sub-system (n = 5)

Fig. 5(c) Impulsive synchronization of three-component of
each sub-system (n = 9)

component

component

Fig. 4(b) Impulsive synchronization of two-component of

each sub-system (n = 5)

Fig. 6(a) Impulsive synchronization of one-component of
each sub-system (n = 16)

component

component

t/s

Fig. 4(c) Impulsive synchronization of three-component of

each sub-system (n = 5) Fig. 6(b) Impulsive synchronization of two-component of

each sub-system (n = 16)

=
= N
2 s
g =
8 £
8
Fig. 5(a) Impulsive synchronization of one-component of Fig. 6(c) Impulsive synchronization of three-component of

each sub-system (n = 9) each sub-system (n = 16)
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4 Conclusion

Approaches to impulsive synchronization of multi-
chaotic systems have been presented in this paper.
Strong properties of global and asymptotic impulsive
synchronization have been achieved in a finite number
of steps. The techniques have been successfully ap-
plied to a typical delayed Hopfield neural networks and
Lorenz system. Numerical simulations have verified the
effectiveness of the method.
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