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Adaptive neural-fuzzy control of triple inverted pendulum
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Abstract: In the triple inverted pendulum(TIP) system, adaptive neural-fuzzy inference system(ANFIS) approach is
atilized to combine fuzzy logic with Neural-Network, according to the input/output data, so that ANFIS automatically
adjusts fuzzy rules and membership functions based on state synthesis to fit sampling data. The simulation results show
that the designed ANFIS controller is feasible. Compared with LQR control, triple inverted pendulum based on ANFIS
control has better dynamics performance and anti-interference capability.
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摘摘摘要要要: 在三级倒立摆(TIP)系统中,应用神经网络与模糊控制相结合的自适应神经模糊推理系统(adaptive neural-
fuzzy inference system),根据样本数据调整隶属函数和控制规则参数,使得训练后ANFIS控制器很好地模拟期望的
输入输出数据. 仿真结果表明所设计的ANFIS控制器对三级倒立摆系统的稳定控制是可行的. 与LQR控制相比,基
于ANFIS控制的倒立摆系统具有良好的动态性能和抗干扰性能.
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1 Introduction
Inverted pendulum system is a non-linear, strong

coupling, multivariable and absolutely unstable system.
Its stability control can effectively reflect many key is-
sues of the automatic control, such as stability, non-
linearity, servo problems, tracking problems, and so on.
In addition, in practical application, many objects have
similar motion characteristics with inverted pendulum,
such as attitude control of the satellite, movement of
the robot’s joint, etc. Therefore, there is theoretical and
practical significance in the study of inverted pendulum.

For conventional fuzzy controllers, the arbitrariness
in setting membership function parameters and the dif-
ficulty in rules proposition are difficult issues in fuzzy
controller design, especially for a multivariable sys-
tem. Adaptive neural-fuzzy inference system(ANFIS)

is used in this paper, which is functionally equivalent to
the adaptive network of fuzzy inference system. It not
only has the characteristics of fuzzy control that does
not require accurate model and strong robust features,
but also has the characteristics of self-learning of neu-
ral network. ANFIS controller is designed according
to this theory and applied to triple inverted pendulum
(TIP) control.

2 Model of triple inverted pendulum
Fig.1 shows the illustration of the TIP system[1].

Here, M is the mass of the cart; m1 represents the
mass of the first pendulum; m2 represents the mass of
the second pendulum; m3 represents the mass of the
third pendulum; M1, M2 represent the mass between
two pendulums. l1, l2, l3 denote the distance between
the pivot and the center of mass of respective links.
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Ji =
1
3
mil

2
i , i = 1, 2, 3 represents the moment of iner-

tia of the pendulum. g denotes the acceleration of grav-
ity.

Fig. 1 Triple inverted pendulum system

For the TIP system, we select generalized coor-

dinates as: x, θ1, θ2, θ3. We neglect the frictions

between pendula and frictions between cart and pen-

dulum. According to the Euler-Lagrangian equation,

d
dt

(
∂L

∂θ̇i

)− ∂L

∂θi
= fi, i = 1, 2, 3,

we can obtain the nonlinear equations as follows:

−k1ẍl1 cos θ1 + 2k2l
2
1θ̈1 + 2k4l1l2θ̈2 cos(θ1 −

θ2) + 2m3l1l3θ̈3 cos(θ1 − θ3) +

2k4l1l2θ̇
2
2 sin(θ1 − θ2) +

2m3l1l3θ̇
2
3 sin(θ1 − θ3)− k1gl1 sin θ1 = 0, (1)

−k4ẍl2 cos θ2 + 2k4l1l2θ̈1 cos(θ1 − θ2) +

2k3l
2
2θ̈2 + 2m3l2l3θ̈3 cos(θ2 − θ3)−

2k4l1l2θ̇
2
1 sin(θ1 − θ2) +

2m3l2l3θ̇
2
3 sin(θ2 − θ3)− k4gl2 sin θ2 = 0, (2)

2m3l1l3θ̈1 cos(θ1 − θ3) + 2m3l2l3θ̈2 cos(θ2−

θ3)− 2m3l1l3θ̇
2
1 sin(θ1 − θ3)−

2m3l2l3θ̇
2
2 sin(θ2 − θ3)−

m3ẍl3 cos θ3 +
4
3
m3l

2
3θ̈3 −

m3gl3 sin θ3 = 0. (3)

Where:

k1 = m1 + 2m2 + 2m3 + 2M1 + 2M2,

k2 =
2
3
m1 + 2m2 + 2m3 + 2M1 + 2M2,

k3 =
2
3
m2 + 2m3 + 2M2,

k4 = m2 + 2m3 + 2M2.

Considering the pendulum would swing in the
neighborhood of the desired equilibrium, the above
equations can be linearized by Taylor’s Formula.
Then the state equation of TIP can be achieved:

Where:
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Where:

k12 =
−2k4l2k22 − 2m3l3k32 + k1g

2k2l1
,

k13 =
−2k4l2k23 − 2m3l3k33

2k2l1
,

k14 =
−2k4l2k24 − 2m3l3k34

2k2l1
,

k19 =
−2k4l2k29 − 2m3l3k39 + k1

2k2l1
.

k22 =
(
4
3
k4 − 2m3)k1k4g

(2k2
4 − 2k2k3)(2m3l2 − 4

3
k4l2)− (2k4 − 2k2)(2k3m3l2 − 2k4m3l2)

,

k23 =
(2m3 − 4

3
k4)k2k4g + (2k4 − 2k2)k4m3g

(2k2
4 − 2k2k3)(2m3l2 − 4

3
k4l2)−(2k4 − 2k2)(2k3m3l2 − 2k4m3l2)

,

k24 =
−(2k4 − 2k2)k4m3g

(2k2
4 − 2k2k3)(2m3l2 − 4

3
k4l2)−(2k4 − 2k2)(2k3m3l2 − 2k4m3l2)

,
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(2k2
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3
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,
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(2k4 − 2k3)k1k4g
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3
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,
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k2k4g(2k3 − 2k4) + (2k2

4 − 2k2k3)k4g

(2k4 − 2k2)(2k3m3l3 − 2m3k4l3)−(2k2
4 − 2k2k3)(2m3l3 − 4

3
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,
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−(2k2

4 − 2k2k3)k4g

(2k4 − 2k2)(2k3m3l3 − 2m3k4l3)−(2k2
4 − 2k2k3)(2m3l3 − 4

3
k4l3)

,

k39 =
(k2k4 − k1k4)(2k3 − 2k4)

(2k4 − 2k2)(2k3m3l3 − 2m3k4l3)−(2k2
4 − 2k2k3)(2m3l3 − 4

3
k4l3)

.

3 ANFIS
ANFIS is a fuzzy inference system based on

Takagi-Sugeno model, which adopt a structure sim-
ilar to the neural network[2∼6]. It can use the learn-
ing mechanism of neural network to adjust fuzzy in-
ference system of membership functions on the ba-
sis of input and output sample data automatically,
draw rules, and then form an adaptive neural fuzzy
controller. For a fuzzy inference system with two
inputs(x and y) and one output (z), with one order
Sugeno fuzzy model, two fuzzy rules are as follows:
1) If x is A1 and y is B1, then f1 = p1x + q1y + r1;
2) If x isA2 and y is B2, then f2 = p2x + q2y + r2.
Fig.2 shows the equivalent ANFIS structure of the
Sugeno fuzzy model.

Fig. 2 Equivalent ANFIS structure

Layer 1 The node in this layer is an adaptive
node. x (or y) is the input of node i , A (or B) is
language of identity (such as “small”or “big”)
related to the node. In this layer, the parameters
which can determine the membership function are the
premise parameters:

O1,i = µAi(x), i = 1, 2,

or

O1,i = µBi−2(x), i = 3, 4.

Layer 2 In this layer, each node is a symbol
∏

to the fixed nodes,whose output is the product of all
the input signals:

O2,i = ωi = µAi(x)µBi(y), i = 1, 2.

Layer 3 In this layer, each node is symbolized

by N and calculates the ratio of the related incentive

strength to the total, which is showed as follows. The

output of this layer is called the normalization of in-

centive strength.

O3,i = ω̄i =
ωi

ω1 + ω2
, i = 1, 2.

Layer 4 The node in this layer is an adaptive

node. The ω̄i in the following equation is the normal-

ization of incentive strength from layer 3. {pi, qi, ri}
is the parameter set of the node. The parameter of this

layer is called a conclusion parameter.

O4,i = ω̄ifi = ω̄i(pix + qiy + ri).

Layer 5 In this layer, each node is symbolized

by
∑

and calculates the sum of the signals.

sum = O5,i =
∑

ω̄ifi =

∑
i

ω̄ifi

∑
i

ωi
.

In this way, an adaptive network equal to the

Sugeno fuzzy models in function is constructed.
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4 Application of ANFIS controller in TIP
system

4.1 Reducing the control variable dimension
For a TIP system, there are 8 state variables: x,

θ1, θ2, θ3, ẋ, θ̇1, θ̇2, θ̇3. The conventional fuzzy con-
trol method can cause too many rules[7∼13]. In order
to design an effective controller, down- dimensional
vector processing will be used on the 8 state variables.
In this paper, state feedback coefficients based on the
optimal control are adopted to form synthesized er-
ror and synthesized error rate and fuzzy controller is
derived from this which can reduce the dimension of
input variables and the number of rules. The 8 state
variables can be processed according to the method
mentioned above:

E = KT
1 X1 =

[k1 k2 k3 k4 ][x θ1 θ2 θ3 ]T =

k1x + k2θ1 + k3θ2 + k4θ3, (4)

EC = KT
2 X2 =

[k5 k6 k7 k8 ][ ẋ θ̇1 θ̇2 θ̇3 ]T =

k5ẋ + k6θ̇1 + k7θ̇2 + k8θ̇3. (5)

The initial value of state variable synthesis coeffi-
cients (KT = [k1 k2 k3 k4 k5 k6 k7 k8 ]) synthesis co-
efficients (K0) is obtained from the solution to the
Riccati equation

PA + ATP − PBR−1BTP + CTQC = 0.

The solution to the equation is

KT
0 = R−1BTP.

K in state variable synthesis is from the adjusted state
feedback coefficient of LQR controller. Then the syn-
thesized error of ANFIS is

E = −3.16×x+82.05×θ1−9.15×θ2−7.58×θ3.

The ratio of the synthesized error is

EC = −6.39× ẋ+6.91× θ̇1 +4.37× θ̇2 +4.30× θ̇3.

4.2 Structure of ANFIS controller
The ANFIS controller adopts Sugeno, and two

inputs are synthesized error E and ratio of the syn-
thesized error EC. The output is u. The range of
E and EC is [−6, 6], and that both have 8 fuzzy
subsets, {NB NM NS NZ PZ PS PM PB}.

There are 8 membership functions that Gauss mem-
bership functions are adopted. The range of output
of the controller (u) is [−10, 10] and one order linear
output is adopted. The input space is divided into 64
intervals, which correspond to 64 fuzzy rules.

4.3 Training of ANFIS controller
LQR controller is obtained from optimal theory

and used in the TIP system to obtain input and output
data. The sample time is set as 0.01 s and 1000 sam-
ple data are regarded as the training data of the AN-
FIS controller. The ANFISEDIT function is also used
in the paper. Firstly, load the training data and the
FIS structure. Secondly, select the study algorithm.
There are two study algorithms in ANFISEDIT, back-
propa and Hybrid. In the paper, the latter is adopted.
At last, set the error tolerance and training epochs.
In this algorithm, make sure the initial value of the
premise parameters {ai, bi}, adjust the conclusion pa-
rameters {pi, qi, ri} by least square method and up-
date the premise parameters by backpropa algorithm.

Through the study of training data, the premise
parameters and conclusion parameters are adjusted.
The training error is only 1.55 × 10−5 after 1000
epochs. The trained fuzzy inference system can
analogize the expected input and output data well.
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Fig. 3 Simulation results

4.4 Simulation results
Apply the ANFIS controller and the LQR con-

troller to TIP system. The target location is 0.5 and
the initial state is xT = [0 0 0 0 0 0 0 0]. The
simulation results are shown in Fig.3. From the sim-
ulation results, the use of the designed ANFIS con-
troller can successfully realize the control of the TIP
system. The simulation figures show that the angle is
smaller based on the ANFIS controller. The largest
angel is not more than 0.6◦. Compared with LQR,
overshoot of ANFIS controller is better.

5 Conclusion
Adaptive-neural fuzzy inference system over-

comes the human crucial factors in fuzzification and
defuzzification and the incompleteness and roughness
of fuzzy rules in fuzzy inference systems. It uses the
input and output data to adjust membership functions
and form fuzzy rules automatically. ANFIS controller
is used to realize the control of TIP system. Accord-
ing to the comparison of the simulation curves, the
ANFIS controller can improve the dynamic perfor-
mance of the TIP system in a large scale and it also
shows good adaptability of the controlled plant.
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