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Delay-dependent stability criteria for network-based neural networks
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Abstract: This paper investigates the problem of stability of network-based neural networks (NNs). To exploit the
sampling characteristic of network systems, we define a new type of Lyapunov functional. By analyzing the relation
between the network-induced delay and the executive duration, and employing an iterative convex combination technique,
we develop a less conservative stability criterion for network-based NNs. To reduce the computational complexity, we also
propose a stability criterion for sampled-data-based NNs. An illustrative example is given to show the effectiveness and the

advantages of the proposed method.
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1 Introduction

Neural networks (NNs) have immense potentials of
application prospective in a variety of areas, such as sig-
nal processing, pattern recognition, static image pro-
cessing, associative memory, and combinatorial opti-
mization. Due to the finite speed of information pro-
cessing, the existence of time delays frequently causes
oscillation, divergence, or instability in NNs. In recent
years, the stability problem of delayed neural networks
has become a topic of great theoretic and practical im-
portance [1-14].

For NNs with single time-varying delay, there exist
many delay-dependent stability results reported in the
literature (see [5—6, 15—-16] and the references therein).
In [6], delay-dependent stability condition was de-
rived by defining a new Lyapunov functional and the
obtained condition could include some existing time
delay-independent ones. In [15], a less conservative
delay-dependent stability criterion for delayed NNs was
proposed by using the free-weighting matrix method
and considering the useful term when estimating the
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upper bound of the derivative of Lyapunov functional.
And the stability result in [15] was improved in [16],
where a convex combination technique [17] was em-
ployed.

Recently, a new model for neural networks with
two additive time-varying delays had been proposed,
and this kind of neural network has a strong application
background in remote control and network-based con-
trol [18]. In a network-based system, signals transmit-
ted from one point to another may experience two seg-
ments of networks, and the resulting time delays have
different properties due to variable network transmis-
sion conditions. For such network-based NN, [18] pre-
sented a stability criterion by using the free-weighting
matrix method. And the stability result in [18] was im-
proved in [19] by remaining some integral terms and
using a convex combination technique [17].

It is worth pointing out that the considered network-
based NNs were modeled as delayed NNs with two ad-
ditive time-varying delay components, and the sampling
characteristic of network-based systems was ignored. In
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network-based systems, the received signal by receiptor
is kept invariable in each executive period, which is re-
alized with a zero-order holder (ZOH). This sampling
characteristic shows that network-based NNs belong to
a special class of NNs with single time-varying delay,
so the stability criteria for network-based NNs are ex-
pected to be less conservative than the ones for general
delayed NNs, which motivates this study.

In this paper, the problem of stability analysis for
NNs with two additive time-varying delay components
is investigated. By considering the independence and
the variation of two additive time-varying delay compo-
nents, a new type of Lyapunov functionals is proposed.
Combining with a tighter estimation of the derivative of
the Lyapunov functional and a reciprocally convex com-
bination technique [20], new delay-dependent stability
criteria with less conservatism and less complexity are
derived in terms of linear matrix inequalities (LMIs). A
numerical example is also given to show the effective-
ness and the significant improvement of the proposed
method.

Notation: A real symmetric matrix P > 0(>
0) denotes P being a positive definite (positive semi-
definite) matrix, and A > B(A > B) means A — B >
0(> 0). I is used to denote an identity matrix with
proper dimension. The symmetric terms in a symmetric
matrix are denoted by *. For a square matrix F, He(E')
is defined as He(F) = F + E™T.

2  Problem formulation

Consider a mode of network-based NN as follows:
z(t) = —Cxz(t) + Ag(z(t)) + Bg(z(sp) + u,

t € [te, try1), k €N, (1)
where z(-) = [z1(-) -+ 2,(-)]" € R" is the neuron
state veetor, g(@(-)) = [g1(@1()) -+ ga(wa(-))]T €
R™ denotes the neuron activation function, and ©v =
[uy -+ wu,]T € R™is a constant input vector. C' =
diag{cy, -+, ¢ } withe; > 000 =1, 2, -+, n),
and A, B are the connection weight matrix and the
delayed connection weight matrix, respectively. N de-
notes the set of all nonnegative integers; t; denotes the
instant that the destination neuron receives the k-th sig-
nal, which is sampled by the sensor of the source neu-
ron at sampling instant sy; 73 stands for the network-
inducted delay (causing by transmission delay and dis-
carding the outdated data packets) of the data packet
sampled at instant s; from the sensor to the destination,
that is, 7., = ¢, — Si; The term t — ¢, is called as the
executive duration in k-th executive period [ty tjy1).

According to [21] and [22], the following assump-
tion is made for network-based NN (1):
Assumption 1 The sampling-delay sequences

Vol. 29
{sk, T} (k € N) satisfy
(Skt1 — Sk) + Ty < 7, 2
Tm < Tk < ™, (3)

where 7,,,, T\ and 7) are nonnegative constants.
Remark 1 In the network environment, it is usu-
ally assumed that the sensor is clock-driven, while the
acceptor and zero-order hold (ZOH) are event-driven. If
one packet sampled at the sensor node reaches the des-
tination later than its successors, then it will be dropped
and the latest one will be used. This guarantees that
both {¢;} and {s;} are strictly increasing sequences.
In condition (2), 7 can be used to reflect the allow-
able bound on the amount of the data dropout and the
network-induced delays.
Assume that the activation functions g;(-)(i =
2, ---, n) are bounded and satisfy

9:(z) — gi(y)
r—y
where 0;(i = 1, 2, ---

1

)

0< <o, Vo, yeR, z#y, 4

, M) are some constants.

From the Brouwer’s fixed-point theorem, there ex-
ists an equilibrium point for (1). Assume that z* =
[z} 3 x2]" is an equilibrium point of system
(1), by choosing the coordinate transformation z(-) =
x(-)—x*, system (1) is changed into the following error
system

2(t) = —C=z(t) + Af (2(t)) + Bf (2(s1)), (5

where t € [ty, ti1) and 2(+) = [21(") 2o ()]*
is the state vector of the transformed system, f(z) =

[f1(z1() - fulza()]T and fi(2:(-)) = gi(zi(-) +

xf) —gi(zr)(i =1, 2, ---, n). Then, the functions

fi()(@ =1, 2, -+, n) satisfy the following condi-
tion:
0< fi(zl) < oy, fz(O) = 07 \V/Zi 7é O, (6)
Zi

which implies that

(fi(zi(t)) — 0uzi(t)) - fi(2i(t)) <O (7)

and

(fi(zi(sk)) — 0izi(sk)) - filzi(sk)) <O (8)
wheret > 0andt =1, 2, --- n.

Obviously, network-based NN (5) belongs to a spe-
cial class of NNs with single delay:

it) = —Cz(t) + Af(2(t) + Bf (2(t — 7(1))),
©))
where 7(t) =t — s(t € [tx, ty41)) and 7(¢) satis-
fies 7, < 7(t) < 1. For such delayed NN, there exist
many results of stability analysis reported in the litera-
ture (see [6, 15-16]).
When y = 0, it is known than 7, = 0 and
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t, = sp. Thus, network-based NN (5) reduces to
H(t) = —Ca(t) + Af(2(8) + BF(2(t)),
te [tka tk-‘rl)? ke N7 (10)
and Assumption 1 becomes Assumption 2.

Assumption 2 The sampling sequences t;(k €
N) satisfy

0<tpg1 —te <1,y (11)

where 7) is a positive constant.

In this paper, the stability problems of both
network-based and sampled-data-based NNs are stud-
ied. The sampling characteristic of networked sys-
tems is captured by defining a new type of Lyapunov-
Krasovskii functional (LKF), and the coupled relation-
ship of the network-induced delay and the executive du-
ration is clarified, while an iterative convex combination
technique is utilized, which leads to a less conservative
stability criterion for network-based NNs. That is, a
larger allowable upper bound of 7) can be yielded by the
obtained stability criterion. Then, to reduce the com-
putational complexity, a stability criterion for sampled-
data-based NNis is also proposed. Finally, an illustrative
example is given to show the effectiveness and the im-
provement of the proposed method.

3 Main results
For network-based NN (5), a Lyapunov-Krasovskii
functional can be chosen as
V(2(t))=Vi(2(t))+Va(2(1)) + V3 (2(t)) + Va(=(¢)),
(12)

where

Vi(=(8) = 2T (6)P2(t) + 2 é M [ Rsyas +

Va(a(t) = (n— (t = 5)) [ 2" (s)Ri(s)ds,

k

Vi) = [ ST (U(s)ds,

t—n

0t
Vi(z(t)) = f_n L L, Z1(5)22(s)dsdo,
andP=PT>0, R=R">0,U=U">0, Z =
27> 0, Ay =diag{n, A -5 A 300 = 1,
2) are to be determined.

Obviously, V' (z(t)) is discontinuous. However, at
any t > to except the jumps tx, V(2(t)) is contin-
uous and positive. Note that V5(2(t;,,)) = 0 and
Va(z(tf,,)) = 0, this shows that V5(z(t)) does not
increase along the jumps t;, (k € N). Therefore, along
the jumps t;, V' (2(t)) also does not increase.

For convenience, we denote X' =diag{oy, oo, ---

Y (s — fi(s))ds,

0, } and
ex=[100000],e=[01000 0],
es=[001000],es=[000 10 0]
es=[0000710],e=[00000 I].

Now, we give a new stability criterion for the origin
of system (5) as follows.

Theorem 1 For given scalars 7o, Tv, 7(Tm <
™ < 1), the origin of system (5) under Assumption
1 is globally asymptotically stable if there exist ma-
tices P =P >0, R=R">0,Z =27 >
0,U=U"2>0, A; = diag{\j1, \ja, ~+ 5 Ajn} =
0, D; = diag{dj1, dj2, -+, djn} 20, j =1, 2,
and matrices Y, T, M with appropriate dimensions,
such that

—w ATQl (77 — Tm)M TmT

* _Ql 0 0

¥ % —(-mm)Z 0 <0, (13)
R * —Tm”Z
—w ATQQ (7’] — TM)M TMT

k —QQ O 0

x x —(n—mu)Z O <0, (14)
R * —TmZ
(v nATZ M—Tm)Y T

x —nZ 0 0

x o« —(n—mw)(R+Z) 0 <0, d5)
R * —TmZ
_!7 nATZ (T] — TM)Y TMT

x —nZ4 0 0

16

x  x  —(n—mu)(R+Z) O <0, (6)

R * —mZ
where

¥ = He(e] (P + XAy) A+ el (A, — Ay) A+
Y(er —e2) +T(e2 —e3) + M(es —es)) +
erlrUel — e:er4 — 265TD165 + engZ’el +
el X Des — 2eg Dyeg + eg DyXes +
e3 X Dyeg,

Q1 =nZ+(n—Tun)R,

Q2=nZ+ (n— 1R,

A=[-C 00 0 A B].

Proof Denote ((t) = [¢F(¢) ¢ (t)]T with ¢ (¢)
= [27(t) 2"(t) 2"(se) 2" (t—n)]" and G(t) =
/7)) T (=(s6)]"

Taking the time derivative of V;(z(¢))(i = 1, 2, 3,
4) along the trajectory of (5) yields that

Vi(z(t) =
22T (t)P3(t) + 2 ; Aifi(z:(t))%(t) +
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2 2 Nos(oi2i(t) = Filza(t) (1) =
2zT(t)(P + XA 2(t) +

2T (2(0) (A — Ap)3(t) =

CH (O He(eT (P+-5 ) AT (s — A YD),
v2<z<t>> (n— (t — 5))CT () ATRAC() —

[, @Rs)ds,

Va((1)) =
2 (OU=(t) = 2" (t =n)Uz(t —n) =
CT(t)(e Ue, — B;FU€4)C(t)>

Vi(z(t) =

0" (AT ZAC) - |, t_n (s)Z5(s)ds.

It is known that

—f ds—ft

- [ @R L )2 ds [T (5) Z2(5)ds -

tk
[ 7(s) 22(s)ds,
t—n

and
—f: S(s)(R + Z)(s)ds <
Ot —t)Y(R+2Z)7'YT +
He(Y(el - ez)))C(t),
*j s)ds <
¢t )(mTZ T+ He(T (e — €3)))¢(1),
— [ sT(s)Z5(s)ds <

Cr)((n—(t —s))MZTIMT +
He(M (e3 — €4)))C(t).
On the other hand, from (7) and (8), it yields that
0<
=2f1(2(1))Di(f(2(1) — Z=(t)) =
CT(t)(—2efDies + el D1 Xe, + el X Dyes)((t),
0<
2T (2(s8)) D2 f(2(s8) — Dz(s1)) =
CT(t)(—2e5 Dayeg + eg Dy Xes + e3 X Doe)((t).
So, it gets that
V(z(1) < () (o + (¢ — si)¥ + 7W2) (1),
(17)

T(5)Z%(s)ds =

where
Uy =
He(el (P + X A3) A+ es (A — Ay) A+
Y(ey — )+ T(es — e3) + M(es — e4)) +

erlFUel — eEUe4 — 26§D165 + engﬂel +

el X Dies — 2eg Doeg + eg DyXey +

ey X Does +nAT(R+Z)A+nMZ'MT,

U =Y(R+2Z)'Y" -~ ATRA-MZ'MT,

U, =-Y(R+2)'Y ' +TZ'T".

From (2) in Assumption 1, it is known that

T St — 8 < lpgr — Sk <1, (18)

which shows that ¢ — s;, varies within |75, 7]. By using

the convex combination technique given in [17], it gets
that ¥y + (t — s3,)¥; + 1W < 0 holds if and only if

Yo + m(P1 +¥,) <0 (19)
and
Wo + 7’]@1 + Tk!p2 < 0. (20)

Furthermore, for 7, € [7,, 7w, inequality (19) holds
if and only if

Uy + (W1 + W) <0 2D
and

Uy + (¥ + &) < 0. (22)
Similarly, inequality (20) holds if and only if

Uy +n¥; + W2 < 0 (23)
and

Yy + n¥; + TP < 0. 24)

Thus, from the Schur complement, it is known that
V(z(t)) < 0 holds for t € [ty, tpp1)(k € N)if
LMIs (13)—(16) hold. Since V (2(¢))) < V(2(t},)),
so the globally asymptotical stability of system (5) can
be guaranteed if LMIs (13)—(16) hold.

The proof is completed.

Remark 2 In Theorem 1, a sufficient condition of
globally asymptotical stability for the origin of system
(5) is given in terms of solutions to a set of LMIs. Here,
three techniques are employed. First, a new type of LKF
is defined, which captures the sampling characteristic of
network systems. Then, the coupled relationship (18) of
terms 7, and ¢ — ¢, is clarified. It should be noted that
0 <t—1t, < n— 7y was used in [23-24] , which
shows that the upper bound of ¢ — ¢, in the k-th exec-
utive period is obviously enlarged. Finally, an iterative
two-step convex combination technique is utilized, and
an LMIs-based criterion is obtained.

Remark 3 Different from [15, 18-19] and [16],
the sampling characteristic of network systems and the
coupled relationship of terms 74, and ¢t — ¢, is taken into
consideration, the new stability criterion in Theorem 1
is less conservative, which will be verified by an exam-
ple in the sequel.

For sampled-data-based NN (10), one can obtain a
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stability criterion from Theorem 1 directly. For reduc-
ing the computational complexity, we will provide a less
complex stability criterion. To this end, a reciprocally
convex combination technique [20] will be used, so it is
listed as the following lemma.
Lemma 1 For given positive semi-definite matri-
ces /1 and Z,, if there exists a matrix 7" such that
Z, T
[ x o

then the following inequality for any (0 < a < 1)
holds

|50

1
— 7 0
| > [Zl g ] (25)
* Zs * Lo
1l -«
Proof It is ready to see that
[1
aZl 0 B Zl T _
% 1 A * ZQ
L l—«
_1_
“z, -1
8% —
a =
Z
L * 1—a’?
61 0 Zy T Bl 0 >0
* —(37 % o ¥ =377
1—
where § = a'
«a

Thus, the result is established.
For (10), we can choose an LKF candidate as

V(z(1) = Va(2(1) + Va(2(1)) +
Va(z(t)) + Va(=(1)), (26)

where V) (z(t)), Vs(z(t)) and V4(z(t)) are defined in
(12) and

Ta(x(0) = (n— (¢ = 1) [ £"(5)R2(s)ds.

Theorem 2 For a given scalar 7 > 0, the origin of
system (10) under Assumption 2 is globally asymptoti-
cally stable if there exist matrices P = PT > 0, U =
U'>0,R=R">0, Z=2">0, A;=diag{\1,
Aj2y 00 Ajn} 20, Dy=diag{d;, dj, -+, djn} >
0(y = 1, 2), and matrices N; and N, with appropriate
dimensions, such that

r 1
Ql BTR—H(él—ég)TNQ nBTZ
. 1y o [<0, @D
n
| * * —nZ
[R+7Z N, N,
* Z 0| >0, (28)
| * * R

where

1
01:.(20—

H(él — &) (R+Z)(é1 — &) —
(63— &3)TZ(6y — &) —

He((& — é5)" Ni(éy — €3)),

I =3

2 = He(é] (P + Y A3)B + €5 (A, — A3)B —
€1 D164+ €5 D1 Xé, — X Dyés +
e DyXEy) +é{Ué, — é&; Ues,
B=[-C 00 A Bl,ée;=[1 00 0 0],
é;=1[0 1 00 0],ées=[0 0 I 0 0],
é,=1[00010],é&=[0000 I]
Proof Since
Va(z(t) = (n— (t — )" ()B" RBE(t) —
Lt 5T (5)R2(s)ds,
and from the Jensen’s integral inequality [25], it gets
that
[ T(s)R2(s)ds — It

tr t—mn

:1(8)Z%(s)ds <

- jtk € (1)(6r — é)"(R+ Z) (61 — &)E(t) —
1 TV (6 — e 7 (60 — &
mé (t)(ex — €3)" Z(&y — €3)&(t),
where

E(t) = [27(t) 2"(tx) 2" (t—m) ¢ )]
Similar to the proof of Theorem 1, it yields that
V(2(1) <)), (29)
where

Qt) = 20 +nB"ZB + (n— (t — t,))B"RB —

; —1tk (61— &) (R+Z) (&, — &) —
L e
Ty @8 ZE &) 60

From the Schur complement, it is ready to see that
£2(t) < 0 is equivalent to

~ ~ T
0 +nB™ZB BTR] 1|97 ¢ 0
% 0 — — | €2 — €3 0 X
N 0 I
1 — & 0
() |E3—250 | <0, (31)
0 I
where
U
R+ 7 0
t—tk( + 2Z)

L= oy o [f 1?%]
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So, from Lemma 1, one can find that £2(t) < 0
holds if

~ ~ T
0y +nB'zB B'R] 1|90
% 0 —6 €y — €3 0 X
0 I
R+7Z N; N, €1 —¢éy 0
* x R 0 I

which implies that the globally asymptotical stability of
system (10) can be guaranteed if LMIs (27)—(28) hold.

Thus, the proof is completed.

Remark 4 By using a reciprocally convex combi-
nation technique [20], a less complex stability criterion
for sampled-data-based NN is proposed in Theorem 2.
Here, fewer variables are involved.

4 Numerical example
Consider the network-based NN (1) with a time-
varying delay and [15]
C = diag{1.2769, 0.6231, 0.9230, 0.4480},
A=
[—0.0373 0.4852 —0.3351 0.2336
—1.6033 0.5988 —0.3224 1.2352

0.3394 —0.0860 —0.3824 —0.5785 |’
| —0.1311 0.3253 —0.9534 —0.5015

B =

[ 0.8674 —1.2405 —0.5325 0.0220
0.0474 —-0.9164 0.0360 0.9816
1.8495 2.6117 —0.3788 0.8428 |’

| —2.0413 0.5179 1.1734 —0.2775

o1 = 0.1137, o9 = 0.1279,
o5 = 0.7994, o, = 0.2368.

Case1 7y = 0. In this case, network-based NN
(5) reduces to a sampled-data-based NN (10), and 1 de-
termines an upper bound on the sampling intervals. The
upper bounds given by [6, 15-16,19] and our Theorems
1 and 2 are listed in Table 1, which shows that our re-
sults are better than the existing ones.

Table 1 Calculated upper bounds of 7).

Methods n
[6] 1.2598
[15] 2.0389
[19] 2.0389
[16] 2.0770
Theorem 1 2.3451

Theorem 2  2.3451

Case 2 7,y > 0. For this case, Table 2 presents a
comparison of the corresponding upper bounds of 7 for
different 7, and 7\ derived by the methods in [19] and
Theorem 1.

Table 2 Upper bounds of 7 for different 7,,, and 1y

™ 0.2 0.5 1
Tm 0 02 0 05 0 1

[19] 2.038 2.038 2.038 2.038 2.038 2.043
Theorem 1 2.184 2.185 2.114 2.115 2.078 2.081

From Tables 1 and 2, it is clear that larger allowable
upper bounds of 7 can be obtained by Theorems 1 and
2, which shows the benefits of the proposed method.

5 Conclusions

In this paper, the delay-dependent stability problem
of network-based NNs has been investigated. By defin-
ing an appropriate Lyapunov functional and clarifying
the coupled relationship of network-induced delay and
the executive duration, a new less conservative delay-
dependent stability criterion has been derived in terms
of LMIs. Meanwhile, by employing a reciprocally con-
vex combination approach, a delay-dependent stability
criterion with less complexity has also been proposed
for sampled-data-based NNs. A numerical example has
been given to illustrate the effectiveness of the presented
criteria and the improvement over the existing results.
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