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摘要: 本文研究了网络化神经网络的稳定性问题. 首先, 为了利用网络系统的采样特征, 定义了一个新的
Lyapunov泛函;通过分析网络诱导时延和执行周期之间的关系,采用一个迭代凸组合技术,得到了一个包含较少保
守性的稳定性判据. 然后,给出一个基于采样数据的神经网络稳定性判据,减少了计算复杂性. 最后,通过一个数例,
验证了本文方法的有效性和优越性.
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Delay-dependent stability criteria for network-based neural networks
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Abstract: This paper investigates the problem of stability of network-based neural networks (NNs). To exploit the
sampling characteristic of network systems, we define a new type of Lyapunov functional. By analyzing the relation
between the network-induced delay and the executive duration, and employing an iterative convex combination technique,
we develop a less conservative stability criterion for network-based NNs. To reduce the computational complexity, we also
propose a stability criterion for sampled-data-based NNs. An illustrative example is given to show the effectiveness and the
advantages of the proposed method.
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1 Introduction
Neural networks (NNs) have immense potentials of

application prospective in a variety of areas, such as sig-
nal processing, pattern recognition, static image pro-
cessing, associative memory, and combinatorial opti-
mization. Due to the finite speed of information pro-
cessing, the existence of time delays frequently causes
oscillation, divergence, or instability in NNs. In recent
years, the stability problem of delayed neural networks
has become a topic of great theoretic and practical im-
portance [1–14].

For NNs with single time-varying delay, there exist
many delay-dependent stability results reported in the
literature (see [5–6, 15–16] and the references therein).
In [6], delay-dependent stability condition was de-
rived by defining a new Lyapunov functional and the
obtained condition could include some existing time
delay-independent ones. In [15], a less conservative
delay-dependent stability criterion for delayed NNs was
proposed by using the free-weighting matrix method
and considering the useful term when estimating the

upper bound of the derivative of Lyapunov functional.
And the stability result in [15] was improved in [16],
where a convex combination technique [17] was em-
ployed.

Recently, a new model for neural networks with
two additive time-varying delays had been proposed,
and this kind of neural network has a strong application
background in remote control and network-based con-
trol [18]. In a network-based system, signals transmit-
ted from one point to another may experience two seg-
ments of networks, and the resulting time delays have
different properties due to variable network transmis-
sion conditions. For such network-based NNs, [18] pre-
sented a stability criterion by using the free-weighting
matrix method. And the stability result in [18] was im-
proved in [19] by remaining some integral terms and
using a convex combination technique [17].

It is worth pointing out that the considered network-
based NNs were modeled as delayed NNs with two ad-
ditive time-varying delay components, and the sampling
characteristic of network-based systems was ignored. In
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network-based systems, the received signal by receiptor
is kept invariable in each executive period, which is re-
alized with a zero-order holder (ZOH). This sampling
characteristic shows that network-based NNs belong to
a special class of NNs with single time-varying delay,
so the stability criteria for network-based NNs are ex-
pected to be less conservative than the ones for general
delayed NNs, which motivates this study.

In this paper, the problem of stability analysis for
NNs with two additive time-varying delay components
is investigated. By considering the independence and
the variation of two additive time-varying delay compo-
nents, a new type of Lyapunov functionals is proposed.
Combining with a tighter estimation of the derivative of
the Lyapunov functional and a reciprocally convex com-
bination technique [20], new delay-dependent stability
criteria with less conservatism and less complexity are
derived in terms of linear matrix inequalities (LMIs). A
numerical example is also given to show the effective-
ness and the significant improvement of the proposed
method.

Notation: A real symmetric matrix P > 0(>
0) denotes P being a positive definite (positive semi-
definite) matrix, and A > B(A > B) means A−B >
0(> 0). I is used to denote an identity matrix with
proper dimension. The symmetric terms in a symmetric
matrix are denoted by ∗. For a square matrix E, He(E)
is defined as He(E) = E + ET.

2 Problem formulation
Consider a mode of network-based NN as follows:

ẋ(t) = −Cx(t) + Ag(x(t)) + Bg(x(sk) + u,

t ∈ [tk, tk+1), k ∈ N, (1)

where x(·) = [x1(·) · · · xn(·)]T ∈ Rn is the neuron
state vector, g(x(·)) = [g1(x1(·)) · · · gn(xn(·))]T ∈
Rn denotes the neuron activation function, and u =
[u1 · · · un]T ∈ Rn is a constant input vector. C =
diag{c1, · · · , cn} with ci > 0(i = 1, 2, · · · , n),
and A, B are the connection weight matrix and the
delayed connection weight matrix, respectively. N de-
notes the set of all nonnegative integers; tk denotes the
instant that the destination neuron receives the k-th sig-
nal, which is sampled by the sensor of the source neu-
ron at sampling instant sk; τk stands for the network-
inducted delay (causing by transmission delay and dis-
carding the outdated data packets) of the data packet
sampled at instant sk from the sensor to the destination,
that is, τk = tk − sk; The term t − tk is called as the
executive duration in k-th executive period [tk, tk+1).

According to [21] and [22], the following assump-
tion is made for network-based NN (1):

Assumption 1 The sampling-delay sequences

{sk, τk} (k ∈ N) satisfy

(sk+1 − sk) + τk+1 6 η, (2)

τm 6 τk 6 τM, (3)

where τm, τM and η are nonnegative constants.
Remark 1 In the network environment, it is usu-

ally assumed that the sensor is clock-driven, while the
acceptor and zero-order hold (ZOH) are event-driven. If
one packet sampled at the sensor node reaches the des-
tination later than its successors, then it will be dropped
and the latest one will be used. This guarantees that
both {tk} and {sk} are strictly increasing sequences.
In condition (2), η can be used to reflect the allow-
able bound on the amount of the data dropout and the
network-induced delays.

Assume that the activation functions gi(·)(i =
1, 2, · · · , n) are bounded and satisfy

0 6 gi(x)− gi(y)
x− y

6 σi, ∀x, y ∈ R, x 6= y, (4)

where σi(i = 1, 2, · · · , n) are some constants.
From the Brouwer’s fixed-point theorem, there ex-

ists an equilibrium point for (1). Assume that x∗ =
[x∗1 x∗2 · · · x∗n]T is an equilibrium point of system
(1), by choosing the coordinate transformation z(·) =
x(·)−x∗, system (1) is changed into the following error
system

ż(t) = −Cz(t) + Af(z(t)) + Bf(z(sk)), (5)

where t ∈ [tk, tk+1) and z(·) = [z1(·) · · · zn(·)]T
is the state vector of the transformed system, f(z) =
[f1(z1(·)) · · · fn(zn(·))]T and fi(zi(·)) = gi(zi(·)+
x∗i ) − gi(x∗i )(i = 1, 2, · · · , n). Then, the functions
fi(·)(i = 1, 2, · · · , n) satisfy the following condi-
tion:

0 6 fi(zi)
zi

6 σi, fi(0) = 0, ∀zi 6= 0, (6)

which implies that

(fi(zi(t))− σizi(t)) · fi(zi(t)) 6 0 (7)

and

(fi(zi(sk))− σizi(sk)) · fi(zi(sk)) 6 0 (8)

where t > 0 and i = 1, 2, · · · , n.
Obviously, network-based NN (5) belongs to a spe-

cial class of NNs with single delay:

ż(t) = −Cz(t) + Af(z(t)) + Bf(z(t− τ(t))),
(9)

where τ(t) = t − sk(t ∈ [tk, tk+1)) and τ(t) satis-
fies τm 6 τ(t) 6 η. For such delayed NNs, there exist
many results of stability analysis reported in the litera-
ture (see [6, 15–16]).

When τM = 0, it is known than τk = 0 and
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tk = sk. Thus, network-based NN (5) reduces to

ż(t) = −Cz(t) + Af(z(t)) + Bf(z(tk)),
t ∈ [tk, tk+1), k ∈ N, (10)

and Assumption 1 becomes Assumption 2.
Assumption 2 The sampling sequences tk(k ∈

N) satisfy

0 < tk+1 − tk 6 η, (11)

where η is a positive constant.
In this paper, the stability problems of both

network-based and sampled-data-based NNs are stud-
ied. The sampling characteristic of networked sys-
tems is captured by defining a new type of Lyapunov-
Krasovskii functional (LKF), and the coupled relation-
ship of the network-induced delay and the executive du-
ration is clarified, while an iterative convex combination
technique is utilized, which leads to a less conservative
stability criterion for network-based NNs. That is, a
larger allowable upper bound of η can be yielded by the
obtained stability criterion. Then, to reduce the com-
putational complexity, a stability criterion for sampled-
data-based NNs is also proposed. Finally, an illustrative
example is given to show the effectiveness and the im-
provement of the proposed method.

3 Main results
For network-based NN (5), a Lyapunov-Krasovskii

functional can be chosen as

V (z(t))=V1(z(t))+V2(z(t))+V3(z(t))+V4(z(t)),
(12)

where

V1(z(t)) = zT(t)Pz(t) + 2
n∑

i=1

λ1i

w zi(t)

0
fi(s)ds +

2
n∑

i=1

λ2i

w zi(t)

0
(σis− fi(s))ds,

V2(z(t)) = (η − (t− sk))
w t

tk

żT(s)Rż(s)ds,

V3(z(t)) =
w t

t−η
zT(s)Uz(s)ds,

V4(z(t)) =
w 0

−η

w t

t+θ
żT(s)Zż(s)dsdθ,

and P = PT > 0, R = RT > 0, U = UT > 0, Z =
ZT > 0, Λj =diag{λj1, λj2, · · · , λjn}>0(j = 1,
2) are to be determined.

Obviously, V (z(t)) is discontinuous. However, at
any t > t0 except the jumps tk, V (z(t)) is contin-
uous and positive. Note that V2(z(t−k+1)) > 0 and
V2(z(t+k+1)) = 0, this shows that V2(z(t)) does not
increase along the jumps tk (k ∈ N). Therefore, along
the jumps tk, V (z(t)) also does not increase.

For convenience, we denote Σ =diag{σ1, σ2, · · · ,

σn} and

e1 = [I 0 0 0 0 0], e2 = [0 I 0 0 0 0],
e3 = [0 0 I 0 0 0], e4 = [0 0 0 I 0 0],
e5 = [0 0 0 0 I 0], e6 = [0 0 0 0 0 I ].

Now, we give a new stability criterion for the origin
of system (5) as follows.

Theorem 1 For given scalars τm, τM, η(τm 6
τM 6 η), the origin of system (5) under Assumption
1 is globally asymptotically stable if there exist ma-
trices P = PT > 0, R = RT > 0, Z = ZT >
0, U = UT > 0, Λj = diag{λj1, λj2, · · · , λjn} >
0, Dj = diag{dj1, dj2, · · · , djn} > 0, j = 1, 2,
and matrices Y, T, M with appropriate dimensions,
such that



Ψ ATQ1 (η − τm)M τmT
∗ −Q1 0 0
∗ ∗ −(η − τm)Z 0
∗ ∗ ∗ −τmZ


 < 0, (13)




Ψ ATQ2 (η − τM)M τMT
∗ −Q2 0 0
∗ ∗ −(η − τM)Z 0
∗ ∗ ∗ −τMZ


 < 0, (14)




Ψ ηATZ (η − τm)Y τmT
∗ −ηZ 0 0
∗ ∗ −(η−τm)(R+Z) 0
∗ ∗ ∗ −τmZ


<0, (15)




Ψ ηATZ (η − τM)Y τMT
∗ −ηZ 0 0
∗ ∗ −(η−τM)(R+Z) 0
∗ ∗ ∗ −τMZ


<0, (16)

where

Ψ = He(eT
1 (P + ΣΛ2)A+ eT

5 (Λ1 − Λ2)A+
Y (e1 − e2) + T (e2 − e3) + M(e3 − e4)) +
eT
1 Ue1 − eT

4 Ue4 − 2eT
5 D1e5 + eT

5 D1Σe1 +
eT
1 ΣD1e5 − 2eT

6 D2e6 + eT
6 D2Σe3 +

eT
3 ΣD2e6,

Q1 = ηZ + (η − τm)R,

Q2 = ηZ + (η − τM)R,

A =
[−C 0 0 0 A B

]
.

Proof Denote ζ(t) = [ζT
1 (t) ζT

2 (t)]T with ζ1(t)
= [zT(t) zT(tk) zT(sk) zT(t− η)]T and ζ2(t) =
[fT(z(t)) fT(z(sk))]T.

Taking the time derivative of Vi(z(t))(i = 1, 2, 3,
4) along the trajectory of (5) yields that

V̇1(z(t)) =

2zT(t)P ż(t) + 2
n∑

i=1

λ1ifi(zi(t))żi(t) +
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2
n∑

i=1

λ2i(σizi(t)− fi(zi(t)))żi(t) =

2zT(t)(P + ΣΛ2)ż(t) +
2fT(z(t))(Λ1 − Λ2)ż(t) =
ζT(t)He(eT

1 (P +ΣΛ2)A+eT
5 (Λ1−Λ2)A)ζ(t),

V̇2(z(t)) = (η − (t− sk))ζT(t)ATRAζ(t)−w t

tk

żT(s)Rż(s)ds,

V̇3(z(t)) =
zT(t)Uz(t)− zT(t− η)Uz(t− η) =
ζT(t)(eT

1 Ue1 − eT
4 Ue4)ζ(t),

V̇4(z(t)) =

ηζT(t)ATZAζ(t)−
w t

t−η
żT(s)Zż(s)ds.

It is known that

−
w t

tk

żT(s)Rż(s)ds−
w t

t−η
żT(s)Zż(s)ds =

−
w t

tk

żT(s)(R+Z)ż(s)ds−
w tk

sk

żT(s)Zż(s)ds−
w sk

t−η
żT(s)Zż(s)ds,

and

−
w t

tk

żT(s)(R + Z)ż(s)ds 6

ζT(t)((t− tk)Y (R + Z)−1Y T +
He(Y (e1 − e2)))ζ(t),

−
w tk

sk

żT(s)Zż(s)ds 6

ζT(t)(τkTZ−1TT + He(T (e2 − e3)))ζ(t),

−
w sk

t−η
żT(s)Zż(s)ds 6

ζT(t)((η − (t− sk))MZ−1MT +
He(M(e3 − e4)))ζ(t).

On the other hand, from (7) and (8), it yields that

0 6
−2fT(z(t))D1(f(z(t))−Σz(t)) =
ζT(t)(−2eT

5 D1e5 + eT
5 D1Σe1 + eT

1 ΣD1e5)ζ(t),
0 6
−2fT(z(sk))D2(f(z(sk)−Σz(sk)) =
ζT(t)(−2eT

6 D2e6 + eT
6 D2Σe3 + eT

3 ΣD2e6)ζ(t).

So, it gets that

V̇ (z(t)) 6 ζT(t)(Ψ0 + (t− sk)Ψ1 + τkΨ2)ζ(t),
(17)

where

Ψ0 =
He(eT

1 (P + ΣΛ2)A+ eT
5 (Λ1 − Λ2)A+

Y (e1 − e2) + T (e2 − e3) + M(e3 − e4)) +

eT
1 Ue1 − eT

4 Ue4 − 2eT
5 D1e5 + eT

5 D1Σe1 +
eT
1 ΣD1e5 − 2eT

6 D2e6 + eT
6 D2Σe2 +

eT
2 ΣD2e6 + ηAT(R + Z)A+ ηMZ−1MT,

Ψ1 = Y (R + Z)−1Y T −ATRA−MZ−1MT,

Ψ2 = −Y (R + Z)−1Y T + TZ−1TT.

From (2) in Assumption 1, it is known that

τk 6 t− sk 6 tk+1 − sk 6 η, (18)

which shows that t− sk varies within [τk, η]. By using
the convex combination technique given in [17], it gets
that Ψ0 + (t− sk)Ψ1 + τkΨ2 < 0 holds if and only if

Ψ0 + τk(Ψ1 + Ψ2) < 0 (19)

and

Ψ0 + ηΨ1 + τkΨ2 < 0. (20)

Furthermore, for τk ∈ [τm, τM], inequality (19) holds
if and only if

Ψ0 + τm(Ψ1 + Ψ2) < 0 (21)

and

Ψ0 + τM(Ψ1 + Ψ2) < 0. (22)

Similarly, inequality (20) holds if and only if

Ψ0 + ηΨ1 + τmΨ2 < 0 (23)

and

Ψ0 + ηΨ1 + τMΨ2 < 0. (24)

Thus, from the Schur complement, it is known that
V̇ (z(t)) < 0 holds for t ∈ [tk, tk+1)(k ∈ N) if
LMIs (13)−(16) hold. Since V (z(t+k )) 6 V (z(t−k )),
so the globally asymptotical stability of system (5) can
be guaranteed if LMIs (13)−(16) hold.

The proof is completed.
Remark 2 In Theorem 1, a sufficient condition of

globally asymptotical stability for the origin of system
(5) is given in terms of solutions to a set of LMIs. Here,
three techniques are employed. First, a new type of LKF
is defined, which captures the sampling characteristic of
network systems. Then, the coupled relationship (18) of
terms τk and t − tk is clarified. It should be noted that
0 6 t − tk 6 η − τm was used in [23–24] , which
shows that the upper bound of t − tk in the k-th exec-
utive period is obviously enlarged. Finally, an iterative
two-step convex combination technique is utilized, and
an LMIs-based criterion is obtained.

Remark 3 Different from [15, 18–19] and [16],
the sampling characteristic of network systems and the
coupled relationship of terms τk and t− tk is taken into
consideration, the new stability criterion in Theorem 1
is less conservative, which will be verified by an exam-
ple in the sequel.

For sampled-data-based NN (10), one can obtain a
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stability criterion from Theorem 1 directly. For reduc-
ing the computational complexity, we will provide a less
complex stability criterion. To this end, a reciprocally
convex combination technique [20] will be used, so it is
listed as the following lemma.

Lemma 1 For given positive semi-definite matri-
ces Z1 and Z2, if there exists a matrix T such that[

Z1 T
∗ Z2

]
> 0,

then the following inequality for any α(0 < α < 1)
holds




1
α

Z1 0

∗ 1
1− α

Z2


 >

[
Z1 T
∗ Z2

]
. (25)

Proof It is ready to see that


1
α

Z1 0

∗ 1
1− α

Z2


−

[
Z1 T
∗ Z2

]
=




1− α

α
Z1 − T

∗ α

1− α
Z2


 =

[
βI 0
∗ −β−1I

] [
Z1 T
∗ Z2

] [
βI 0
∗ −β−1I

]
> 0,

where β =
√

1− α

α
.

Thus, the result is established.
For (10), we can choose an LKF candidate as

Ṽ (z(t)) = V1(z(t)) + Ṽ2(z(t)) +
V3(z(t)) + V4(z(t)), (26)

where V1(z(t)), V3(z(t)) and V4(z(t)) are defined in
(12) and

Ṽ2(z(t)) = (η − (t− tk))
w t

tk

żT(s)Rż(s)ds.

Theorem 2 For a given scalar η > 0, the origin of
system (10) under Assumption 2 is globally asymptoti-
cally stable if there exist matrices P = PT > 0, U =
UT > 0, R =RT > 0, Z = ZT > 0, Λj =diag{λj1,
λj2, · · ·, λjn}>0, Dj =diag{dj1, dj2, · · ·, djn}>
0(j = 1, 2), and matrices N1 and N2 with appropriate
dimensions, such that



Ω1 BTR− 1
η
(ẽ1−ẽ2)TN2 ηBTZ

∗ −1
η
R 0

∗ ∗ −ηZ


<0, (27)




R + Z N1 N2

∗ Z 0
∗ ∗ R


 > 0, (28)

where

Ω1 = Ω0 − 1
η
(ẽ1 − ẽ2)T(R + Z)(ẽ1 − ẽ2)−

1
η
(ẽ2 − ẽ3)TZ(ẽ2 − ẽ3)−

1
η
He((ẽ1 − ẽ2)TN1(ẽ2 − ẽ3)),

Ω0 = He(ẽT
1 (P + ΣΛ2)B + ẽT

4 (Λ1 − Λ2)B −
ẽT
4 D1ẽ4 + ẽT

4 D1Σẽ1 − ẽT
5 D2ẽ5 +

ẽT
5 D2Σẽ2) + ẽT

1 Uẽ1 − ẽT
3 Uẽ3,

B = [−C 0 0 A B ], ẽ1 = [I 0 0 0 0],
ẽ2 = [0 I 0 0 0], ẽ3 = [0 0 I 0 0],
ẽ4 = [0 0 0 I 0], ẽ5 = [0 0 0 0 I ].

Proof Since
˙̃V2(z(t)) = (η − (t− tk))ξT(t)BTRBξ(t)−w t

tk

żT(s)Rż(s)ds,

and from the Jensen’s integral inequality [25], it gets
that

−
w t

tk

żT(s)Rż(s)ds−
w t

t−η
żT(s)Zż(s)ds 6

− 1
t− tk

ξT(t)(ẽ1 − ẽ2)T(R + Z)(ẽ1 − ẽ2)ξ(t)−
1

η − (t− tk)
ξT(t)(ẽ2 − ẽ3)TZ(ẽ2 − ẽ3)ξ(t),

where

ξ(t) = [zT(t) zT(tk) zT(t− η) ζT
2 (t)]T.

Similar to the proof of Theorem 1, it yields that
˙̃V (z(t)) 6 ξT(t)Ω(t)ξ(t), (29)

where

Ω(t) = Ω0 + ηBTZB + (η − (t− tk))BTRB −
1

t− tk

(ẽ1 − ẽ2)T(R + Z)(ẽ1 − ẽ2)−
1

η − (t− tk)
(ẽ2 − ẽ3)TZ(ẽ2 − ẽ3). (30)

From the Schur complement, it is ready to see that
Ω(t) < 0 is equivalent to

[
Ω0 + ηBTZB BTR

∗ 0

]
− 1

η




ẽ1 − ẽ2 0
ẽ2 − ẽ3 0

0 I




T

×

Ω2(t)




ẽ1 − ẽ2 0
ẽ2 − ẽ3 0

0 I


 < 0, (31)

where

Ω2(t) =




η

t− tk

(R + Z) 0

∗ η

η − (t− tk)

[
Z 0
∗ R

]

 .
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So, from Lemma 1, one can find that Ω(t) < 0
holds if

[
Ω0 + ηBTZB BTR

∗ 0

]
− 1

η




ẽ1 − ẽ2 0
ẽ2 − ẽ3 0

0 I




T

×



R + Z N1 N2

∗ Z 0
∗ ∗ R







ẽ1 − ẽ2 0
ẽ2 − ẽ3 0

0 I


< 0, (32)

which implies that the globally asymptotical stability of
system (10) can be guaranteed if LMIs (27)−(28) hold.

Thus, the proof is completed.
Remark 4 By using a reciprocally convex combi-

nation technique [20], a less complex stability criterion
for sampled-data-based NNs is proposed in Theorem 2.
Here, fewer variables are involved.

4 Numerical example
Consider the network-based NN (1) with a time-

varying delay and [15]

C = diag{1.2769, 0.6231, 0.9230, 0.4480},
A =


−0.0373 0.4852 − 0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015


 ,

B =


0.8674 − 1.2405 − 0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775


 ,

σ1 = 0.1137, σ2 = 0.1279,

σ3 = 0.7994, σ4 = 0.2368.

Case 1 τM = 0. In this case, network-based NN
(5) reduces to a sampled-data-based NN (10), and η de-
termines an upper bound on the sampling intervals. The
upper bounds given by [6,15–16,19] and our Theorems
1 and 2 are listed in Table 1, which shows that our re-
sults are better than the existing ones.

Table 1 Calculated upper bounds of η.

Methods η

[6] 1.2598
[15] 2.0389
[19] 2.0389
[16] 2.0770

Theorem 1 2.3451
Theorem 2 2.3451

Case 2 τM > 0. For this case, Table 2 presents a
comparison of the corresponding upper bounds of η for
different τm and τM derived by the methods in [19] and
Theorem 1.

Table 2 Upper bounds of η for different τm and τM

τM 0.2 0.5 1

τm 0 0.2 0 0.5 0 1

[19] 2.038 2.038 2.038 2.038 2.038 2.043
Theorem 1 2.184 2.185 2.114 2.115 2.078 2.081

From Tables 1 and 2, it is clear that larger allowable
upper bounds of η can be obtained by Theorems 1 and
2, which shows the benefits of the proposed method.

5 Conclusions
In this paper, the delay-dependent stability problem

of network-based NNs has been investigated. By defin-
ing an appropriate Lyapunov functional and clarifying
the coupled relationship of network-induced delay and
the executive duration, a new less conservative delay-
dependent stability criterion has been derived in terms
of LMIs. Meanwhile, by employing a reciprocally con-
vex combination approach, a delay-dependent stability
criterion with less complexity has also been proposed
for sampled-data-based NNs. A numerical example has
been given to illustrate the effectiveness of the presented
criteria and the improvement over the existing results.
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