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摘要:本文针对受外部干扰的线性时不变系统研究了基于动态补偿的最优干扰抑制问题,其中干扰信号为已知
动态特性的扰动信号.首先,将原系统与扰动系统联立构成增广系统,进而转化为无扰动的标准线性二次最优问题.
其次,给出了经具有适当动态阶的补偿器补偿后的闭环系统渐近稳定并且相关的Lyapunov方程正定对称解存在的
条件,进一步给定的二次性能指标可写成一个与该解和闭环系统初值相关的表达式. 为了得到系统的最优解,将
该Lyapunov方程转化为一个双线性矩阵不等式形式,并给出了相应的路径跟踪算法以求得性能指标最小值以及补
偿器参数. 最后,通过数值算例说明应用本文方法可以不仅能够最小化线性二次指标,而且能够使得系统的干扰得
到抑制.
关键词: 线性系统;动态补偿;线性二次最优控制;干扰抑制;双线性矩阵不等式;路径跟踪算法
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Optimal disturbance rejection via dynamic compensation
for linear systems

LIU Lei1†, ZHANG Guo-shan2

(1. Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China;
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Abstract: We investigate the linear-quadratic optimal control by using dynamic compensation for the linear time-
invariant system affected by external persistent disturbances with known dynamic characteristics. By combining the system
with the disturbance system, we transform this optimal disturbance rejection problem into the standard linear quadratic
optimal control problem without disturbance, and develop the dynamic compensator with appropriate order to make the
closed-loop system asymptotically stable with associated Lyapunov equation having a symmetric positive-definite solution.
The quadratic performance index is formulated as a simple expression related to the symmetric positive-definite solution to
the Lyapunov equation as well as the initial value of the closed-loop system. In order to solve the optimal control problem
for the system, we transform the Lyapunov equation to a bilinear matrix inequality and develop a corresponding path-
following algorithm to minimize the quadratic performance index and obtain the optimal dynamic compensator. Finally, a
numerical example is provided to show that the proposed method can minimize the linear quadratic performance index and
reject the system disturbances.

Key words: linear systems; dynamic compensator; linear-quadratic (LQ) optimal control; disturbance rejection; bilinear
matrix inequality (BMI); path-following method

1 Introduction
The linear-quadratic (LQ) optimal control problem

has been well studied for many years owing to its com-
prehensive practical applications [1–2]. Most of the re-
sults are obtained based on static output feedback [3–7] and
dynamic compensation [8–9] for the systems without dis-
turbance. However, many control problems involve de-
signing a controller capable of stabilizing a given system
while minimizing the worst-case response to some exoge-
nous disturbances. This problem is called optimal dis-
turbance rejection. It is a subject of recurrent interest.
For the unknown random disturbance, [10] shows that the

persistent disturbance rejection achieved by any stabiliz-
ing state-feedback linear dynamic controller can be also
achieved using a memoryless variable structure controller.
[11] has presented the solutions to the linear quadratic reg-
ulator (LQR) design with the worst case disturbance rejec-
tion. And [12] presents a method which combines quasi-
robust linear programming concept with a well-known L1-
optimal controller synthesis for the linear systems with per-
sistent disturbance signals, while [13] has addressed the
optimal disturbance attenuation problem by output feed-
back for linear systems with delayed input. A necessary
and sufficient condition to guarantee the existence of an
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optimal solution is provided using the geometric approach.
[14] proposes an asymptotic rejection algorithm for nonlin-
ear systems with unknown disturbances. For the known the
dynamic characteristics of disturbance, [15] has presented
a feedforward and feedback optimal controller with sinu-
soidal disturbance, while [16] has proposed combination of
the reduced-order observer and the optimal feedback con-
troller to reject the disturbance. However, the problem for
the optimal disturbance rejection based on dynamic com-
pensation has not been investigated yet.

So we will consider the LQ optimal control for lin-
ear time-invariant system with exogenous disturbance sig-
nal based on dynamic compensation in this paper. We
are interested in the case where the exact disturbance can
be formulated in terms of state space description. By
taking the disturbance signal as a part of the state vec-
tor, an augmented system without disturbance can be ob-
tained. First we will give a dynamic compensator with a
proper dynamic order such that the closed-loop system is
asymptotically stable, and its associated Lyapunov equa-
tion has a symmetric positive-definite solution. Then the
given quadratic performance index can be derived to be
a simple expression related to the solution to the Lya-
punov equation and the initial value of the closed-loop sys-
tem. In order to solve the optimization problem for the
given quadratic performance index numerically, an itera-
tive algorithm is proposed in the light of the path-following
algorithm [17–18]. By applying this algorithm, we can derive
an optimal dynamic compensator and the minimum value
of the quadratic performance index. Finally, a numerical
example is provided to show that the proposed method can
minimize the linear quadratic performance index and make
the system’s disturbances rejected.

2 Problem formulation and preliminary
Consider the following linear time-invariant (LTI) sys-

tem with disturbance signal:



ẋ(t) = Ax(t) + Bu(t) + D1v(t),
y(t) = Cx(t) + D2v(t)
x(0) = x0,

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is
the input vector, y(t) ∈ Rq is the output vector, and
v(t) ∈ Rl is the exogenous disturbance signal. A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rq×n, D1 ∈ Rn×l, D2 ∈ Rq×l are con-
stant matrices. We assume that the realization {A,B, C}
is both controllable and observable.

The exogenous disturbance signal v(t) can be repre-
sented by the exosystem:




ẇ(t) = Gw(t),
v(t) = Fw(t),
w(0) = w0,

(2)

where w(t) ∈ Rk is the state vector of the exosystem (2),
G and F are constant matrices with appropriate dimen-
sions. We assume that (G,F ) is observable and the eigen-
values of the matrix G satisfies

Re[λi(G)] < 0, i = 1, 2, · · · , k, (3)

As the exosystem is asymptotically stable, we consider
the following performance index with the linear quadratic

form

J =
1
2

w∞
0

[xT(t)Qx(t) + uT(t)Ru(t)]dt, (4)

where Q ∈ Rn×n, R ∈ Rm×m are weight matrices and

Q = QT > 0, R = RT > 0.

Remark 1 If

Re[λi(G)] = 0, i = 1, 2, · · · , k, (5)

the steady state solutions to the state vector and the control vec-
tor are impossible to tend to zero. Therefore, the quadratic cost
functional (4) may not be applied to the optimal control. In this
case, we shall consider the minimization of a quadratic perfor-
mance index as

J = lim
T→∞

1

T

w T

0
[xT(t)Qx(t) + uT(t)Ru(t)]dt, (6)

such that the performance index is convergent (see the refer-
ence [15]). The method for solving the optimal control problem
in terms of performance index (6) is similar to that of the per-
formance index (4). The only difference is that the closed-loop
system is stable in sense of Lyapunov, that is |x(t)| < ε, ε > 0,

and the aim of the optimal disturbance rejection is reducing ε

as much as possible.
In this paper, we mainly discuss the exosystem (2) satisfied

the condition (3), and in the numerical example we will give a
disturbance with sinusoidal specification satisfied the condition
(5).

Combine system (1) with the exosystem (2), and take
w(t) as a part of the state vector, then an equivalent sys-
tem without disturbance can be obtained. And {Ã, B̃, C̃}
is both controllable and observable.




η̇(t) = Ãη(t) + B̃u(t),
y(t) = C̃η(t),
η(0) = η0,

(7)

where

η(t) =
[
x(t)
w(t)

]
, Ã =

[
A D1F
0 G

]
,

B̃ =
[
B
0

]
, C̃ =

[
C D2F

]
.

On the basis of system (7), we consider the dynamic
compensator





ẋc(t) = Acxc(t) + Bcy(t),
u(t) = Ccxc(t) + Dcy(t),
xc(0) = xc0,

(8)

where xc(t) ∈ Rnc is the state vector of dynamic compen-
sator.

Ac ∈ Rnc×nc , Bc ∈ Rnc×q,

Cc ∈ Rm×nc , Dc ∈ Rm×q

are matrices of dynamic compensator which are to be
solved.

The aim of this paper is to design dynamic compen-
sator (8) with proper dynamic order nc for the system (7)
such that the closed-loop system is asymptotically stable
and the linear quadratic performance index (4) is mini-
mized.
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3 Main results
3.1 Optimal control based on dynamic compen-

sation
The resultant closed-loop system from system (7) and

its dynamic compensator (8) is




ζ̇(t) =




A+BDcC D1F +BDcD2F BCc

0 G 0
BcC BcD2F Ac


 ζ(t),

y(t) =
[
C D2F 0

]
ζ(t),

ζ(0) = ζ0,
(9)

where ζ(t) =
[
xT(t) wT(t) xT

c (t)
]T

.

We define

Ā :=




A+BDcC D1F +BDcD2F BCc

0 G 0
BcC BcD2F Ac




and let

Â =




A D1F 0
0 G 0
0 0 0


 , B̂ =




B 0
0 0
0 I


 ,

Ĉ =
[
C D2F 0
0 0 I

]
, K =

[
Dc Cc

Bc Ac

]
,

and Ā = Â + B̂KĈ, then the closed system with a dy-
namic compensator of order nc is brought back to the static
output feedback controller case.

Here, the quadratic performance index (4) is described
by

J =
1
2

w∞
0

[ζT(t)Q̄ζ(t)]dt, (10)

where

Q̄ = Q̂ + ĈTKTR̂KĈ,

Q̂ =




Q 0 0
0 0 0
0 0 0


 , R̂ =




R 0 0
0 0 0
0 0 0


 .

Remark 2 Applying Q̂, R̂, K and C to Q̄, we obtain

Q̄ =

2
64

Ξ11 CTDT
c RDcD2F CTDT

c RCc

∗ DT
2 DT

c RDcD2F FTDT
2 DT

c RCc

∗ ∗ CT
c RCc

3
75 ,

where “∗” stood for the symmetric terms in a symmetric matrix
and

Ξ11 = Q + CTDT
c RDcC.

Apparently, Q̄ > 0.

Remark 3 Since ζ(t) contains disturbance signal
w(t), one can find out that the smaller (10) means the less im-
pact for the system (1) response to the disturbance (2). Then
the disturbance can be rejected.

Lemma 1[19] Let the system be defined as in (7),
there exists dynamic compensator (8) with dynamic order
nc > n−max{m, q}, such that the closed-loop system (9)
is asymptotically stable.

Theorem 1 Consider the system (7), if there ex-
ists a dynamic compensator (8) with dynamic order nc >

n − max{m, q}, such that the closed-loop system (9) is
asymptotically stable and Q̄ > 0. Then the following Lya-
punov equation

ĀTP + PĀ + Q̄ = 0 (11)

has symmetric positive-definite solution P , and the perfor-
mance index J = 1/2ζT

0 Pζ0.

Proof From Lemma 1 we know that there exists dy-
namic compensator (8) with order nc > n − max{m, q}
such that the closed-loop system (9) is asymptotically sta-
ble and the Lyapunov equation (11) has the symmetric
positive-definite solution P since Ā is stable and Q̄ > 0.
So we choose a Lyapunov function as

V (ζ, t) = ζT(t)Pζ(t). (12)

It is obvious that V (ζ, t) is positive-definite, and the time-
derivative of V (ζ, t) along the solution to (9) is given by

V̇ (ζ, t) = 2ζ̇T(t)Pζ(t) = ζT[ĀTP + PĀ]ζ(t). (13)

Then from (11),

V̇ (ζ, t) = −ζT(t)Q̄ζ(t) (14)

is negative-semi-definite.
From (12) and (14), we obtain

ζT(t)Q̄ζ(t) = − d
dt

[ζT(t)Pζ(t)]. (15)

Substituting (15) into (10)

J =
1
2

w∞
0

ζT(t)Q̄ζ(t)dt = −1
2
ζT(t)Pζ(t)|∞0 =

−1
2
ζT(∞)Pζ(∞) +

1
2
ζT
0 Pζ0. (16)

Because the poles of the closed system are in the open left-
half-plane, Re[λ(Ā)] < 0, and ζ(∞) → 0, the following
equation can be obtained:

J =
1
2
ζT
0 Pζ0. (17)

The matrix P is the solution to the Lyapunov equation (11).
The proof is completed.

In order to obtain the optimal performance index, we
should solve the minimization problem described by

minJ =
1
2
ζT
0 Pζ0,

s.t.
{

ĀTP + PĀ + Q̄ = 0,
P > 0.

(18)

In the next section, we will give an iterative algorithm
based on the path-following method.

3.2 Solution to the minimization problem
In order to solve the Lyapunov equation (11) conve-

niently, we should add a small positive slack factor ε1 > 0
and transform that Lyapunov equation (11) into the follow-
ing inequality:

|ĀTP + PĀ + Q̄| < ε1I, (19)

where I is an identity matrix, which has the same dimen-
sion with Ā, and |X| < ε1I is interpreted as

−ε1I < X < ε1I.

Equation (19) represents

ĀTP + PĀ + Q̄ = M,
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where |M | < ε1I . That is

ĀTP + PĀ + Q̄−M = 0.

Let Q̄approx = Q̄ −M , then Q̄ = Q̄approx + M , the cor-
responding performance index is

J =
w∞

0
ζT(t)(Q̄approx + M)ζ(t)dt =

ζT
0 (Papprox + M)ζ0 ≈ ζT

0 Papproxζ0.

So, by adding a small positive slack factor ε1 > 0 to trans-
form equation (11) into inequality (19), one can see that
the performance index is approximately obtained. If ε1 is
small enough, then the approximation is the performance
index to be expected.

As K in Ā and P are both unknown matrix vari-
ables, the inequality (19) is actually BMI, which cannot
be solved directly by LMI. In the following, we present a
path-following method for solving this BMI (19). In fact,
this BMI is linearized by using a perturbation approxima-
tion, and then it becomes a LMI. The detailed algorithm is
as follows.

Algorithm 1
Step 1 Let j = 1. Select an initial feedback gain

Kj satisfying that Ā is stable.

Step 2 Solve the following LMI problem

minJj = ζT
0 Pjζ0,

s.t.





|(Â + B̂KjĈ)TPj + Pj(Â + B̂KjĈ)+

Q̂ + ĈTKT
j R̂KjĈ| < ε1I,

Pj > 0.

(20)

We obtain Pj and Jj . If this LMI optimal problem has
solution go to Step 3. Otherwise, go to Step 1.

Step 3 Substituting Pj = Pj +δP , Kj = Kj +δK
into (20), one can assume that δP and δK are small and
therefore by neglecting the second order terms we can ob-
tain the following optimization problem:

|ATPj + PjA + PjBKjC + CTKT
j BTPj +

PjBδKC + CTδKTBTPj + δPA +
ATδP + δPBKjC + CTKT

j BTδP + Q +

CTKT
j RKjC + CTKT

j RδKC +

CTδKTRKjC| < ε2I. (21)

Note that the constraints of δP and δK are

|δP | < I, (22)

|δKTδK| < I. (23)

Suppose that ε2 is a small positive scalar, then we can ob-
tain δP, δK. If this LMI problem has a solution, go to Step
4. Otherwise, go to Step 1.

Step 4 Let

j = j + 1, Pj = Pj−1 + δP, Kj = Kj−1 + δK,

compute Jj = (1/2)ζT
0 Pjζ0. If

Jj < Jj−1, Jj−1 − Jj > ε3, j < N

(ε3 is a given small positive scalar, N is the upper bound
for the iteration number), then go back to Step 2. Oth-
erwise, stop. Then the optimal performance index is ob-
tained.

This iterative algorithm ends until a desired perfor-
mance is achieved, or the performance cannot be improved
further. The choice of initial values of K1 is important for
convergence to an acceptable solution [17]. The numeri-
cal example is shown that as long as we can find a K1

such that the closed-loop system is asymptotically stable,
we conclude that K1 can be adjusted iteratively using the
free variable δK and the optimal performance index J can
be obtained accordingly.

4 Numerical example
Since the performance index is related to the initial

value of the closed-loop system, we set xc0 = 0 in the
following example so as to obtain the minimal index for
convenient comparisons.

Example [13] Consider a linear system (1) with the
the following given parameters

A =
[

0 1
−2 1

]
, B =

[
0
1

]
, C =

[
1 0

]
, D1 =

[
0
1

]
,

D2 = 1 and the initial value of the state vectors

x (0) = [1 0]T.

i) Set the exogenous disturbance system (2) with the
the following given parameters

G =
[−0.4 0.5
−0.1 0

]
, F = [1 0].

Now v(t) represents disturbance signal with damped speci-
fication. Since G satisfies (3), then choose the performance
index (4) and the weight matrices are

Q =
[
1 0
0 1

]
, R = 1.

· We first design a state feedback controller:

u(t) = K0x(t), (24)

where K0 is the state feedback controller gain.
Using the lqr(·) function in MATLAB, we can obtain

K = [−0.2361 −2.5723], J∗ = 1.5331.

The trajectories of the state vectors are shown in Fig. 1.

Fig. 1 Curves of state vectors by (24)

· Secondly, we design a state feedback controller:

u(t) = K1x(t) + K2v(t), (25)
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where K1 and K2 are the state feedback controller gain.
Using the lqr(·) and lyp(·) function in MATLAB, we

can obtain

K1 = [−0.2361 −2.5723], K2 = −0.2014

and J∗ = 1.4932. The trajectories of the state vectors are
shown in Fig. 2.

Fig. 2 Curves of state vectors by (25)

· Thirdly, we design a state feedback controller:

u(t) = Kxx(t) + Kww(t), (26)

where Kx, Kw are the state feedback controller gain.
Using the lqr(·) function in MATLAB, we can obtain

Kx = [−0.2361 −2.5723],
Kw = [−0.4507 0.3850],

and J∗ = 1.4540. The trajectories of the state vectors are
shown in Fig. 3.

Fig. 3 Curves of state vectors by (26)

· Finally, we design a dynamic compensator (8). The
controller with first order, that is nc = 1. In light of Al-
gorithm 1 and MATLAB LMI Toolbox, we can obtain the
optimal dynamic compensator with the gain:

Ac = −2.2913, Bc = −0.9473,

Cc = −8.1658, Dc = −2.6050, J∗ = 1.2667

Define
ξ(t) =

[
xT(t) xT

c (t)
]T

.

Now the trajectories of the state vectors are shown in
Fig. 4.

Fig. 4 Curves of state vectors by dynamic compensator
nc = 1

· The controller with second order, that is nc = 2. In
light of Algorithm 1 and MATLAB LMI Toolbox, we can
obtain the optimal dynamic compensator with the gain:

Ac =
[−3.1448 1.5383
−2.5226 −10.0037

]
,

Bc =
[−2.1264
−0.2312

]
,

Cc = [−9.7856 0.2039],
Dc = −4.9153, J∗ = 0.9250.

The trajectories of the state vectors are shown in Fig. 5.

Fig. 5 Curves of state vectors by dynamic compensator
nc = 2

By observing these figures and results, we can con-
clude that the closed-loop system based on dynamic com-
pensator can achieve better trajectory performance (the
overshoot of the state x2(t) decreases). Moreover, we can
see that the performance of the closed-loop system can be-
come better with the increase of the dynamic order nc.

ii) Set the exogenous disturbance system (2) with the
the following given parameters

G =
[

0 1
−1 0

]
, F = [1 0].

Now v(t) represents disturbance signal with sinusoidal
specification. Choose the performance index (6) and the
weight matrices are the same as above.

Using the controller (24)–(26) and dynamic compen-
sator (8) with nc = 1 and nc = 2, respectively, the state
curves are shown in Fig.6 and Fig.7.
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By observing these figures and results, we can find that
the amplitude of the state variables decreases based on dy-
namic compensator. Moreover, the amplitude reduces to
less than 0.05 with the increase of the dynamic order nc.

Fig. 6 Comparison curves of x1(t)

Fig. 7 Comparison curves of x2(t)

The performance indices are shown in Table 1.

Table 1 Performance index comparison.

Controller form Index

(24) 3.2578
(25) 2.6716
(26) 1.7663

(8) with nc = 1 0.9269
(8) with nc = 2 0.6481

Above all, the numerical examples show that the per-
formance is much better with respect to dynamic compen-
sator than that of the traditional feedback optimal control.

5 Conclusion
In this paper we have considered the LQ optimal con-

trol for linear time-invariant system with exogenous dis-
turbance signal with known dynamic characteristics based

on dynamic compensation. It is shown that if there exists
a dynamic compensator with proper dynamic order such
that the closed-loop system is asymptotically stable, then
a Lyapunov equation has a symmetric positive-definite so-
lution and the given quadratic performance index can be
expressed as a simple form. By transforming the Lya-
punov equation into a BMI, an algorithm has further been
proposed in terms of path-following algorithm, then the
optimal dynamic compensator and the minimum value of
the quadratic performance index can be obtained by MAT-
LAB LMI Toolbox. Finally, one numerical example is
given to show that the proposed method can make the sys-
tem achieve better performance with respect to additive
two kinds of persistent disturbances than the traditional
state feedback, and more, the dynamic compensators with
higher order can achieve better performance by compari-
son of the quadratic performance indices.
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