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摘要:本文在集成控制的框架下研究了工业过程中产品质量和生产过程的实时一体控制问题.首先,基于双速率
采样数据提出了产品质量和生产过程的集成控制方案.然后,把控制器设计问题归结为求解一组非线性矩阵不定
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Abstract: In an integrated framework, we investigate the real-time united control of the product quality and the produc-
tion process for a process industry. On the basis of dual-rate sampled-data, an integrated product and process control (IPPC)
scheme is proposed. The design problem is reduced to solving matrix inequalities which is solved by using a homotopy
algorithm. Finally, an example is given to illustrate the proposed method.
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1 Introduction
Product quality control (QC) plays a key role in man-

ufacturing. Traditional QC is based on quality inspection
and statistical analysis which usually leads to significant
time delay. Thus it is not sufficient to meet the high prod-
uct quality standard in modern manufacturing. To over-
come the shortcoming of the traditional QC method, some
real-time control methods are proposed to assure the prod-
uct quality starting from the earliest stage of product man-
ufacturing[1–5]. In [1], the so-called new generation qual-
ity control is presented based on reliable real-time process

control. In [2], a practical approach based on on-line mea-
surements and off-line analysis to the control of final prod-
uct quality in semibatch reactors is established. [3] pro-
poses an integrated process and product dynamic modeling
approach, which facilitates simultaneous control of both
process and product quality. [4] proposes a cascade con-
trol scheme called integrated product and process control
(IPPC). As shown in Fig.1, the inner loop of the system
is for process control, while the outer loop is for product
control. The results of [4] are extended to multiple-input
and multiple-output case in [5].

Fig. 1 The general IPP control scheme
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On the other hand, sampled-data control is a research
frontier in the past decades because modern control sys-
tems usually employ digital technology for controller im-
plementation. There are mainly three approaches for anal-
ysis and design of sampled-data systems. The first one
is based on the lifting technique in which the problem is
transformed to an equivalent finite-dimensional discrete
control problem[6]. The second approach is based on the
representation of the sampled-data system in the form of
impulsive model[7]. The third one is the input delay ap-
proach, where the system is modeled as a continuous-
time system with the delayed control input and the so-
lution is established by the Lyapunov-Krasovskii func-
tional method[8]. A common idea to deal with multi-rate
sampled-data control problems is transforming the multi-
rate problem into a single-rate one by the lifting tech-
nique[9], which usually requires the sampling rates to be
fixed. Recently, the input delay approach is applied to sta-
bilization problem of linear systems under uncertain sam-
pling rate[10].

The IPPC methods proposed by [4–5] are based on
the measurements on process and product and assume that
the signals are available all the time. However, in many

practical applications, quality measurements have slower
sampling rate than the process variables. Thus this papers
considers dual-rate sampled-data IPPC of process industry.
First, a dual-rate sampled-data IPPC scheme is proposed.
Then the design problem is reduced to solving matrix in-
equalities and a homotopy algorithm is given to solve the
matrix inequalities. Finally, an example is given to show
the effectiveness of proposed method.

2 Problem formulation
As shown in [5], a key component of IPPC design

is the dynamic characterization of a product that is being
manufactured. This requires product dynamic modeling
beside the usual process dynamic modeling. Assume that
the product quality dynamics model and the process dy-
namics model are as follows:

γ̇(t) = Aγγ(t) + Byy(t), (1)

ẏ(t) = Ayy(t) + Buu(t). (2)
In the IPPC design scheme shown in Fig.1 given by [4–5],
the inner loop of the system is for process control, while
the outer loop is for product quality control. Based on this
design scheme, we propose a dual-rate sampled-data IPPC
scheme shown in Fig.2 (ZOH means zero-order holder).

Fig. 2 Dual-rate sampled-data IPPC scheme

There have been many methods for process control
(see [4–5] and the references therein). Thus we assume that
the process controller is designed by the existing methods
and given in this paper. We just need to design the prod-
uct quality controller such that the dual-rate sampled-data
system can tracking any given product quality setpoint γ∗.

Assume that the sampling instants for γ(t) and y(t) are
tk and σk, respectively. Let η1 = t− σk, σk 6 t 6 σk+1,
then 0 6 η1 6 σk+1 − σk , h1. Let η2 = t − tk,
tk 6 t 6 tk+1, then 0 6 η2 6 tk+1 − tk , h2. Then
the closed-loop system is as follows:




ẏ(t) = Ayy(t) + Buu(t), ξ̇1(t) = yd(t)− y(t− η1),
γ̇(t) = Aγγ(t) + Byy(t), ξ̇2(t) = γ∗ − γ(t− η2),
yd(t) = F3[γ∗ − γ(t− η2)] + F4ξ2(t),
u(t) = F1[yd(t)− y(t− η1)] + F2ξ1(t).

(3)

Let e(t) = γ∗ − γ(t), then the closed loop system is trans-
formed into




ė(t) = Aγe(t)−Byy(t)−Aγγ∗,
ẏ(t) = Ayy(t) + Bu[F1(F3e(t− η2)+

F4ξ2(t)− y(t− η1)) + F2ξ1(t)],
ξ̇1(t) = F3e(t− η2) + F4ξ2(t)− y(t− η1),
ξ̇2(t) = e(t− η2).

(4)

Let z(t) = [e(t) y(t) ξ1(t) ξ2(t)] and omit the constant
term, we have

ż(t) = (A + BK1)z(t) + Ad1z(t− η1) +
(Ad2 + BK2)z(t− η2) =
A1z(t) + A2z(t− η1) + A3z(t− η2), (5)

where

A =




Aγ −By 0 0
0 Ay BuF2 0
0 0 0 0
0 0 0 0


 , Ad1 =




0 0 0 0
0 −BuF1 0 0
0 −I 0 0
0 0 0 0


 ,

K1 = [0 0 0 F4], K2 = [F3 0 0 0],
A1 = A + BK1, A2 = Ad1, A3 = Ad2 + BK2,

Ad2 =




0 0 0 0
0 0 0 0
0 0 0 0
I 0 0 0


 , B =




0
BuF1

I
0


 .

Note the fact that system (4) has a unique equilibrium
[0 ye ξ1e ξ2e]T for any given constat γ∗ if it is asymp-
totically stable. As a result, lim

t→∞
e(t) = 0 if system (5)

is asymptotically stable. Thus the tracking control prob-
lem is converted into stabilization problem of system (5)
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for which F1 and F2 are given and F3 and F4 are to be
determined.

3 Main results
3.1 Main theorem

Theorem 1 Given Fi(i = 1, 2, 3, 4), system (5)
is asymptotically stable if there exist matrices P > 0,
Mi > 0, Ui, Vi(i = 1, 2) satisfying




Φ11 ∗ ∗ ∗ ∗
Φ21 Φ22 ∗ ∗ ∗
Φ31 Φ32 Φ33 ∗ ∗
UT

1 V T
1 0 −h−1

1 M1 ∗
UT

2 0 V T
2 0 −h−1

2 M2




< 0, (6)

where

Φ11 = AT
1

2∑
i=1

(hiMi)A1+PA1+AT
1 P +

2∑
i=1

(Ui+UT
i ),

Φ21 = AT
2

2∑
i=1

(hiMi)A1 + AT
2 P + V1 − UT

1 ,

Φ31 = AT
3

2∑
i=1

(hiMi)A1 + AT
3 P + V2 − UT

2 ,

Φ22 = AT
2

2∑
i=1

(hiMi)A2 − V2 − V T
2 ,

Φ32 = AT
3

2∑
i=1

(hiMi)A2,

Φ33 = AT
3

2∑
i=1

(hiMi)A3 − V3 − V T
3 .

Proof By Schur complement lemma, inequality (6)
is equivalent to



Φ11 ∗ ∗
Φ21 Φ22 ∗
Φ31 Φ32 Φ33


 + h1




U1M
−1
1 UT

1 ∗ ∗
V1M

−1
1 UT

1 V1M
−1
1 V T

1 ∗
0 0 0


 +

h2




U2M
−1
2 UT

2 ∗ ∗
0 0 ∗

V2M
−1
2 UT

2 0 V2M
−1
2 V T

2


 < 0. (7)

Then there must exist matrices P > 0, Mi > 0, Ui, Vi,[
Xi Yi

Y T
i Zi

]
> 0, i = 1, 2,

satisfying
[
UiM

−1
i UT

i ∗
ViM

−1
i UT

i ViM
−1
i V T

i

]
6

[
Xi Yi

Y T
i Zi

]
, i=1, 2, (8)




Φ11 ∗ ∗
Φ21 Φ22 ∗
Φ31 Φ32 Φ33


+h1




X1 ∗ ∗
Y T

1 Z1 ∗
0 0 0


+h2




X2 ∗ ∗
0 0 ∗

Y T
2 0 Z2


<0.

(9)

Choose the Lyapunov function as follows:



V (t) = V1(t) + V2(t),
V1(t) = zT(t)Pz(t),

V2(t) =
w 0

−h1

w t

t+β
żT(α)M1ż(α)dαdβ+

w 0

−h2

w t

t+β
żT(α)M2ż(α)dαdβ.

(10)

Computing the derivative of the Lyapunov function V (t)
along the trajectories of system (5), we have



V̇1(t) = 2zTP ż =
2zTP [A1z(t) + A2z(t− η1) + A3z(t− η2)],
V̇2(t) =
h1ż

TM1ż + h2ż
TM2ż−w t

t−h1
żT(α)M1ż(α)dα−

w t

t−η2
żT(α)M2ż(α)dα.

(11)

By the Newton-Leibniz formula, we havew t2

t1
ż(α)dα = z(t2)− z(t1).

Then, for any matrices Ui, Vi, i = 1, 2, it holds that

Λi = 2[z(t) z(t− ηi)][Ui Vi]T × [z(t)−
z(t− ηi)−

w t

t−ηi

ż(α)dα] = 0. (12)

In addition, for any matrices[
Xi Yi

Y T
i Zi

]
> 0, i = 1, 2,

we have



Ψi = hiΠi −
w t

t−ηi

Πidα > 0,

Πi =
[

z(t)
z(t− ηi)

]T [
Xi Yi

Y T
i Zi

] [
z(t)

z(t− ηi)

]
.

(13)

From (11)–(14), we have

V̇ (t)6 V̇1(t) + V̇2(t) +
2∑

i=1

(Λi + Ψi) =

ψT(t)Φ̂ψ(t)+
2∑

i=1

w t

t−ηi

ϕ̇T
i (t, α)Ωiϕ̇i(t, α)dα, (14)

where

ψ(t) = [z(t) z(t− η1) z(t− η2)]T,

ϕi(t, α) = [z(t) z(t− ηi) ż(α)]T, i = 1, 2,

Ωi =



−Xi ∗ ∗
−Y T

i −Zi ∗
−UT

i −V T
i −Mi


 , Φ̂ =




Φ̂11 ∗ ∗
Φ̂21 Φ̂22 ∗
Φ̂31 Φ̂32 Φ̂33


 ,

Φ̂11 =
2∑

i=1

(hiA
T
1 MiA1+Ui+UT

i +hiXi) +

PA1 + AT
1 P,

Φ̂21 =AT
2

2∑
i=1

(hiMi)A1+AT
2 P +V1−UT

1 +h1Y
T
1 ,

Φ̂31 =AT
3

2∑
i=1

(hiMi)A1+AT
3 P +V2−UT

2 +h2Y
T
2 ,

Φ̂22 = AT
2

2∑
i=1

(hiMi)A2 − V2 − V T
2 + h1Z1,

Φ̂32 = AT
3

2∑
i=1

(hiMi)A2,

Φ̂33 = AT
3

2∑
i=1

(hiMi)A3 − V3 − V T
3 + h2Z2.

It is noted that inequality (9) implies Φ̂ < 0, and (8) is
equivalent to Ωi < 0, i = 1, 2. Then, the closed-loop sys-
tem (5) is asymptotically stable. This proof is completed.
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Remark 1 Theorem 1 proposes a sufficient condi-
tion for the multiple time-delays system (5) to be asymptot-
ically stable. By the dual-rate sampled-data IPPC scheme,
the time delays ηi(t), i = 1, 2 are time-varying and satisfy
η̇i(t) = 1, ∀t 6= tk or σk. This information may be helpful
to reduce the conservatism of the stability criterion, as will be
considered in our future work.

Remark 2 Inequality (6) is nonlinear with respect to
the controller gains F3 and F4. Thus it is significant to propose
an efficient algorithm to solve it, as will be discussed in the next
subsection.
3.2 Computational issue: Homotopy algorithm

By Schur complement lemma and inequality (6) is
equivalent to




Π ∗ ∗ ∗ ∗ ∗ ∗
AT

2 P + V1 − UT
1 −V1 − V T

1 ∗ ∗ ∗ ∗ ∗
AT

3 P + V2 − UT
2 0 −V2 − V T

2 ∗ ∗ ∗ ∗
UT

1 V T
1 0 −h−1

1 M1 ∗ ∗ ∗
UT

2 0 V T
2 0 −h−1

2 M2 ∗ ∗
A1 A2 A3 0 0 −h−1

1 M−1
1 ∗

A1 A2 A3 0 0 0 −h−1
2 M−1

2




< 0, (15)

where Π = PA1 + AT
1 P +

2∑
i=1

(Ui + UT
i ). Substituting the system matrices in (15), we have




Θ1 ∗ ∗ ∗ ∗ ∗ ∗
Θ2 −V1 − V T

1 ∗ ∗ ∗ ∗ ∗
Θ3 0 ∗ −V2−V T

2 ∗ ∗ ∗
UT

1 V T
1 0 −h−1

1 M1 ∗ ∗ ∗
UT

2 0 V T
2 0 −h−1

2 M2 ∗ ∗
A + BK1 Ad1 Ad2 + BK2 0 0 −h−1

1 M−1
1 ∗

A + BK1 Ad1 Ad2 + BK2 0 0 0 −h−1
2 M−1

2




< 0, (16)

where

Θ1 = P (A+BK1)+(A+BK1)TP +
2∑

i=1

(Ui+UT
i ),

Θ2 = AT
d1P +V1−UT

1 ,

Θ3 = (Ad2+BK2)TP +V2−UT
2 .

Pre- and post-multiplying (16) by

diag{P−1, P−1, P−1, P−1, P−1, I, I};

and letting P̄ = P−1, V̄i = P−1ViP
−1, Ūi = P−1UiP

−1,
M̄i = M−1

i , i = 1, 2, we have




Θ̄1 ∗ ∗ ∗ ∗ ∗ ∗
P̄AT

d1P +V̄1−ŪT
1 − V̄1−V̄ T

1 ∗ ∗ ∗ ∗ ∗
Θ̄2 0 −V̄2−V̄ T

2 ∗ ∗ ∗ ∗
ŪT

1 V̄ T
1 0 −h−1

1
¯PM

−1
1 P̄ ∗ ∗ ∗

ŪT
2 0 V̄ T

2 0 −h−1
2

¯PM2 ∗ ∗
(A + BK1)P̄ Ad1P̄ (Ad2 + BK2)P̄ 0 0 −h−1

1 M̄−1
1 ∗

(A + BK1)P̄ Ad1P̄ (Ad2 + BK2)P̄ 0 0 0 −h−1
2 M̄−1

2




<0, (17)

where

Θ̄1 =

(A + BK1)P̄ + P̄ (A + BK1)T +
2∑

i=1

(Ūi + ŪT
i ),

Θ̄2 = P̄ (Ad2 + BK2)T + V̄2 − ŪT
2 .

Note that Mi > 0, we have (Mi−P̄ )M−1(Mi−P̄ ) >
0, which is equivalent to

−P̄M−1P̄ 6 Mi − 2P̄ , i = 1, 2. (18)

Then (17) is guaranteed by



Θ̄1 ∗ ∗ ∗ ∗ ∗ ∗
P̄AT

d1+V̄1−ŪT
1 −V̄1 − V̄ T

1 ∗ ∗ ∗ ∗ ∗
Θ̄2 0 −V̄2−V̄ T

2 ∗ ∗ ∗ ∗
ŪT

1 V̄ T
1 0 h−1

1 (M1−2P̄ ) ∗ ∗ ∗
ŪT

2 0 V̄ T
2 0 h−1

2 (M2−2P̄ ) ∗ ∗
(A + BK1)P̄ Ad1P̄ (Ad2+BK2)P̄ 0 0 −h−1

1 M̄−1
1 ∗

(A + BK1)P̄ Ad1P̄ (Ad2+BK2)P̄ 0 0 0 −h−1
2 M̄−1

2




<0. (19)

which implies, by Theorem 1, that the closed-loop system
(5) is asymptotically stable. Inequality (19) is a bilinear

matrix inequality (BLMI). Neglecting the structure of Ki,
and letting Li = KiP̄ , i = 1, 2, we have
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


Θ̌1 ∗ ∗ ∗ ∗ ∗ ∗
P̄AT

d1+V̄1−ŪT
1 −V̄1−V̄ T

1 ∗ ∗ ∗ ∗ ∗
Θ̌2 0 −V̄2−V̄ T

2 ∗ ∗ ∗ ∗
ŪT

1 V̄ T
1 0 h−1

1 (M̄1−2P̄ ) ∗ ∗ ∗
ŪT

2 0 V̄ T
2 0 h−1

2 (M̄2−2P̄ ) ∗ ∗
AP̄ + BL1 Ad1P̄ A2dP̄ +BL2 0 0 −h−1

1 M̄1 ∗
AP̄ + BL1 Ad1P̄ A2dP̄ +BL2 0 0 0 −h−1

2 M̄2




< 0, (20)

where

Θ̌1 = AP̄ + BL1 + P̄AT + LT
1 BT +

2∑
i=1

(Ūi + ŪT
i ),

Θ̌2 = P̄AT
d2 + LT

2 BT + V̄2 − ŪT
2 ,

which is a linear matrix inequality (LMI) and can be
checked by LMI ToolBox of MATLAB.

Now, we solve the BMI (19) by adopting the idea of
the homotopy method[11]. Let us introduce a real number
λ varying from 0 to 1, and consider a matrix function

L(K1,K2, P, λ) =
F ((1− λ)K0

1 + λK1, (1− λ)K0
2 + λK2, P ), (21)

where F (·) denotes the left matrix of (19), K0
i , i = 1, 2 are

full-state-feedback gains which can be obtained from (20),
and Ki are partial-state feedback gains with the structure.
Thus, the term (1 − λ)K0

i + λKi in (21) defines a ho-
motopy interpolating a full-state feedback controller and a
desired partial-state-feedback controller, and our problem
of finding a solution to (19) is embedded in the family of
problems

L(K1,K2, P, λ), λ ∈ [0, 1]. (22)

To carry out the homotopy method, we first need the
solution Ki, P of (22) at λ = 0, which we denote by K0

i ,
i = 1, 2 can be obtained from (20). Now, our problem is
how to make a homotopy path to connect K0

i , P at λ = 0
and Ki, P at λ = 1 in (22). Let N be a positive integer and
consider (N + 1) points λk = k/N , k = 0, 1, 2, . . . , N in
the interval [0, 1] to generate a family of problems

L(K1,K2, P, λk) < 0, (23)

where k = 0, 1, 2, . . . , N . If the problem at the kth point
is feasible, we denote the obtained solution by solving it
as LMIs with some variables are fixed as Ki = Kik, or
P = Pk. If the family of problems (23) are all feasible,
a set of solution of the BMI (19) is obtained at k = N
(i.e. λ = 1). If it is not the case, we can consider more
points in the interval [0, 1] by increasing N , and repeat the
procedure.

We formulate this algorithm in the following proce-
dure.

Algorithm 1
Step 1 Obtain the full-state-feedback gains K0

i =
LiP

−1 by solving (20).
Step 2 Set k = 0, Kik = 0, and Pk = P0;
Step 3 Set k = k + 1, λk = k/N . Compute a set

solutions K1k, K2k of L(K1,K2, Pk−1, λk) < 0, if it is
feasible, goto Step 4; if it is not feasible, compute a com-
mon solution Pk of L(K1(k−1),K2(k−1), P, λk) < 0, if it

is feasible, goto Step 4, if it is not feasible, set N = 2N
and goto Step 4;

Step 4 If N > Nmax, where Nmax is a prescribed
upper bound, then the algorithm ends without feasible so-
lution, else if k < Nmax, goto Step 3, and if k = N , the
obtained K1N , K2N , PN are the feasible solutions.

Remark 3 The homotopy algorithm is motivated by
[11]. There is no convergence guarantees to an acceptable solu-
tion, the choice of initial value is important. The practice indi-
cates that the P0 with minimal trace will work well in practice.

Remark 4 In the design procedure, the sampling pe-
riods are not necessary fixed. The dual-rate sampled-data IPPC
is valid as long as sampling periods are bounded by h1 and h2,
respectively.

Remark 5 In practice, the product variables and pro-
cess variables are usually constrained. Thus the design prob-
lem taking into account the constraints is significant for further
consideration.

4 Example
In this section, the proposed dual-rate sampled-data

IPPC design methodology is used to study an automotive
coating curing problem which was considered in [3, 5]. In
automotive manufacturing, it is a challenging problem to
ensure coating quality. In production, vehicle bodies, when
entering each baking oven, are covered by a thin layer of
wet polymeric film. These vehicles loaded on a conveyor
need to travel through the baking oven one by one at a con-
stant speed for coating curing[5].

According to [3], the curing process dynamical model
is as follows:





Ṫ =
a

ρmCpmZm
v0.7
in (Ta − T ),

Ṗ =
PA

V
(vin − vout),

(24)

where Ta is the convection air temperature, vin is the inlet
convection air velocity, T is the panel temperature, a is the
heat transfer coefficient, and ρm, Cpm, Zm are the density,
the heat capacity, and the thickness of the metal substrate,
respectively. P is the air pressure within the oven, A is the
area of the ventilation openings at the inlet and outlet of
the oven, and vout is the outlet convection air velocity.

The coating quality is governed by this model:



ẋ = ς exp(− Rr

RT
)(1− x),

ṙ =
β

m0
(αP − exp(17.22− 3137

T − 94.43
)0.2r7),

(25)

where x is the cross linking conversion, Rr is the reaction
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activation energy, ς is the reaction frequency factor, and
R is the gas constant. r is the percentage of the solvent
residue in the coating film, α is the weight percentage of
vapor phase within the drying air, β is the mass transfer
coefficient, and m0 is the initial amount of solvent within
the coating film.

Linearizing the nonlinear equations (24)–(25) and us-
ing the parameter values given by [3, 5], we have the pro-
cess dynamics model and the product quality dynamics
model in the form of (1) and (2), respectively, with

Ay =
[−0.0023 0

0 − 0.0025

]
, Bu =

[
0.023 0.04

0 1.667

]
,

Aγ = diag{−0.0042,−0.0126},

By =
[

8.9632× 10−5 0
−2.3966× 10−4 1.892× 10−3

]
.

By [5], the inner loop process controller is chosen as

F1 =
[
60.770 1.458

0 0.838

]
, F2 =

[
43.478 − 1.043

0 0.6

]
.

Let tk = k, σk = 0.1k, k = 1, 2, · · · . Using Algorithm
1, we have

F3 =
[
23.273 − 0.842
3.115 8.360

]
, F4 =

[
0.367 − 0.051
0.044 0.416

]
.

To show the tracking performance of the closed-loop
system, let the γ∗ be square waves as shown in Fig.3 (the
solid lines). It can be seen that the product quality vari-
able can track the given performance quickly. Fig.4 shows
that the inner system can track perfectly the dynamical set-
points produced by the outer loop system.

Fig. 3 Outer loop tracking performance for square waves

Fig. 4 Inner loop tracking performance for square waves

5 Conclusion
In this paper, we have considered the problem of re-

altime control for product quality of process industry in
the framework of integrated product and process control
(IPPC). A dual-rate sampled-data IPPC scheme has been
proposed to achieve different sampling rate in the control.
The design problem has been reduced to solving matrix
inequalities and a homotopy algorithm has been given to
solve the matrix inequalities. An example has been pre-
sented to show the effectiveness of the proposed dual-rate
sampled-data IPPC method.
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