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Consensus control of higher-order multi-agent systems with delays
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Abstract: This paper discusses consensus problems for multi-input networked multi-agent systems (MAS) with com-
munication delay. Directed or undirected graphs are used to represent the topology of a networked system. Consensus con-
vergence problems of MAS are converted into stability of linear delayed systems. Consensus criteria of higher-order MAS
for both delay-independent and delay-dependent asymptotical stabilities are derived in terms of bilinear matrix inequalities
(BMI). Finally, a MAS with a delay and an undirected communication is used as an example to show the effectiveness of
our strategies.
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1 Introduction

A basic problem arising in distributed coordination
and control is the so-called consensus problem, which
plays a pivotal role in a group of spatially mobile agents
with a common mission or task. The goal is to develop a
distributed algorithm that can be used by a group of agents
to seek to agree upon certain quantities of interest by ex-
changing information among them. Application of con-
sensus algorithm can be found in cooperative control of
vehicles, formation control, flocking, parallel computing,
etc. Thus many researchers have focused on the consensus
problems!!~121,

The most conventional method to describe the agents’
interconnection structure is directed or undirected graphs
and the graph Laplacian is often used as a state feedback
gain. In most works®®l, the proof of the states’ con-
vergence is usually given using LaSalle’s Invariant Prin-
ciple!'®.  And such a graph Laplacian based algorithm
is generally limited structure with low dimension and the
control specification is also simple. However, in practice,
the quantities of each agent are very complex and many as-
pects should be considered such as position, velocity, tem-
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perature, and so on. One-dimensional state consensus only
needs to be investigated, if the quantities can be decoupled.
But in fact, there exist many situations where these quanti-
ties are dependent on each other. Hence, it is necessary to
extend the state space of each other from R to R”.
Therefore, in the last two years, research interest in
consensus problem has been devoted to networks of high-
order-integrator agents from a number of different per-
spectives and under various assumptions!'424/. The con-
sensus problem for agents modeled as integrator chains
of length greater than two was reported in [14-15]. In
addition, the consensus problem considering agents mod-
eled by LTIs (linear time-invariant systems) was formu-
lated in [17-18]. Further, references [19-20] studied out-
put feed-back consensus problem for higher-order LTIs.
A distributed observer-type protocol solving the consen-
sus problem was also presented in [21-22]. Very recently,
Zhai, Okuno, Imae, and Tomoaki!®! reduced the consensus
problem on hand to solving a strict matrix inequality with
respect to a Lyapunov matrix and a controller gain matrix.
Semsar-Kazerooni and Khorasani'®*! used a linear-matrix-
inequality formulation to address an optimal control design
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strategy for guaranteeing consensus achievement in a net-
work of multi-agent systems.

One-dimensional state consensus is often related to
topology construction of communication network, for ex-
ample a connected undirected graph!® or a directed graph
having a spanning tree. However, just as the descrip-
tion in [18-24], the consensus of multi-input networked
MAS is not only related to network topology but also re-
lated to state matrix and some gain matrices. As a whole,
consensus analysis of multi-input networked MAS is more
difficult, and some useful knowledge like graph theory,
matrix theory and control theory can serve as effective
tools. Communication delays are ubiquitous in networks
owing to long distance or the confine of medium. How-
ever, except [21], there are few reports on consensus prob-
lem of higher-order MAS with communication delay up
to now. Motivated by the above-mentioned reasons, this
paper mainly focuses on the consensus problem for multi-
input networked MAS with delay. In our network model,
the dynamics of agents is also assumed to be LTIs. Then
the consensus analyses are systematically performed under
two cases that the communication topology is a directed or
an undirected graph. Consensus analysis of MAS with di-
rected graph is hard, for the corresponding Laplacian ma-
trix often has complex eigenvalues. Therefore, a technique
is used to solve the complex eigenvalues. Through some
Jordan transformation, consensus question is converted to
stability analysis. Next, consensus conditions for delay-
independent and delay-dependent asymptotical stabilities
are derived in terms of BMISs, and the control gain is solved
by using of an effective algorithm.

The remainder of this paper is organized as follows.
Section 2 reviews some preliminaries about graph theory,
and introduces MAS model, control algorithm for consen-
sus, some necessary definitions and lemmas. The main re-
sults on consensus analysis for MAS are presented under
two cases in Section 3. In Section 4, numerical simula-
tions are proposed to show validity of the results. Finally,
Section 5 concludes the whole paper.

2 Notation and preliminaries

Throughout this paper, some standard notations are
utilized. R™"*"(R™) and C"*"(C") denote real and com-
plex matrices (vectors) set, respectively. The superscript
T represents transpose for real matrices. Iy stands for the
identity matrix with dimension N and I denotes the iden-
tity matrix of an appropriate dimension. Let 1 be the vec-
tor with all entries equal to one. For { € C, Re(¢) and
Im(¢) mean the real part and imaginary part of (, respec-
tively. For matrix A, A\;(A) represents the kth eigenvalue
of A. The Kronecker product of matrices A € R™*" and
B € RP*9 js defined as

allB s alnB
A®B = :

amlB amnB

2.1 Graph theory

A directed graph G consists of a node set }V and an
edge set £ C V x V, in which an edge is represented by a

pair of distinct nodes of G : (i, j) € &, where i is the parent
node, j is the child node, and j is neighboring to 7. A graph
with the property that (¢,5) € £ implies that (j,4) € & is
said to be undirected. A path on G from nodes iy to i
is a sequence of ordered edges in the form of (iy,ix+1),
k=1,---,1 —1. A directed graph is said to be strongly
connected if, for any pair of distinct nodes, there exists a
path between them. A directed graph has or contains a di-
rected spanning tree if there exists a node called root such
that there exists a directed path from this node to every
other node. For an undirected graph, if there exists a path
from any node 7 to any other node 7, then it is connected.

Suppose that there are N nodes in a graph. The adja-
cency matrix A = [a;;] € RN*N is defined by a;; = 0,
a;; = 1if (j,7) € £ and 0 otherwise. Thus, 4, j, - - - repre-
sent both nodes and indices, which should not cause con-
fusion from the context. The Laplacian matrix £ = [I;;] €
RN XN is defined as

lii = = ay, lij = —ayy
J#i

for i # j. For an undirected graph, the Laplacian matrix £
is symmetric, furthermore, all the nonzero eigenvalues of
L are positive, and zero is a simple eigenvalue of £ with
eigenvector 1 if the undirected graph is connected. For a
directed graph, all of the nonzero eigenvalues of £ have
positive real parts.

Lemma 1 The Laplacian matrix £ of directed
graph G has a simple zero eigenvalue if and only if graph
G contains a spanning tree.

2.2 System model

Consider a MAS which consists of [V identical agents
with general linear dynamics. The dynamics of ¢th agent
is described by

where z;(t) € R™ and u(t) € R™ are state and input of
agenti, A € R"*" B € R™*™ are constant matrices with
appropriate dimensions, Z = {1,2,--- , N} is indices set
of agents.

In a MAS, each agent can be considered as a node in a
generalized graph, and the information flow between two
agents can be regarded as a directed or an undirected path
between the nodes. Thus, the interconnection topology in a
MAS can be described by a directed or an undirected graph
G=W,¢EA).

Definition 1  For system (1), if there exists an ap-
propriate state feedback w;(t) such that all agents’ states
converge to the same vector, i.e.

lim ||z;(t) — z;(t)]| = 0,¥,j € 7.
t—oo

Then it is said that system (1) achieves consensus, and the
same vector is called group decision value.

Let z(t) = [z1(t) 2T(@) - 25 @®)]" and u(t) =

[uf (t) ud(t) --- uk(t)]T, then the collective dynamics
of system (1) can be written as

i(t) = (In © A)x(t) + (In @ B)u(?). )

The proposed control law for ith agent with communica-
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tion delay is represented as

zgé@ﬁ_ﬂ—%@—ﬂx 3)

where K € R™*" is a control gain and 7 is a constant
delay.
With the control law (3), MAS (2) is expressed as

)= (UIn®A)z(t)+ (LRBK)x(t—71). (@)
The following lemma is useful in deriving the criteria.

Lemma 225! For any constant matrix M € R"*",
M = MT > 0, scalar v > 0, and vector function & :
[—7,0] — R such that the following integration is well
defined, then

o

[I(Ltt(—t)v)} {_Ajy—%} L(f(—t)v)]

3 Main results

In this section, consensus convergence of MAS (4) is
mainly considered under the conditions that communica-
tion topology is a directed or an undirected graph.

T(t+ )Ma(t + £)de <

3.1 Consensus analysis for MAS with undirected
graph

Property 1 Suppose communication topology G of
MAS (4) is an undirected and connected graph, coefficient
matrix A has no positive real eigenvalue. Then, under the
algorithm (3), MAS (4) achieves consensus if the zero so-
lutions of following N — 1 linear delay systems are asymp-
totically stable:

Zl(t) = Azl(t) + AlBKzl(t —

where z;(t) € R", A, B are the coefficient matrices in sys-
tem (1), K is the feedback gain, and \;, ¢ = 2,--- , N are
nonzero eigenvalues of Laplacian matrix L.

Proof Since the communication topology G is an
undirected and connected graph, the Laplacian matrix £
has N real eigenvalues denoted as

0=X(L) <L) < A3(L) <--- < An(L),

and zero is a simple eigenvalue for £. Then there exists a
matrix S such that £ has the following Jordan form

SLS = A = diag{0, A.}.

T)7i:2a"'7N7 (5)

Do coordinate transformation for z(t) as z(t) = (S7! ®
I,)x(t), system (4) is written as

()= (ST S®@A)2(t)+(STLS®BK)2(t—T7) =

(In® A)z(t) + (A® BK)z(t — 1), 6)
where z(t) = [2f(t) 23(t) --- 25T € RN». Let
2o(t) = [23(t) 2X(t) -+ zL(t)]T, and system (6) can
be decomposed as two equations:

le (t) = AZl (t), (7)

Ze(t)=(IN-1®A)2e(t) +

Obviously, if z.(t) converges to zero as t — oo, MAS (4)
achieves consensus. In fact, for symmetric matrix L, its

(Ae®BK)zo(t—7).  (8)

Jordon form is

AN (L)
Therefore, equation (8) is equal to
Zo(t) = Aza(t) + Ao (L)BK zo(t — 1),
z3(t) = Azs(t) + A3(L)BKz3(t — 7),

21\[(15) = AZN(t) + )\N(,C)BKZN(t - ’7').

At last, it is concluded that if linear system (5) is asymp-
totically stable about zero for¢ = 2, - - - , N, then MAS (4)
achieves consensus. The proof is completed.

Remark 1  From [19], it stated that group decision
value of MAS (4) is N'/2 exp(At) (I ® I,) which can be ob-
tained from (7) easily, where [; is left-eigenvector of £ corre-
sponding to 0.

Property 1 has converted consensus problem of MAS
into stability analysis of linear delay systems. Therefore,
using the Lyapunov-Krasovskii functional approach, some
sufficient conditions for ensuring the consensus of MAS
(4) are derived as follows.

Theorem 1  Suppose that communication topol-
ogy G of MAS (4) is an undirected and connected graph. If
there exist positive-definite matrices P, ) and matrix K,
such that

_ [ATP+PA+Q M\PBK
E(PaQ7K)_|: )\lKTBTP _Q <07 (9)
1 = 2,---,N, then MAS (4) achieves consensus asymp-

totically for any time delay 7 > 0.

Proof Choose a Lyapunov-Krasovskii functional as

V() = L OPz(0) + [ 2T (@)Qz(0)da
(10)
where P and @) are positive-definite matrices. Taking time
derivative of V' (z;(t)) along any trajectory of system (5) is
V(zi(t) = & (t)Pi(t) + 2 (8) Pzi(t) +
2 ()Qzi(t) — 2 (t = T)Qai(t — 7) =
zE () [ATP + PA+ Q)zi(t) —
2 (t—T)Qzi(t —7) +
2X\iz; (t — ) KT BT Pz(t) =
ZH ()X Z(t),
where Z;(t) = [z (t) 2L (t —7)]7,
ATP+PA+Q MNPBK
NKTBTP -Q

When inequality (9) holds, we have V;(z;(t)) < 0, for
1t = 2,---,N. From Lyapunov-Krasovskii Stability The-
orem, it is known that system (5) is asymptotically sta-
ble. Therefore, by Proposition 1, it is derived that MAS
(4) achieves consensus asymptotically. This completes the
proof.

) =
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Theorem 1 is a delay-independent stability criterion
for MAS (4). As we know, delay-independent stability
criteria are suitable for the system which is asymptoti-
cally stable for an arbitrary delay. However, such cri-
teria are often very conservative if the delay is already
known and small. In contrast with delay-independent sta-
bility, delay-dependent stability is concerned with the size
of the delay and provides an upper bound of the delay such
that the system is stable for any delay less than the upper
bound. In addition, delay-dependent stability is less con-
servative than delay-independent one. In the following, a
delay-dependent criterion for the asymptotical consensus
of MAS (4) is provided.

Theorem 2  Suppose that communication topol-
ogy G of MAS (4) is an undirected and connected graph,
and the time-invariant delay 7 € [0, h] for some h < oo. If
there exist positive-definite matrices P, R and matrix K,
such that

II(P,R,K) =
AT"P+PA—-R PBK+R hATR
MKTBTP+ R — R MhKTBTR| <0,
hRA AihRBK —R
(11)
i = 2,---, N, then MAS (4) achieves consensus asym-

ptotically for any time delay 7 € [0, h].
Proof Choose a Lyapunov-Krasovskii functional as
V(zi(t)) = Vi(zi(t)) + Va(2(2)), 12)
where
Vi(zi(t) = 2 (1) Pzi(t);
Vazit) = [ (h—t+ )

o T(@)hRz(a)da,

where P and R are positive-definite matrices. Taking time
derivative of V' (z;(t)) along any trajectory of system (5) is

V(2i(t)) = Vi(zi(t) + Va(zi(t) =

( JATP + PA]z,( )+ 2Xiz PBK zi(t — 1) +
t
TR~ [ 2T (@)hRz(a)da <

z; (t)[ATP + PA)zi(t) + 202 PBK z;(t — 1) +

[Az;(t) + NiBK z(t — 7)]"h*R -
[Az;(t) + \i\BKz(t — 7)] +

2 1'[-R R][ ()
Zi(t—T) R —-R Zi(t—T) ’
where the inequality above is obtained from Lemma 2.

Then, it follows that V;(z;(t)) < Z7 (t)ZZ;(t), where
Zi(t) = [ (8) 2 (t —7)]",

7
& Ewe
- =T = 9

Z12 =22

1 =ATP+ PA+ ATh?RA — R,
12 = PBK + \;ATh’RBK + R,
= MK'"BThWRBK — R.

(1)

where

1] §§] [1]

From Schur complements, it is verity that inequality (11)
is equivalent to = < 0. Therefore, we have V;(z;(t)) < 0,
fori = 2 , N. From Lyapunov-Krasovskii Stability
Theorem, it is known that systems (5) is asymptotically
stable. Using Proposition 1, it is concluded that MAS (4)
achieves consensus asymptotically. This ends the proof.

Through Theorem 1 or Theorem 2, consensus problem
of MAS (4) is formulated as a feasible problem with BMI
constrains:

Problem 1 mint, s.t. ¥ < tI(IT < tI).

It is intuitively obvious inequalities (9) and (11) are
both bilinear matrix inequalities about matrices P, Q(R)
and K. Then, a alternate algorithm which is used in
[26-27] is adopted in order to solve BMIs (9) and (11).

Algorithm 1

Step 1 Initialization. Let k = 1, give the initial
valueto P = P, Q = Q°(R = R°);

Step 2 Repeat. Let k = k + 1, solve problem

mint, s.t. J(P* 1, Q1K) <
tI(IT(P*', RF1 K) < tI)
to obtain the solution K, denote K* =
lem

mint, s.t. X(P,Q, K*) < tI(Il(P,R, K*) < tI)
P, Q" =Q

K, solve the prob-

to obtain the solution P, Q(R), denote P* =
(R* = R);

Step 3  End. The solution P*, Q¥(RF), K* satisfy
inequality

Y(P*, Q% K*) < tI(I(P*, R* K*) < tI),
or there is no feasible solution to Problem 1.

By applying Algorithm 1, the control gain K in con-
trol law (3) is obtained.

3.2 Consensus analysis for MAS with directed
graph

As we know directed graphs are more complex than
undirected graphs since direct graphs not only describe
coupling relations between nodes but also specify coupling
direction. MSA (4) with directed communication topology
G is more general in reality and is well worth consensus
analysis. The Laplacian matrix £ of a directed graph G
is often asymmetric and reducible and cannot be diagonal-
izable. Therefore, when the communication topology of
MAS (4) is a directed graph G which contains a spanning
tree, the properties of Jordan block matrix are adopted to
analyze consensus of MAS (4).

Property 2 Suppose communication topology G of
MAS (4) is directed and contains a spanning tree, and co-
efficient matrix A has no positive real eigenvalue. Then,
under the algorithm (3), MAS (4) achieves consensus if
the zero solutions of following k — 1 linear delay systems
are asymptotically stable:

ii(t):Azi(t)+)\iBKZi(t—T), 1=2,---, k. (13)

where z;(t) € C", A, B are the coefficient matrices in sys-
tem (1), K is the feedback gain, and \;, i = 2,--- | k are
nonzero eigenvalues of Laplacian matrix L.
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Proof Similar to the proof of Property 1, there ex-

ists a nonsingular matrix S such that S71£S = A. Let
n(t) = (S~ ® I,)z(t), MAS (4) is rewritten as

0(t) = (In ® An(t) + (A@ BK)n(t = 7). (14)
When the graph G is directed and contains a spanning tree,

its Laplacian matrix £ is asymmetric and reducible, from
Lemma 1, Jordan matrix of £ has the following form:

0
Jo

A=
0 Jk
where J; is the Jordan block corresponding to the n; mul-
tiple eigenvalue \; of L:

N1 0

= N =2, k.
-
0 A

M XNg

From the expression of A, equation (14) is decomposed as

n(t) = Am (1), (15)
Me(t)=(IN—1®@A)ne(t)+ (A @ BK )ne(t—7),  (16)
where
ne(t) = [ny (t) n3 (1) -~ n (D)]"
with
mi(t) = 31 (1) mg( ) - 773;“( s
and 7;;(t) € C" for1 < j < n;(¢ =2,--- k). (15) and

(16) show that if 7. (t) converges to zero as t — oo, MAS
(4) achieves consensus. Next, it is only needed to prove
equation (16) is asymptotically stable about zero solutions.
When 2 < i < k, n;(¢) has the following forms:

f]ﬂ(f) = A’I’]il(t) + )\Z‘BK’I]il(t - T)+
BKThQ(t — 7'),
7'71‘2 (t) = A’l]ig (t) + )\,‘BK’(],’Q (t — 7')+
BK’I]ig(t — 7‘)7
: a7)
Thnl—l(t) = Anini—l(t) + )\iBKnini—l
(t — 1)+ BKnp, (t — 1),
Ning (1) = Anin, (£) + A BK1)jin, (t — 7).

Via above deduction, it can be concluded that if linear sys-
tem (17) is asymptotically stable, zero solutions of follow-
ing dynamical systems

0i(t) = (In, ® A)ni(t)
i=2,- k

+ (J; ® BK)n;(t — 1),

are asymptotically stable. Therefore, if zero solutions of
linear delay systems (13) are asymptotically stable, system
(16) is asymptotically stable about zero solution. This ends
the proof.

When communication graph G is directed and has a
spanning tree, Laplacian matrix £ of G is not symmet-
ric and irreducible and may has complex eigenvalues \;,
i = 2,---,k. As aresult, in liner system (13), z;(¢) is

a complex vector. In that cases, let z;(t) = Re(z;(¢)) +
jIm(z;(t)) be the solution of system(13) and \; = c; +j0;,
in which j is the imaginary unit, then

Re(2i(t)) = ARe(z(t)) + a; BKRe(z;(t — 7)) —
BBKTm(z(t — 7)),

Im(%;(t)) = Alm(z;(t)) + o BKIm(2;(t — 7)) +
B:BKRe(zi(t — 1)),

i=2 k. (18)

Denote ;(t) = [Re(z(t)) Im(z(t)]* € R*™, A =

diag{A, A} and

(){iBK

BiBK

it follows from (18) that
Qi(t) = Api(t) + Aipi(t —

Here, linear delay systems (19) are in real field. Choose
Lyapunov-Krasovskii functionals (10) and (12) for (19),
two corresponding consensus criteria are derived as fol-
lows: one is delay-independent and the other is delay-
dependent.

— 0;BK

Ai= ;BK |’

7),i=2,k (19

Theorem 3  Suppose communication topology G
of MAS (4) is directed and contains a spanning tree. If
there exist positive-definite matrices P, ) and matrix K,
such that

= ATP+PA+Q PA;
i=2,---,k, where
A — alBK - ﬂZBK
o ﬁZBK O[ZBK ’

then MAS (4) achieves consensus asymptotically for any
delay 7 > 0.

Theorem 4  Suppose communication topology G
of MAS (4) is directed and contains a spanning tree, and
the time-invariant delay 7 € [0, h] for some h < oo. If
there exist positive-definite matrices P, R and matrix K,
such that

ATP+PA+R PA,+R hATR

I(P,R,K)=| ATP+R —R  hATR| <0,
hRA hRA; -R
@n
i1=2,---,k, where
( ﬁZBK OleK ’

then MAS (4) achieves consensus asymptotically for any
time delay 7 € [0, h].
Applying Algorithm 1 to BMIs (20) and (21), control

gain K can be solved easily. So, we don’t repeat the steps
here.

4 Examples and simulations

In this section, some simulations of a network with an
undirected topology are provided to illustrate the effective-
ness of our approach.
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Example 1  Consider a network consisting of six
agents, and the dynamics of agent 7 is two-dimensional lin-
ear system that is given by

di(t) = Ax;(t) + Bui(t), i=1,2,--- .6, (22)

where z;(t) € R?, u;(t) € R, and for simplicity let the
following numerical parameters for above system:

-2 1

Suppose that the communication topology of multi-
agent system (22) is an undirected graph G which is de-
scribed by Fig. 1. From Fig. 1, the Laplacian matrix £, of
undirected graph G, is shown as follows:

2 -1 0 0 0 -1

12 0 -1 0 0
|0 0 2 -1-10
“a=lo -1-12 0 0]
00 -10 2 -1
10 0 0 —1 2

and the eigenvalues of £, are A1 (L,) = 0, Aa(Ly) = 1
(2 multiplicity), A3(L,) = 3 (2 multiplicity), A(L,) =
4. Let initial value be P = Q° = diag{1, 1}, using Al-
gorithm 1 for Theorem 1, the control gain is obtained as

K- 0.277 —0.2064
~ | —0.1956 0.4780 |-

@ ® ©
g

Fig. 1 Undirected and connect communication topology graph

Figure 2 shows that MAS (22) achieves consensus
with delay 7 = 3, obtained control gain K and initial val-
ues

z10=[3 1.2]7, 290=[3.5 —1]T,
x30=[-2 — 1%, z40=[-2 1.2]7T,

z50=[4 1.5]T, z0=[-1.5 3]T.

250
200
150 -
100

50

0
3

—Agentl - Agent 2
--—-Agent 4 ——Agent 5

---Agent 3
——Agent 6

Fig. 2 States trajectory of MAS (22) with communication
topology G.

For delay-dependent criterion, apply Algorithm 1 to
Theorem 2 and choose initial value P° = R? = I, then a
control gain

~10.0168 —0.0413
~10.0068  0.0229

is obtained with the upper bound of delay h = 0.12. Fig.
3 shows that MAS (22) achieves consensus with delay
7 = 0.12, obtained control gain K and same initial val-

K

ues T10, £20, £30, 405 505 L60-

250 -
200
150
100
50
0
3
A
7
20 ¥
—Agentl - Agent 2 ---Agent 3
--—-Agent 4 ——Agent 5 ——Agent 6

Fig. 3 States trajectory of MAS (22) with communi-
cation topology G

5 Conclusions

This paper has studied the consensus problems of
higher-order MAS with communication delay and the dy-
namics of each agents is assumed to be general LITs. Our
consensus algorithm is designed by a state feedback gain.
Here, it is supposed that the communication topology is a
directed or an undirected graph. By coordinate transforma-
tion, the consensus problems of MAS have been converted
into stability problems of some LITs. Then, two kinds of
consensus conditions which are expressed by BMIs have
been derived: one is delay-independent and the other is
delay-dependent. The control gain is solved from the BMIs
by an effective algorithm. At last, a MAS with undirected
graph and fixed delay is presented as a example to demon-
strate the effectiveness of our theoretical results. In future,
the consensus of MAS with switching network topologies
and each agent having different dynamics will be analyzed.
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