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摘要:对于一类带有内动态的单输入-单输出不确定离散非线性系统,基于滑模预测控制技术设计了一个控制器.
通过反馈校正和滚动优化技术,可以及时补偿不确定性的影响,提高了匹配和不匹配不确定项的鲁棒性. 然后,通
过滚动优化技术得到期望的滑模控制律.特别地,通过预测控制,滑模控制的抖振现象可以消除.最后,在不确定项
的界未知的情况下,得到闭环系统的所有信号都是有界的,并且跟踪误差是鲁棒稳定的. 仿真例子说明所提出控制
方法的有效性.
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Abstract: Based on the sliding-mode predictive control (SMPC) technique, a controller for a class of discrete-time
nonlinear uncertain single-input-single-output (SISO) systems with internal dynamics is proposed. Due to the feedback
correction and receding horizon optimization, the effect of uncertainty can be compensated in time, and the robustness to
matched or unmatched uncertainties has been improved. The desired sliding-mode control law is obtained by using the
receding horizon optimization subsequently. Especially, the chattering of sliding-mode control (SMC) can be eliminated by
predictive control techniques. It is shown that all the signals of the closed-loop systems are bounded and the tracking error
is robustly stable, without requiring the boundary knowledge of the uncertainty. Simulation result is given to demonstrate
the advantages of the proposed method.
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1 Introduction
Sliding-mode control (SMC) is a popular control

approach for systems containing uncertainties or un-
known disturbances. It is derived from variable struc-
ture control (VSC) which was studied originally by [1].
For a broad class of systems, this kind of control is par-
ticularly appealing due to its ability to deal with non-
linearities, time-variance, as well as uncertainties and
disturbances, in a direct manner in the face of modeling
imprecisions (see [2−4]). The first step in SMC is to de-
fine a sliding surface. The second step is to synthesize a
suitable control law to globally drive the trajectory onto
the predefined sliding surface in finite time and main-
tain them there for all subsequent time. The experimen-
tal results show that this control strategy provides good

performance even in the presence of unknown nonlinear
parameters.

Model predictive control (MPC) has become one of
the most popular control methodologies in both indus-
try and academia. It has been successfully implemented
in many industrial control, showing good performance
(see [5-16]). The basic idea of MPC is to calculate a
sequence of future control signals in such a way that
it minimizes a multistage cost function defined over a
prediction horizon. The performance index to be opti-
mized is the expectation of a quadratic function measur-
ing the distance between the predictive system output
and a predictive reference sequence over the horizon,
and a quadratic function representing the control effort.

However, it is well known that chattering is a
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defect for SMC, which can be reduced by some
approaches, such as the integral SMC and range-
bounded SMC technique. However, the reduction of
chattering will often decrease the robustness of the
closed-loop systems. The sliding mode predictive
control (SMPC) strategy is proposed to tackle this
problem in some literature. The characteristics of pre-
diction and receding horizon can help to improve the
performance of the reaching mode in SMC, which is
one of the goals that the SMPC strategy achieves. An-
other achievement is the capability of controlling the
processes with large time delays and high controlla-
bility ratio. Moreover, the implementation problem of
a SMC when the state is not accessible can be solved
with the predictive strategy.

Some work based on the SMPC technique can be
found. For example, a dual mode control scheme
characterized by non-linear SMPC was presented in
[9]; Ref.[10] applied SMPC to a solar air condi-
tioning plant. But all of the above are specified
by continuous-time systems. In fact, due to the
widespread application of digital implementations,
discrete-time systems are very common in real plants.
What is more, a stable continuous-time system may
become unstable after being discretized. Therefore,
it is necessary to design controllers for discrete-time
systems directly. Ref. [11] investigated a SMPC algo-
rithm for a class of discrete-time n-joint rigid robotic
manipulator systems, where authors claim SMPC can
remove the chattering. Stability analysis for a triangu-
lar discrete-time nonlinear systems is studied in [12]
via the SMPC approach. Explicit/multi-parametric
MPC of linear discrete-time systems is investigated
in [13]. Explicit/multi-parametric MPC of linear
discrete-time systems is investigated in [14]. But
none of these studies has ever dealt with the discrete-
time systems with nonlinear internal dynamics which
will seriously increase the complexity of the consid-
ered system.

In this paper, a controller for a class of discrete-
time nonlinear uncertain SISO systems with nonlin-
ear internal dynamics is presented. The main con-
tributions of this paper are: i) a predictive value of
the sliding mode is estimated based on a constructed
prediction model, which tracks the expected sliding
mode reference value, thus a chattering issue can be
avoided; ii) through feedback correction and receding
horizon optimization, a controller is obtained which
guarantees the tracking error is robustly stable while
all the signals of the closed-system are bounded; iii)
for the internal dynamics, an input-to-state stabil-
ity(ISS) theory is applied, which ensures the overall

system for stability. Simulation result is provided to
illustrate the effectiveness of the proposed method.

2 Problem formulation
Consider an SISO discrete-time system described

by the following normal form:




xi(k + 1) = xi+1(k), i = 1, · · · , r − 1,

xr(k + 1) =

f(ξ(k), η(k))+g(ξ(k), η(k))u(k)+d(k),

η(k + 1) = p(ξ(k), η(k)),

y(k) = x1(k),

(1)

where ξ(k)=[x1(k) x2(k) · · · xr(k)]T∈Rr, η(k)
∈ Rn−r, u(k) ∈ R and y(k) ∈ R are the state, the in-
ternal dynamic, the input and the output, respectively.
f(ξ(k), η(k)), g(ξ(k), η(k)) and p(ξ(k), η(k)) are
the known functions and g(ξ(k), η(k)) 6= 0, d(k) is
the uncertainty and external disturbance.

Based on the development of differential ge-
ometry, many systems can be transformed into the
Brunowsky-like canonical form by differential home-
omorphism map (see [17]).

The control objective is to design a control law
u(k) via SMPC so that the output y(k) of system
with external disturbance tracks the desired trajectory
yd(k) while all the signals in the closed-loop system
are bounded.

By system (1), it is easy to see y(k + i) =
xi+1(k), i = 0, 1, · · · , r − 1. So the vector ξ(k) can
be rewritten as

ξ(k) = [y(k) y(k + 1) · · · y(k + r − 1)]T.

Similarly,

ξd(k) = [yd(k) yd(k + 1) · · · yd(k + r − 1)]T.

Then the original system (1) is converted to



y(k + r) =

f(ξ(k), η(k))+g(ξ(k), η(k))u(k)+d(k),

η(k + 1) = p(ξ(k), η(k)).

(2)

Now let ỹ(k) = y(k) − yd(k). Define a discrete
linear filter as follows:

e(k) =
ỹ(k + r − 1) + λr−1ỹ(k + r − 2) + · · ·+
λ1ỹ(k) = [ΛT 1]ξ̃(k), (3)

where ξ̃(k) = ξ(k)−ξd(k), Λ=[λ1 λ2 · · · λr−1]T,
λi, i = 1, 2, · · · , r− 1 are chosen such that the poly-
nomial H(z) := zr−1+λr−1z

r−2+ · · ·+λ1 is Schur.
Based on Eqs. (2) and (3), an error dynamic sys-

tem can be expressed as follows:
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e(k + 1) =

[0 ΛT]ξ̃(k)−yd(k+r)+f(ξ̃(k), ξd(k), η(k))+

g(ξ̃(k), ξd(k), η(k))u(k) + d(k),

η(k + 1) = p(ξ̃(k), ξd(k), η(k)),

ỹ(k) = y(k)− yd(k).

(4)

We will design controller and analyze the stability
of system (4). To this end, we will apply the SMPC
technique to system (4).
3 Main results

Predictive control has three steps, prediction
model, feedback correction and receding horizon op-
timization. During the design process, because of
feedback correction and receding horizon optimiza-
tion, the effect of uncertainties can be compensated in
time, and strong robustness to matched or unmatched
uncertainties is ensured. Simultaneously, the con-
trol signal can be optimized continually and online.
Therefore, the combination of predictive control with
SMC can do great help to controller design.
3.1 Design of sliding mode prediction model

The prediction model of system (1) is given as
follows:




xm,i(k+1)=xm,i+1(k), i=1, · · · , r − 1,

xm,r(k + 1) =

f(ξ(k), η(k)) + g(ξ(k), η(k))u(k),

ηm(k + 1) = p(ξ(k), η(k)),

ym(k) = xm,1(k).

(5)

Define the sliding mode surface as
s(k) = e(k) = [ΛT 1]ξ̃(k). (6)

In order to use the predictive control strategy to
improve the performance of SMC, a suitable sliding-
mode prediction model should be created at first. Ac-
cording to recursive sliding mode approach which de-
scribed in [11,12,15−16], we construct the following
sliding mode prediction model:

sm(k + 1) =

[0 ΛT]ξ̃(k)− yd(k + r) +

f(ξ̃(k), ξd(k), η(k)) +

g(ξ̃(k), ξd(k), η(k))u(k) + γs(k), (7)

where 0 < γ < 1 is a manipulative parameter.
3.2 Design of control law

In practice, there exist errors between the model
output and the real output. So feedback correction is
needed to solve this problem. Let s̃m(k + 1) be the
feedback correction value of sm(k + 1). Then

s̃m(k + 1) = sm(k + 1) + σ(s(k)− sm(k)), (8)

where σ is a weighted feedback correction rate. From
the viewpoint of practice, 0 < σ < 1 is the appropri-
ate range of σ (see [11]).

Let s̄(k) = s(k)− sm(k) for the sake of clarifica-
tion. Then (8) reduced to

s̃m(k + 1) = sm(k + 1) + σs̄(k) =

h(k) + g(ξ̃(k), ξd(k), η(k))u(k), (9)

where h(k) = [0 ΛT]ξ̃(k) − yd(k + r) + f(ξ̃(k),
ξd(k), η(k)) + γs(k) + σs̄(k).

Now, performance index is given as

J = (s̃m(k + 1)− sr)2 + λu2(k), (10)

where sr is a sliding mode reference value.
Since the SMC objective is to keep states on the

sliding surface and maintain them there for all subse-
quent time, the desired sliding mode reference value
should be sr = 0. In this case, when the sliding mode
reference value is tracked exactly, the sliding surface
can be reached precisely. Therefore, the performance
index (10) can be reduced to

J = s̃2
m(k + 1) + λu2(k), (11)

where λ is a weight coefficient, which adjusts the re-
lation between the closed-loop output of sliding mode
predictive model and the control signal.

According to equation (9), performance index
(11) can be rewritten as
J = [h(k) + g(ξ̃(k), ξd(k), η(k))u(k)]2 + λu2(k).

(12)

Minimizing (12) gives the control signal u(k). By
setting the partial derivative of J to zero, that is,
∂J

∂u
= 0, solving the resulting equation, the optimal

solution to u(k) is

u(k) = − h(k)g(ξ̃(k), ξd(k), η(k))
g2(ξ̃(k), ξd(k), η(k)) + λ

. (13)

Up to now, the control input u(k) for closed-loop sys-
tem (4) has been obtained.
3.3 Robust stability analysis

From performance index (12), one can see that
u(k) affects J less when associating with the decreas-
ing of λ. For the sake of simplicity, according to op-
timal control theory, suppose that λ = 0, i.e., the case
when control signal is not optimal. Thus, control law
(13) reduces to

u(k) = − h(k)
g(ξ̃(k), ξd(k), η(k))

. (14)

Consider system (4) and sliding-mode function
(6), it follows
s(k + 1) =
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[0 ΛT]ξ̃(k)− yd(k + r) + f(ξ̃(k), ξd(k), η(k)) +

g(ξ̃(k), ξd(k), η(k))u(k) + d(k). (15)

Putting control law (14) into (15), we can get
s(k + 1) = −γs(k)− σs̄(k) + d(k). (16)

According to (7) and (9), we have
sm(k) = h(k − 1)− σs̄(k − 1). (17)

From system (4) and e(k) = s(k), we obtain
s(k)−d(k − 1)=h(k−1)−σs̄(k−1)−γs(k−1).

Thus, (17) is described in another form

sm(k) = s(k)− d(k − 1) + γs(k − 1).

Accordingly,

s̄(k)=s(k)−sm(k)=d(k−1)−γs(k−1). (18)

Therefore, (16) turns to

s(k + 1) = −γs(k)− σs̄(k) + d(k) =

−γs(k)− σ[d(k − 1)− γs(k − 1)] + d(k) =

γM + N, (19)

where M =−s(k)+σs(k−1), N =d(k)−σd(k−1).
Theorem 1 If the change rate of disturbances is

bounded, i.e., the following inequality holds,

|d(k)− σd(k − 1)| 6 µ, (20)

where µ is a positive constant, then the closed-loop
system (4) which is constructed by (6) and (14) is ro-
bustly stable.

Proof Consider the characteristic polynomial of
M ,

−1 + z−1 = 0. (21)

Obviously, the root of equation (21) is z = σ. Be-
cause 0 < σ < 1, M is stable.

While 0 < γ < 1, γM is stable. Namely, ∀ε > 0,

∃k0 such that |M | < ε/γ when k > k0.
According to (20), |N | 6 µ, then

|s(k + 1)| = |γM + N | 6 |γM |+ |N | 6 ε + µ.

Consequently, the practical sliding mode motion of
the closed-loop system will converge to a ε vicin-
ity of sliding surface and stay on it subsequently. In
addition, because the stability of sliding surface has
been guaranteed by (6), ỹ(k) is robustly stable with
the control law (13), that is, y(k) tracks the desired
trajectory yd(k).
3.4 Internal dynamic

The stability of internal dynamics is very impor-
tant[18–22] and it is affected by the control input; in
other words, different control laws may yield either
stable or unstable zero dynamics. Therefore, to avoid
this problem, we strengthen the assumption on the in-

ternal dynamics. In this section, we will consider the
stability of the second equation of system (4) while
the variable ξ̃(k) is stablizable. Here we will apply
the ISS theory of discrete-time version.

Consider the following subsystem of (4):

η(k + 1) = p(ξ̃(k), ξd(k), η(k)). (22)

Definition 1[23] A continuous function V : Rn

→ R>0 is called an ISS-Lyapunov function for sys-
tem (22) if the following hold:

1) There exist K∞-functions α1, α2 such that

α1(‖η‖) 6 qV (η) 6 qα2(‖η‖).
2) There exist a K∞-function α3 and a K-

function α4, such that

V (p(ξ̃, ξd, η))− V (η) 6 −α3(‖η‖) + α4(‖(ξ̃, ξd)‖).
Lemma 1[23] If system (22) admits a continu-

ous ISS-Lyapunov function, then it is ISS.
Assumption 1 System (22) is globally expo-

nentially stable at η = 0 informally with respect to
ξd when ξ̃ = 0. Hence, there exists a function Vη(η)
(see [24], Theorem 2) satisfying

c1‖η‖2 6 Vη(η) 6 c2‖η‖2,

Vη[p(0, ξd, η)]− Vη(η) 6 −c3‖η‖2 (23)

with some positive constants ci, i = 1, 2, 3.

Note that (23) implies that the zero dynamic of
system (4) is globally informally exponentially stable
regardless of ξ̃d.

Assumption 2 p is Lipschitz in ξ̃ uniformly in
ξd and η, i.e., ‖p(ξ̃, ξd, η) − p(0, ξd, η)‖ 6 L‖ξ̃‖,
where L > 0.

Lemma 2[24] Assume that system (22) is glob-
ally exponentially stable, then there exists a Lyapunov
function V satisfying (23) such that for any given
variables ζ1, ζ2 and some constant c4 > 0, the fol-
lowing holds

‖V (ζ1)− V (ζ2)‖ 6 qc4(‖ζ1‖+ ‖ζ2‖)‖ζ1 − ζ2‖.
(24)

Based on Assumptions 1 and 2 and (24), for the
internal dynamics in (4), ∆Vη(η) along the trajecto-
ries of system (4) is given by

∆Vη(η) = Vη[p(ξ̃, ξd, η)]− Vη(η) =

Vη[p(0, ξd, η)]− Vη(η) +

Vη[p(ξ̃, ξd, η)]− Vη[p(0, ξd, η)] 6
−c3‖η‖2 + 2c4P‖p(ξ̃, ξd, η)− p(0, ξd, η)‖ 6
−c3‖η‖2 + 2c4PL‖ξ̃‖,

where P is the upper bound of ‖p(ξ̃, ξd, η)‖.
From Definition 1, we obtain Vη(η) is ISS-
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Lyapunov function. According to Lemma 1, the in-
ternal dynamics in (4) is ISS.

By Theorem 1, we get ‖s‖ 6 ε+µ. Applying (6),
we find ‖ξ̃‖ is bounded, that is, there exists a δ > 0
such that ‖ξ̃‖ < δ. Thus, ∆Vη(η) 6 −c3‖η‖2 +

2c4PLδ. If ‖η‖ >

√
2c4PLδ√

c3
, then ∆Vη(η) < 0.

Therefore, from the above discussion, we get the
following result.

Theorem 2 For system (4) regulated by the con-
trol law (14), under Assumptions 1 and 2, all the
closed loop signals are bounded while the tracking er-
ror is attracted to a neighborhood of the origin.

Remark 1 If relative degree r = 2 and internal dy-
namics η = 0 in system (1), we have a typical discrete-time
example of 1-joint rigid robotic manipulator (see [11]).

Remark 2 If a sliding surface is defined, the aim
of SMC is to synthesize a suitable control law to globally
drive the trajectory onto the predefined sliding surface in finite
time (ideal quasi-sliding mode dynamics) or its neighbourhood
(non-ideal quasi-sliding mode dynamics). Because of distur-
bances of model, sliding surface is inaccurate. Then control law
is discontinuous across the sliding surface. Therefore, chatter-
ing is produced. In SMPC, by predicting the future value of
sliding mode function, the control signal can be adjusted im-
mediately to prevent system states from crossing the sliding
surface, hence chattering will be avoided.

4 Simulation results
This example involves simulation results carried

out from a model in [25].
Example 1 The model for course control of

ship as follows:
T ψ̈(t) + ψ̇(t) + αψ̇3(t) + d(t) = Kδ(t), (25)

where α is the nonlinear parameter, K is the rudder
angle gain, T is a constant, ψ(t) is the course angle,
δ(t) is the rudder angle, d(t) is the external distur-
bance.

Suppose that zero order holder is applied in the
system, discretizing system (25), i.e., ψ̇(t) = (ψ(k +
1) − ψ(k))/ts, ψ̈(t) = (ψ(k + 2) − 2ψ(k + 1) +
ψ(k))/t2s and defining ψ(k) = x1(k), ψ(k + 1) =
x2(k) and y(k) = x1(k), then




x1(k + 1) = x2(k),

x2(k + 1) = f(ξ(k)) +
t2sK

T
δ(k),

y(k) = x1(k),

(26)

where ts is the sampling period and

f(ξ(k)) = − t2sK

T
d(k) + (

ts
T
− 1)x1(k) +

(2− ts
T

)x2(k)− α

Tts
[x2(k)− x1(k)]3.

The vessel data comes from a ship which has
an overall length of 160.9 m. The motion of the
ship described by the model has the following dy-
namic parameters at a speed of V = 4 m/s, T =
114.64 s, K = 0.063 s−1, α = 30 s2. Let d(k) =
0.05 and initial value x1(0) = −0.05, x2(0) = 0.

From (14), we can get controller δ(k). The simu-
lation results are illustrated in Figs.1, 2 and 3. Thus,
the designed controller has good performance and the
excellent tracking of output is obtained by SMPC al-
gorithm.

Fig. 1 Course angle ψ(k) and reference course ψd(k).

Fig. 2 Error e(k)

Fig. 3 Rudder angle δ(k)

5 Conclusions
In this paper, the SMPC technique is considered

for a class of discrete-time nonlinear uncertain sys-
tems with internal dynamic. The desired control law
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is constructed by using special sliding mode predic-
tion model, feedback correction and receding horizon
optimization. It is shown that all the signals of the
closed-loop system are bounded and the tracking er-
ror is robustly stable. Robust stability analysis shows
that the closed-loop system has strong robustness to
uncertainty with unknown boundary. The stability of
internal dynamic was investigated by ISS theory of
discrete-time version. Simulation result verifies the
efficacy of the proposed method.
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