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摘要:研究了一类脉冲依赖于状态的混杂系统的最优控制问题.与传统的变分方法不同,通过将跳跃瞬间转化为
一个新的待优化参数,得到了该混杂系统的必要最优性条件,从而将最优控制问题转化为一边界值问题,该边界值
问题可由数值方法或解析方法解决. 此外,利用广义微分的理论,将该必要最优性条件推广到Frechet微分形式. 结
论表明,在混杂动态系统运行的连续部分,最优解所满足的必要性条件和传统的连续系统相同.在混杂动态系统的
脉冲点处,哈密尔顿函数满足连续性条件,协态变量则满足一定的跳跃条件.最后,通过两个实例分析,表明该方法
是有效的.
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Optimal control of a class of hybrid systems
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Abstract: An optimal control problem is investigated for a class of hybrid systems, where the impulsive instants are
state-dependent. Instead of relying on the usual technique of variational approach, necessary optimality conditions of this
hybrid system are obtained by parameterizing the impulsive instants. Then, the optimal control problem is transformed
to a boundary value problem, which can be solved by numerical method or analytic method. Moreover, taking advantage
of the theory of generalized differential, necessary optimality conditions are extended to Frechet differential form. It is
shown that, at the continuous part of this hybrid dynamic system, the necessary optimality conditions have the same form
as traditional continuous system. At the impulsive points of this system, the Hamiltonian function is continuous and the
adjoint variable satisfies certain condition. Finally, two examples are presented to illustrate validity of the methods.
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1 Introduction
Over the last few decades, there has been much re-

search on a special class of complex systems, which are
called hybrid systems. Hybrid systems can be character-
ized by a combination of continuous-valued and discrete-
valued variables. In many cases, it is not only desirable
but also natural to use hybrid models to describe the dy-
namical behavior of the systems. For example, modeling a
car with four gears. Therefore, hybrid models have been
used extensively in many application fields, such as the
field of behavior-based robotics, multi-agent network con-
trol systems, chemical processes, manufacturing systems
and electrical circuit systems, etc. In [1], Michael Bran-
icky et al. provided a unified framework to model and con-
trol hybrid systems. They observe four phenomena that
occur in a real-world system, including autonomous and
controlled switching of the state variables. More exam-
ples, theory and applications of hybrid systems are intro-

duced in [2]. See [3] and references therein for a recent
survey on hybrid systems.

In recent years, the issues of optimal control in hybrid
systems have attracted increasing interest in both theoret-
ical research and practical applications. Various methods
emerged to find optimal solutions for hybrid systems, such
as the maximum principle[4], the viscosity solution tech-
nique[5], some numerical optimal algorithms[6–8], the em-
bedding approach[9] and the method of smoothed approxi-
mation[10].

In particular, special attention has been focused on
necessary optimality conditions for hybrid systems be-
cause of its theoretical and practical value. In general, it
is easy to get the necessary conditions for continuous dy-
namics subsystems of hybrid problem. The difficult and
challenging part is the necessary conditions at the switch-
ing times. Many researchers have done a lot of work in this
aspect. Following the direct techniques of variations, nec-
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essary conditions of optimality are established for a class
of impulsive hybrid systems[11] and the switching control
system with nonsmooth cost functionals[12–13]. By employ-
ing such direct techniques or indirect methods, different
kinds of necessary conditions are given to different hybrid
problems in [14–21]. Most of these papers concern opti-
mal control of hybrid systems with time-driven dynamics.

However, in many real situations, some transition of
hybrid systems depends on event instead of time. For ex-
ample, in the thermostats, the system will change its state
when the temperature attains some values. Similarly, in
the design of robot, the robot may be required to change
its state when it reaches some special state. In both cases,
the transitions are event-driven.

In this paper, we consider necessary optimality con-
ditions for a class of impulsive hybrid systems, in which
the transitions depend on the state. By introducing a new
time variable as the method of [16–17, 21], we get nec-
essary optimality conditions for this problem. Moreover,
we extend such necessary optimality conditions to the case
with nonsmooth cost functional. Usually, the advantage of
hybrid system lies in its nonsmooth trajectory. Therefore,
the use of nonsmooth objective functional can reflect this
advantage better.

The rest of the paper is organized as follows. In Sec-
tion 2, some knowledge of nonsmooth analysis are given.
The problem is formulated in Section 3. Section 4 is de-
voted to the statement of the necessary optimality condi-
tions. In Section 5, nonsmooth form of necessary opti-
mality conditions is presented. The conclusion is drawn in
Section 6.

2 Basic knowledge of nonsmooth analysis
In this section, some knowledge of Frechet differen-

tial is introduced. For more information, the reader can
see [12–13] and [22–23].

If ϕ is lower semicontinuous at x, the Frechet subdif-
ferential of ϕ at x is defined by

∂̂ϕ(x) :=

{x∗ ∈ Rn| lim
y→x

inf
ϕ(y)−ϕ(x)−< x∗, y−x >

‖y−x‖ >0}.

Similarly, If ϕ is supper semicontinuous at x, the
Frechet supperdifferential of ϕ at x is defined by

∂̂+ϕ(x) :=

{x∗∈Rn| lim
y→x

sup
ϕ(y)−ϕ(x)−< x∗, y−x >

‖y−x‖ 60}.

From the above definitions, we have

∂̂+ϕ(x) = −∂̂(−ϕ)(x).

If ϕ is continuous, the Frechet differential of ϕ at x is
defined by

∂̂+ϕ(x) :=

{x∗ ∈ Rn| lim
y→x

ϕ(y)−ϕ(x)−< x∗, y−x >

‖y−x‖ =0}.

From the above definitions, we can get the follow-
ing relationships among Frechet subdifferential, Fre-
chet supperdifferential and Frechet differential.

Proposition 1 Let ϕ : X → R with |ϕ(x)| < ∞.
Then ∂̂ϕ(x) 6= ∅ and ∂̂+ϕ(x) 6= ∅ if and only if ϕ is
Frechet differentiable at x, where

∂̂ϕ(x) = ∂̂+ϕ(x) = ∇ϕ(x).

When ∂̂ϕ(x) is a singleton, ϕ may not be Frechet
differentiable at x. For example, let ϕ(x) = max{0,
x sin(1/x)} if x 6= 0 with ϕ(0) = 0, then ∂̂ϕ(0) = 0
and ∂̂+ϕ(0) = ∅.

3 Problem statement
Let us consider the following control system:





ẋ(t) = f(x(t), u(t)), h(x(t)) 6= 0,
x(t) 7→ g(x(t), u(t)), h(x(t)) = 0,
r(x(a), x(b)) = 0,

(1)

where f : Rn × Rm → Rn, h : Rn → R, g : Rn × Rm

→ Rn, and r : Rn × Rn → Rl are twice continuously
differentiable with their variables.

Suppose that h(x(t)) = 0 have a finite number of iso-
lated roots tj , j = 1, · · · , N − 1 and

a < t1 < · · · < tN−1 < b.

Now we give the following definitions as [24].

Definition 1 (Hybrid time set) A hybrid time set
τ = {Ii}N

i=1 of (1) is a finite sequence of intervals of the
real line, such that Ii = [ti−1, ti], i = 1, · · · , N .

Definition 2 (Run) A run of (1) is a collection
(τ, x, u) with

τ = {Ii}N
i=1, x = {yi(·)}N

i=1, u = {vi(·)}N
i=1,

that satisfies:
Continuous evolution: for h(x(t)) 6= 0, yi(·) is the

solution to differential ẏ(t) = f(yi(t), vi(t)).
Discrete evolution: for

h(x(ti)) = 0, yi+1(ti) = g(yi(ti), vi(ti)).

An admissible tuple (τ, x, u) for (1) is a process satis-
fying the constraint of (1).

Now we give the following optimal control problem
(P): Minimize the functional

J =
N∑

i=1

ϕi(x(ti)) +
w b

a
L(x(t), u(t))dt (2)

over the set of all admissible pairs (τ, x, u), where ϕ, L are
twice continuously differentiable with their variables.

An admissible pair (τ0, x0, u0) is called a weak lo-
cal minimum point for problem (P) if for some ε > 0,
(τ0, x0, u0) minimizes (2) over all admissible processes
(τ, x, u) satisfying

|ti − t0i | 6 ε, i = 1, · · · , N − 1, ‖yi − y0
i ‖∞ 6 ε,

‖vi − v0
i ‖∞ 6 ε, i = 1, · · · , N.

4 Necessary optimality conditions
At the beginning of this section, we give one conven-

tion which will be used in this section. Let r : Rn ×
Rn → Rl be a C1 function, then

D(x(a),x(b))r(x(a), x(b)) =



No. 7 LI Li-hua et al: Optimal control of a class of hybrid systems 893



∂r1

∂x1(a)
· · · ∂r1

∂xn(a)
∂r1

∂x1(b)
· · · ∂r1

∂xn(b)
...

...
...

...
...

...
∂rl

∂x1(a)
· · · ∂rl

∂xn(a)
∂rl

∂x1(b)
· · · ∂rl

∂xn(b)




denotes the Jacobian of function r.
Suppose the state of (1) is left continuous at the switch-

ing points ti, i = 1, · · · , N − 1, that is

x(ti) = lim
t→t−i

x(t).

Let
x(ti+1) = lim

t→t+i

x(t), t0 = a, tN = b,

according to the discussion of Section 3, problem (P) can
be written as the following problem (P1): Minimize

N∑
i=1

ϕi(yi(ti)) +
N∑

i=1

w ti

ti−1
L(yi(t), vi(t))dt,

subject to




ẏi(t) = f(yi(t), vi(t)), t ∈ [ti−1, ti],
i = 1, · · · , N,

yi+1(ti) = g(yi(ti), vi(ti)), i = 1, · · · , N − 1,
h(yi(ti)) = 0, i = 1, · · · , N − 1,
r(x(a), x(b)) = 0.

For i = 1, · · · , N , introduce a new time variable
s ∈ [0, 1] with t = ti−1 + s(ti − ti−1) and define

yi(s) = y(ti−1 + s(ti − ti−1)),
vi(s) = v(ti−1 + s(ti − ti−1)).

Then problem (P1) can be reformulated as the following
equivalent problem (P2): Minimize

N∑
i=1

ϕi(yi(1)) +

N∑
i=1

w 1

0
[(ti(s)− ti−1(s))L(yi(s), vi(s))]ds,

subject to




ẏi(s) = (ti(s)− ti−1(s))f(yi(s), vi(s)),
i = 1, · · · , N,

ṫi(s) = 0, i = 1, · · · , N − 1,
yi+1(0) = g(yi(1), vi(1)), i = 1, · · · , N − 1,
h(yi(1)) = 0, i = 1, · · · , N − 1,
r(y1(0), yN (1)) = 0.

Now we give a necessary condition for problem (P).

Theorem 1 Let (τ0, x0, u0) be a weak local mi-
nimum point of problem (P), the rank of the Jocabian
D(x(a),x(b))r(x0(a), x0(b)) is l, then there exist a piece-
wise continuous differential variable λ(t) : [a, b] → Rn,
multipliers µ ∈ Rl, ωi ∈ Rn, ξi ∈ R, i = 1, · · · , N − 1,
and λ0 ∈ R, such that for H(x, u, λ) = L(x, u) +
λTf(x, u), the following equations hold

λ(a) = −Dx(a)[µTr(x0(a), x0(b))],

λ(b) = Dx(b)[λ0ϕ(x0(b)) + µTr(x0(a), x0(b))], (3)

λ̇(t) = −∂H(x0(t), u0(t), λ(t))
∂x

, t ∈ [a, b], (4)

∂H(x0(t), u0(t), λ(t))
∂u

= 0, t ∈ [a, b]. (5)

At the switching instants, the following conditions are
satisfied

H[t0+i ] = H[t0−i ], (6)

λ(t0−i ) = λ0
∂[ϕi(x0(t0i ))]

∂x(ti)
+ ξi

∂[h(x0(t0i ))]
∂x(ti)

+

∂[λT(t0+i )g(x0(t0i ), u
0(t0i ))]

∂x(ti)
, (7)

where i = 1, · · · , N − 1.

Proof Let (τ0, x0, u0) be a weak local minimum of
Problem (P), then it is a solution to Problem (P2). Apply-
ing classical necessary conditions to Problem (P2), there
exist λi(s) ∈ Rn, i = 1, · · · , N − 1, multipliers µ ∈ Rl,
ξi ∈ R, ωi ∈ Rn, i = 1, · · · , N −1, and λ0 ∈ R, such that
for

Ĥ(x, u, λ) =
N∑

i=1

{(ti − ti−1)[L(yi, vi) + λT
i f(yi, vi)]} =

N∑
i=1

[(ti − ti−1)Hi],

φ(x, u) = λ0

N∑
i=1

ϕi(yi(1)) + µTr(y1(0), yN (1)) +

N−1∑
i=1

ξih(yi(1)) +
N−1∑
i=1

ωT
i (yi+1(0)−

g(yi(1), vi(1))),

we have

λ̇∗i (s)=−∂Ĥ(x0, u0, λi)
∂ti

, i=1, · · ·, N − 1, (8)

λ∗i (0)=−∂φ(x0, u0)
∂ti(0)

= 0, i=1, · · ·, N − 1, (9)

λ∗i (1)=
∂φ(x0, u0)

∂ti(1)
= 0, i=1, · · ·, N − 1. (10)

Because the Hamiltonian is constant along the optimal
trajectory, the right hand of (8) is constant on [0, 1]. Thus
by equations (8)–(10), we get the continuity condition (6).

On the other hand, we have

λ̇i(s) = −∂Ĥ(x0, u0, λi)
∂yi

=

− (ti − ti−1)
∂Hi(y0

i , v0
i , λi)

∂yi
, (11)

λ1(0) = −∂φ(x0, u0)
∂y1(0)

=

−Dy1(0)[µ
Tr(y0

1(0), y0
N (1))], (12)

λN (1) =
∂φ(x0, u0)

∂yN (1)
=

DyN (1)[λ0ϕ(y0
N (1))+µTr(y0

1(0), y0
N (1))], (13)

λi+1(0) = −∂φ(x0, u0)
∂yi+1(0)

= −ωi, (14)

λi(1) =
∂φ(x0, u0)

∂yi(1)
=
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λ0
∂φi(yi(1))

∂yi(1)
+ξi

∂h(yi(1))
∂yi(1)

− ∂[ωT
i g(yi(1), vi(1))]

∂yi(1)
,

(15)

∂Ĥu(x0(s), u0(s)), λ(s)
∂u

= 0, (16)

where i = 1, · · · , N − 1,.
Recombine the adjoint variable

λ(t) = λi(
t− t0i−1

t0i − t0i−1

), t ∈ [t0i−1, t
0
i ], i = 1, · · · , N,

the state variables and control function accordingly, then
equations (12) and (13) lead to the natural boundary con-
ditions (3). Equations (14) and (15) yield in the jump con-
dition (7). The adjoint (4) and the minimum condition
(5) come from equations (11) and (16), respectively. This
completes the proof of the theorem.

Now we consider the following system, which extend
problem (P) from one switching function to several func-
tions: 




ẋ(t) = f(x(t), u(t)),
M∏

j=1

hj(x(t)) 6= 0,

x(t) 7→ gj(x(t), u(t)), hj(x(t)) = 0,
r(x(a), x(b)) = 0,

(17)

where ti are the roots of
M∏

j=1

hj(x(t)) = 0, j = 1, · · · ,M.

If hj(x(t)) = 0 have the same root for

j ∈ {i1, i2, · · · , ik}, i1 < i2 < · · · < ik,

then a rule can be set to choose the minimal index and the
state of (P̂ ) jumps as the requirement of hi1(x(ti)) = 0.

Now we give the following problem (P̂ ): Minimize
the functional

J =
N∑

i=1

ϕi(x(ti)) +
w b

a
L(x(t), u(t))dt,

subject to (17).
Similar to the proof of Theorem 1, we can prove the

following theorem for (P̂ ).
Theorem 2 Let (τ0, x0, u0) be a weak local min-

imum point of problem (P̂ ), and if all the conditions in
Theorem 1 are met, then the results in Theorem 1 hold ex-
cept the jumping condition (7) replaced by

λ(t0−i ) = λ0
∂[φi(x0(t0i ))]

∂x(ti)
+ ξi

∂[hj(x0(t0i ))]
∂x(ti)

×

∂[λT(t0+
i )gj(x0(t0i ), u

0(t0i ))]
∂x(ti)

,

where ti are the roots of
M∏

j=1

hj(x(t)) = 0, i = 1, · · · , N − 1.

Remark 1 The method used in proving Theorem 2 is
similar to the methods in [16–17,21]. However, our problem is

different from theirs. First, the problems in [17, 21] are time-
driven, but our problem is event-driven. Second, the trajectory
of the state in this paper is discontinuous, while the track of
state is continuous in [16]. Third, as stated in Theorem 2, the
state space can be divided into a number of different parts by
several different switching functions. The model used in [16]
can only divide the state space into two parts as the switching
function becomes positive from negative.

Example 1 We consider a mobile robot navigation
problem. The task of the robot is to reach a goal point
from a fixed starting point. Let

{
ẋ1(t) = 2u1(t),
ẋ2(t) = u2(t),

x1(t) + 2x2(t) 6= 3, (18)
{

x1(t) 7→ 2x1(t),
x2(t) 7→ 2x2(t),

x1(t) + 2x2(t) = 3, (19)

with boundary condition

x1(0) = 0, x2(0) = 0, x1(2) = 4, x2(2) = 3, (20)

where (x1(t), x2(t)) is the position of the robot in R2,
u1(t), u2(t) represent the speed of robot along the x-axis
and y-axis. The meaning of (19) is that the robot will oc-
curs a jump in state when it encounters some obstacle. Our
aim is to find the optimal jump points ti, i = 1, · · · , N−1,
and the control variables u1(t), u2(t), such that the cost
functional

N−1∑
i=1

x2
i (ti) +

w 2

0
(
1
2
u2

1 +
1
2
u2

2)dt

is minimized during these processes.
For simplicity of calculation, we suppose the switch-

ing function x1(t) + 2x2(t) = 3 has one root in [0, 2].
Let

H =
1
2
u2

1 +
1
2
u2

2 + 2λ1u1 + λ2u2.

By the continuity condition (6), we have

4(λ2
1(t

−)− λ2
1(t

+)) + λ2
2(t

−)− λ2
2(t

+) = 0. (21)

By the jumping condition (7), we get that
{

λ1(t−) = 2x1(t) + ξ + 2λ1(t+),
λ2(t−) = 2x2(t) + 2ξ + 2λ2(t+), (22)

combining equations (18)–(21) with equations (4)–(5), we
can obtain six nonlinear equations with six unknown quan-
tities after some calculation. By Newton iterative methods
of solving nonlinear equations and MATLAB procedure,
we get that the system jumps at t = 0.8864 s and the con-
trol variables are

u1(t) =
{

0.5439, t ∈ [0, 0.8864] s,
0.9299, t ∈ (0.8864, 2] s,

u2(t) =
{

1.1484, t ∈ [0, 0.8864] s,
0.8658, t ∈ (0.8864, 2] s.

The behavior of control, adjoint and state variable is shown
in Fig.1.
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Fig. 1 Control, adjoint and state variable in Example 1

5 Generalized differential form of necessary
optimality conditions
We start with a lemma about Frechet differential,

which can be found in [12, 23].

Lemma 1 Let ϕ : X → R, |ϕ(x̄)| < ∞. Then
for any x∗ ∈ ∂̂ϕ(x), there exists a function s : X → R
with s(x̄) = ϕ(x̄), s(x) 6 ϕ(x) whenever x ∈ X , such
that s(·) is Frechet differentiable at x̄ with ∇s(x̄) = x∗.

Now we give the supperdifferential form of necessary
optimality conditions by the method of [13].

Theorem 3 Let (τ0, x0, u0) be a weak local min-
imum point of problem (P), ϕi is Frechet supperdifferen-
tiable at y0

i , then for every x∗(ti) ∈ ∂̂+ϕi(x0(ti)), i =
1, 2, · · · , N , the result of Theorem 1 hold except that (3)
and (7) replaced by{

λ(a) = −Dx(a)[µTr(x0(a), x0(b))],
λ(b) = λ0x

∗(b) + Dx(b)µ
Tr(x0(a), x0(b)), (23)

λ(t0−i ) = λ0x
∗(t0i ) + ξi

∂[h(x0(t0i ))]
∂x

+

∂[λT(t0+
i )g(x0(t0i ), u

0(t0i ))]
∂x(ti)

,

i = 1, · · · , N − 1. (24)

Proof For any x∗(t0i ) ∈ ∂̂+ϕi(x0(ti)), using
Lemma 1 to −x∗(t0i ), there exists si satisfying

si(x0(t0i )) = ϕi(x0(t0i )), si(x(ti)) = ϕi(x(ti))

in some neighborhood of si(x0(t0i )). Moreover, si is
Frechet differentiable at x0(t0i ) with

∇si(x0(t0i )) = x∗(t0i ), i = 1, · · · , N.

Therefore (τ0, x0, u0) is a weak local minimum of pro-
blem (P3): Minimize the functional

J =
N∑

i=1

si(x(ti)) +
w b

a
L(x(t), u(t))dt

over the set of all admissible pairs (τ, x, u). Combining
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the results of Theorem 2 and Lemma 1, we complete the
proof of the theorem.

Example 2 Minimize the cost functional

J =
N∑

i=1

[−|x1(ti)|] +
w 2

0
(
1
2
u2

1 +
1
2
u2

2 −

x1(t)− 3tx2(t))dt

subject to equations (18)–(20).
As in Example 1, we also suppose the switching func-

tion has only one root in [0, 2]. Using the jumping condi-
tion (24), we derive that

{
λ1(t−) = d + ξ + 2λ1(t+),
λ2(t−) = 2ξ + 2λ2(t+),

(25)

where d ∈ [−1, 1] is Frechet supperdifferential at the
switching point.

Taking advantage of similar method in Example 1,
we get that the feasible switching time belongs to the set
[0.2469, 0.2475]. Comparing the values of the cost func-
tional in this feasible set, we obtain that the optimal switch-
ing time is t = 0.2475 s and the control variables are

u1(t) =
{−2t− 1.813, t ∈ [0, 0.2745] s,
−2t + 2.944, t ∈ (0.2745, 2] s,

u2(t) =
{−1.5t2 + 3.9641, t ∈ [0, 0.2745] s,
−1.5t2 + 2.8016, t ∈ (0.2745, 2] s,

The behavior of control, adjoint and state variable is
shown in Fig.2.

Fig. 2 Control, adjoint and state variable in Example 2
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Remark 2 The cost functional in Example 2 is nons-
mooth, so we cann’t use Theorem 1 to get the optimal switching
point. The necessary optimality condition of Frechet differen-
tial form is a good way to solve this problem.

6 Conclusions
This paper has addressed optimal control problems for

a class of impulsive hybrid systems, where the transitions
are state-driven. By parameterizing the switching instants
and reducing all the state and control variables to a com-
mon fixed time interval [0, 1], we obtain the necessary op-
timality condition for this hybrid system. At last, using the
theory of Frechet subdifferential, we extend the necessary
optimality conditions to the nonsmooth case.
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