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Abstract: Based on the backstepping approach, an adaptive state-feedback backstepping controller is designed for
stochastic nonholonomic systems with uncertain nonlinear terms and uncertain nonlinear coefficients. A switching control
strategy for the original system is developed which can guarantee that the closed-loop system is almost asymptotically stable
at the zero equilibrium in probability. A simulation example is provided to illustrate the effectiveness of the controller.
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1 Introduction efficients with known sign, X (¢) : Rt — R™" is a
bounded Borel measurable function which is nonnega-
tive definite for each ¢, time-varying coefficient, also,
and w € R" is an r-dimensional independent standard
Wiener process defined on a complete probability space

(2, F, P) with {2 being a sample space, F being a fil-

Let us consider stochastic nonholonomic chained
systems described by
de‘o = do(t)Uodt, (la)

dxi = d ( )’LLOJJH_ldt + fi(x07 ‘i‘ia 6)dt+

g: (20, i‘i)x (t)dw, tration, and P being a probability measure.
i=1-n—1 (1b) During the past decades, many results have been
d, = dn(t )Udt + fulo, x, 0)di+ reported on the stabilization problem of nonholonomic
gn (20, ) X(t)dw, control systems. In the existing literature, three meth-
where 1y and u are control inputs, xy € R and ¢z = ods are adopted for stabilization of nonholonomic sys-
(1, ,:cn)T € R" are system states, T; = (1, - , tems. The first is discontinuous time-invariant stabiliza-
z;)%, Z, = x, # € R™ is an unknown constant vec-  tion!'!. The second is smooth time-varying stabiliza-

tor, fi(zo, T, 0) : R x R™ — R(1 < 7 < n) are
smooth functions, which can be also named uncertain
parameter based nonlinear drifts, with f;(0,0,60) = 0,
gi(zo, ;) : R — R"(1 < 4 < n) are smooth
functions with ¢;(0,0) = 0, d;(¢t) : RT — R(0 <
i < n) are unknown uncertain time-varying control co-
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tion[?73]. The third is hybrid stabilization'*. It is known
that a nonholonomic system could be transformed into
a chained form system by using state and input trasfor-
mations in [5]. There has been increasing attention de-
voted to the stability problem of the chained form sys-
tems!6-10],
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It’s well known that stochastic signals are very
prevalent in practical engineering and much progress
has been made in stabilization of stochastic differential
equations (SDE). Especially, when backstepping de-
signs were firstly introduced, stochastic nonlinear con-
trol had experienced a breakthrough!!!'2/. Based on
quartic Lyapunov functions, the asymptotical stabiliza-
tion control in the large of the open-loop system was
discussed in [13]. Further research was developed by
the recent work!!4-161,

The almost global adaptive asymptotical controllers
of stochastic nonholonomic systems with unknown
time-varying coefficients before dw were discussed by
using discontinuous control, but the systems didn’t con-
tain nonlinear drifts and unknown time-varying coeffi-
cients before d¢!'”). When the subsystem (1a) is given
by the system of ordinary differential equations, the
problem of state-feedback stabilization control for a
class of high order stochastic nonholonomic systems
with nonlinear drifts and uncertain time-varying coef-
ficients was studied by the backstepping approach, but
nonlinear drifts in the systems didn’t contain uncer-
tain parameters!'®. So, there exists a problem which
is how to design an adaptive state-feedback stabilizing
controller for stochastic nonholonomic systems with
unknown parameters based nonlinear drifts and uncer-
tain time-varying coefficients simultaneously. The main
idea of this paper is highlighted as follows:

i) A stabilization controller is designed for stochas-
tic nonholonomic systems with uncertain parameters
based nonlinear drifts and uncertain time-varying co-
efficients simultaneously by adaptive state-feedback
backstepping technique.

ii) A switching control strategy for the original sys-
tem is presented. It guarantees the closed-loop system is
almost asymptotically stabilized at the zero equilibrium
point in probability. The states are globally asymptoti-
cally stabilized to zero in probability.

The paper is organized as follows: Section 2 begins
with the mathematical preliminaries. In Section 3, the
adaptive state-feedback backstepping controller is de-
signed. In Section 4, a switching control strategy for
the original system is discussed. Finally, a simulation
example is given to show the effectiveness of the con-
troller in Section 5.

2 Preliminaries

The following notations will be used throughout the
paper. R™ denotes the set of all nonnegative real num-
bers, R™ denotes the real n-dimensional space. For a
given vector or matrix X, XT denotes its transpose,
tr{ X'} denotes its trace, when X is square, | X | denotes

the Euclidean norm, | X |, = sup | X]|.
teR
Consider the following stochastic nonlinear system

dz = f(z)dt + g* (z)dw, 2(0) = 2o €R", (2)

where x € R" is the state, the Borel measurable func-
tions f : R" — R” and g : R — R™*" are locally
Lipschitz in z, and w € R" is an r-dimensional inde-
pendent standard Wiener process defined on the com-
plete probability space ({2, F, P). The following defi-
nitions and lemmas will be used in the paper.

Definition 1'"'!  For any given V (x) € C2, asso-
ciated with stochastic system (2), the differential opera-

tor L is defined as follows:
2

V)= 2 fa) + Sirlo@) 2 Lot @). @)

Definition 2131 The equilibrium 2 = 0 of Eq.(2)
is

* globally stable in probability if for Ve > 0, there
exists a class /C function 7(-) such that

P{lx(t)|<y(Jzo])} =1 — &, YVt =0, zo € R™ \ {0}.

* globally asymptotically stable in probability if it
is globally stable in probability and

P{tlirglo |z(t)| =0} =1, Vo € R™.

Lemma 1! Considering the stochastic system
(2), if there exists a C? function V' (x), class K, func-
tions 1 (+) and aa(+), constants ¢; > 0, ¢; > 0, and a
nonnegative function W () such that

(o) <V@ <asllal)
EV(ZIJ) < —01W(l’) + ¢o,
then

i) for Eq.(2), there exists an almost surely unique
solution on [0, co) for each zy € R";

ii) when ¢, = 0, f(0) = 0, g(0) = 0 and W (x)
is continuous, then the equilibrium x = 0 is globally
stable in probability and P{tlim Wi(z(t)) =0} =1
for Vzo € R™.

Lemma 2! Let x and y be real variables. Then,

for any positive integers m, 1 and any real number
€ > 0, the following inequality holds:

19]

eyl

2l "y < el 4+
m+n m+n

(5)

Lemma 3% For any vector-valued continuous

function f(z,y), where z € R™, y € R", there are

smooth scalar functions a(z) > 1 and b(x) > 1 such

that
|f(z,y)| < a(z)b(y). (6)

3 State feedback control

For system (1), the following assumptions and re-
marks are needed.

Assumption 1  For smooth functions f;(-) and
gi(+), i = 1,---  n, there exist known non-negative
smooth functions 7; : R“*' x R™ — RT and §; :
R**! — R* such that for any ¢, Z; and 6:
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| fi(zo, Ti, 0)] < (Joa| + - + |ai])7i (w0, i, 0),
|gi(20, )| < (21| + - - + |2:])&i (0, 7).
Remark 1 There exist positive smooth functions
¢;(0) and ~;(x0,Z;), ¢ =1, -+ ,n, such that
|fi(zo, Zi, O)| < (|w1] + - - - + [i])vi (2o, Zi)ei (6).
Assumption 2  For any ¢ > (0, there exist known
positive constants A\ and p such that

A< di(t)y<p,i=0,1,---,n.

Remark2  Assumption 1 is similar to the Assumption
1in [15], (H1) and (H2) in [20]. The Assumption 2 is same to
the Assumption 3 in [18].

In the following two subsections, we will consider
system (1) under the condition of xy(ty) # 0 and the
case of z¢(to) =0 will be discussed in the Section 4.

3.1 The first state stabilization

Let us consider the subsystem (1a). The control ug
is designed to guarantee that x, converges to zero but
never crosses zero. So one can take u as follows:

Uy = —ToTo, (7
where 7, is a positive gain. We employ a Lyapunov
function of the form )

Vo(xo) = f:cé.

4
Obviously, for any nonzero initial condition (to, zo(to))
with £y > 0, solution of the subsystem (la) is asymp-
totically stable and will not reach zero.
In subsection 3.2, other states will be regulated to
the origin in probability by the design of the control in-
put u.

3.2 Other states stabilization

Let us consider the subsystem (1b). In order to
design a smooth adaptive state-feedback controller, the
following state-input scaling discontinuous transforma-
tion defined by Eq.(8) is needed:

zi=—=—,1<i<n, ®)

n—i’
0

under the new z-coordinate (8), the subsystem (1b) is
transformed into

9 o

) S(t)dw, i =1,
0

dz, = d,(t)udt + f,dt + g, X (t)dw.

7n_17

)

Remark 3  For the initial state zo(to) # 0, from the

subsection 3.1, one can obtain that the transformation (8) is
meaningful.

Remark 4 From the subsection 3.1 and the state-

input scaling discontinuous transformation (8), we know that
xo, 1.e., up asymptotically converges to zero, which means
z;(t) converge to zero in probability with z;(¢) converge to zero

in probability as ¢ goes to infinity.

To deal with the uncertain nonlinear drifts and un-
certain time-varying coefficients simultaneously, define
the estimate parameter

O = max {c;(0),0}, (10)

1<isn

and the error variables €; are given by

~

g1 =21, & =2z — 2 (%0, 2-1,0), 1 =2,-+- |,
~ (11)
where 0 = | X () X1 (t)]oes 2i = (21, ,2))", 2 =
Zn, 27 (1 = 2, -+ ,n) are virtual smooth controllers and
z; will be designed later. Then, we have
de; = d;i(t)zi1dt + Fidt + GF X (t)dw,
i=1,-,n—1, (12)
de, = d,,(t)udt + F,dt + GF X (t)dw,
where
Fi(x0,%,0) =
fi

n—u

0
i—1 §y* i

+mo(n —i)do(t)zi —

> 3 A di(t) 211 + == + mo(n — k)do(t)2i} —
k=1 OZk Uy
0zF 0zF »
do(t) =—tx9 — —6 —
Tlo 0( )8x0$0 Py
1 =1 92z ng Ik
- L) ()X (¢t ,
2 j,%;1 0z;0z; uy ™ (B2 )ug_k
T i—1 * T
- A 9; 0z} gy
GF(xy, 2,0) = - — )
4 ( 0 ) ug_z = azk ug_k
1=1,--- ,n—1.

By Assumption 1, Remark 1, Egs.(8) and (11), we
have the following proposition, whose proof is given in
Appendix.

Proposition 1  For smooth functions f;(-) and
gi(+), i = 1,--- ,n, there exist known non-negative
smooth functions v;;(zo, z;) : R — RY, ¢(0) :
R™ —R*, j=1,2,3,4, such that for any x,, T; and

0:

fi i
| == | < (X2 [exD)yinei(0), (13a)
U k=1

gF i
| =51 < (X lewl)vizs (13b)
U k=1

T i—1 * i

9i 0z gk

n—i _ < 9 i3 (13C)
o T E e S (X ekl

1iz1 9% g7 ¢ i1

=3 L I (S Jerl) . (13)

2521020z ug ™ ug R=1

Now we design the adaptive backstepping con-
troller of the subsystem (1b).

Step 1  Define the 1st Lyapunov candidate func-
tion
A Ly, 1, 1x
‘/1(.730721,@) = Zﬂfo‘i‘zfl‘i‘i@ s (14)
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where © = © — O is the parameter estimation error.

LV; < —nozh + s3d1( )22 + eino(n — 1)do(t)z1 +

S+ 3L (B -
0
15)

&1 ] = nPAGR

n 1
06.

By Proposition 1, there exist nonnegative smooth

functions 711 (g, 21), ¢1(0) and v12(zg, 21 ), such that

/

|UTI_1 < e (o, z1)ei(6), (16)
0
g

| nil | <let|yz(zo, 21)- 17)
0

Substituting Eqs.(16) and (17) into (15), we have

3 ~ X
nop(n — 1)et + Oy + 5%22}51L - 60.
(18)
Suppose that

Z;(x(); 21, é) = —041(1‘07 21, é)51,

where a;(-) > 0 is a smooth function to be chosen.
Thus, by Assumption 2, we have

d1€122 = —dlsjlal < )\E o) = )\5122 (19)

Then, adding and subtracting the term c; 851 +¢ 5‘1‘
on the right-hand side of Eq.(18), and using Eq.(19),

one gets

LV < —M\ozy — 6O] — et + dy(t)ed (20 — 25) +
1 ~
)‘5%{25 + X( 14+ O%Hy + Hig)er } +
O{r — 6}, (20)
where
3
{Hn = ?1 + Y11 + 57?27 7 = Hyef, @1
ng = 61 + )\/J/(TL — 1)

Choosing the virtual smooth control 25 as follows:
{25 (20, 21,0) = —au (20, 21, O)en,

1 -
) == X(\/ 1 +82H11 +H12),

and substituting Eq.(22) into Eq.(20), one can obtain
LV < —)\770903 cie] +

di(t)ed (20 — 23) + é{ﬁ — é}

Step ¢ (2 < i< n) Suppose that the design steps
from 1 to 7 — 1 have been finished, the smooth virtual
control z7, the updating law for @Alvj_l and the tuning
function 7;_; for Step j — 1(j = 2,--- ,4) have been
chosen as follows: .

{Z;(x07 Zj-1, 6) = _ajfl(x(h Zj-15 8)

— 4
Tji—1 = Tj—2 + Hj_1,1€]—71,

N 22
a1(960,2179 22

— 6195411 -

(23)

Simb(24)

where o;_; and 7;_; are smooth functions, and the
(i — 1)th Lyapunov candidate function

N A 1
‘/;71(1'07 E_72717 @) :‘/;72(1:07 5_7;72a @) + 15?—17 (25)

where &; = (51, -+ ,g;)T, for Step i — 1 satisfies
LV;_4
i1
—(Ano — Z Bi)zg — O 30(¢ Z pkj)

j=1 k=j+1

Z pr)e; + dica ()i (2 — 27) +

(@+Z ){n -6},

In the followmg, we will prove that Eq.(26) also
holds for 7.
Define the sth Lyapunov candidate function
A A 1
Vi(2o, &3, 0) = Vie1(20,8i-1,0) + 15?~
From Eqs.(12)(27) and It6 formula, one has
LV; <

(26)

27)

SRR WL W REE
SE— T e+ da(et (- ) +

k=j+1

CRSSE §>{rzl—@}+d<> St

di(t)E?(zi+1 z+1)+€3{ un~ i
_ i1 0z
An —i)do(t)z Za (di(t) 211 + {k;ﬁr
k=1 OZk 0
0z} 5027 A
A — K)o (1)22) — Molt) ooy — =1 056~
0
1l 92z g} gk
X)) XT(t
52 e R0 Sy +
35, 98 oz gk
Ji EZT 2
261 ug 7 162 | ‘ | ( 8)

By Lemma 2, Assumptions 1-2, Proposition 1,
Eqgs.(8) and (11), one can obtain the following inequal-
ities, which are proved in Appendix:

di_1(t)e]_y(z — 2}) <

3 1
Zﬂ5i,if1,15f_1 + 1 “3 1, 1€5 (29)
1—1
? {Zi A <O Z Ezk?gk
Ug
@{ Z 4 z k 2711 + 711}81? (30)
. 1
eino(n —i)do(t)z 4/“70( i)€ii-1,38 1 +
3 1 4
4/“70( )Ezz 13az 1€L’

(31
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i—1 6 i—1 1 1
_5? > djp ()21 < e Z{ €ik2+ ~€ik10 T+ l€zk11}€k
=1 0 4 4
1—2 1 i—1 3 . 1 4
I Z 461 ka1 4€k+1 +u Z 61 k5ER + {Z,Ugi,i—l,l + pno(n — 2)151‘,1'—1,3}51-_1 +
. i—1 k 1
23 - 077 1,4 0z @ZZ 6 € + Z e e+
Y.73 1 % 1 i \2 ,5,6 H i,k+1,4€ %41
W Jekboaly1+ G 1+ G2 +
i—1 3 1 o0z 11 = 1 4
e B (W14 (o =t)2)5 ) et (32) {w Z 7 Ciks + pmo Yo (n = k)fi,k,?}fk +
= 4°° k,5 azk i : he1
i=19z¢ il 1 4 5027 2
. ( k < Ko Z (n - k)z£i,k—1,8€k71 — & = @7 (38)
LS Oz up " k=1 00
-1k q where
e —&; 6% + _ 13, 1 s
k=1 J; 47005 H;y = l;l 1{5 k2Yil T €k 10%4 + 2%351 K, 11} +
izl k 3 _1 82?»k 4 - _
) ~e; %4 /1 L)2)iel 33 ¢
k:1;45236( +(7klazk) ) € ( ) ,711_{_2 Z 136 W 34— ,}/13,
35 02 k)do ()20 < L1,
S _ /
E k=1 aano(n Jdo(t)zi < H22—4,u8211+u770(n—1 1+ 5m 130% 1)+
i—1 i 23 1 4
,LmokZ(n* k)~ {51k 186k—1 + Eik7ER} T+ 4;16”;114 8zk) )5 +
i—1 4 a
HUOZ(”‘ 481k7\/1+ azk ) pyfl+ az
Zi—1
3 _1
—&, 1 14+ (« 2)3 €5, 34 3 1 4
T (\/ (- 16 k)) bl G4 —UMoE; oo \/1+ )®
8 * 4 aIO
—E20do(t) 5 - < 13,
Ox 0 —pe, 2s(4 /14 ( 3+
k:14/‘L Zku ( kazk))
/,6770{ €0 g-fUO + 5 1 + 35 } (35) 3 izl 1 0z 4
V ‘9*’30 —hmo o (n—k)e; 22 (1 /14 (55)%)F +
82*(*"] IO () , -
6
2 ) n—k/ 3 _1 62: 4
jk=1 (923621@ Uy Ug anoel ;1’8(\/1 + (akﬂa )2)3
13 -1 s k
&) Z Ez k10€s + O Z Z ,5’7107316?, (36) From simple operation, one can obtain
i-2 1 i—1
3 A N 1Y ~Eikt14Ek1 = M Z —Ei k4E R (39)
2ol = X g s PO < = 4 24
2 k132ku -1 k 1 1'711'
i—1 . kZ Z 16” 65 = @kZl Z(l — k)i o€,
O{—i > viser, +—§a;*+ —He -
{4 gl’%z ik, 11 27 5} 40)
g i1 i—1 1 4
O-i > € p11Er, 37) o > (n— k)fi,k—l,sfm =
4 k=1 Y k=1
o . . i—2 1
and substituting Eqs.(29)—(37) into Eq.(28), one gets o S (n—k — 1)151‘}19,88%- 41)
LV; < .
i—1 i—1 i—1 Suppose that
_()‘770_ Zﬁ])xO_QZ(EJ_ E pk])g_] z5 1(1'0,2“@):—Oéi(afo,zi,é)é'i,
J=2 j=1 k=j+1 it
i1 i1 where a;(-) > 0 is a smooth function to be chosen.
26— > ﬁkj)fff +d;(t)el (ziga )+ Thus, by Assumption 2, we have
Jj=1 k=j+1
=l 9z diedzr < Aedzf, .. (42)
©@+ > ei—= ){721*@}+d() Zi + o - . - .
k=2 6 Substituting Eqs.(39)—(42) into Eq.(38), adding and

1 _ _
{Zﬂnoﬁi,o,ga}i’?é + OHue] | + Hjyel +

subtracting the term ©¢;e} + ¢;&} on the right-hand side
of Eq.(38), we have
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i

LV <=(m—-2 Bag—O 3 (ei— > puy)ei—

J=1 k=j+1
i-1 i-1 -
Y(C = >0 pri)ej F Az, — el +
Jj= k=j+1

1
di(t)e} (zip1 —
. i-2 -

OH; e} + Z ﬁégf? + /3;,1'715?71 -

Z:+1) + Hz{25;l =+ 521541L +

— *

0z
kHze%—@—s?’n = +
Z @ i€+ Py

> 2, - 6y, (43)
- C)
where
Bi = Z,lmo&,o,g, T, = Ti—1+ Hiﬂ?, (44)
3 1 n 1(_ k:) n 1 n
ik = 7€ik L= FR)&; s
Pik 4 k2 1 k.6 1 k10
Zisi,k,lb k= 1) )Z._27 (45)
_ 3 1
Pii-1 = 151',2'71,1 + 151',%1,2 + 152',1‘71,6 +
1 3.
151‘,2‘71,10 + lei,ifl,ll, (46)

_ 1
P = ZN{ELLS +no(n —1)g;1,74+m0(n —2)e518}

:’—15 +1€ +1 (n—Fk)eipr+
Pir = 4N ik,4 4N i.k,5 4W]0 ik,7
1
Z,U/I’]o(n—k’—1>€ivk7g, k:2, ,i—27
- 3 n 1 (n—1) n
. p— 6174 Ell
Pii—1 4,“ 1,1 41“70 1,3
1 1
4/~L€zz 14+4;u827, 15+

1 )
Z,tmo(n —i+1)e; 7,
Hy =¢ + H;, H,=¢ + H),. 47)

By Eq.(43) and Lemma 2, the following inequalities
hold:

0z
€ s4+\/1+ *H;
K 12E), (e 90

)Pei+

-1 . 0z} .4
51’,13,12(\/1+(5in1 20 )2)sed,

(49)
Substituting Eqs.(48) and (49) into Eq.(43) results
in
LV; <
(Ao — 3- By —
j=2

e Zl(éj — > Pri)E; —
]:

k=j+1

7 7

>2(E— X Prjlej + dilt)e;

=1 k=j+1

1
AE’L i+1 + A{i(

(Zz+1 Zl—l) +

1+ éQHﬂ + ng)}gil +

(@+E ’“){ -6}, (50)
where
_ 1 .
pik:pikJrZei,k:,l% k=1,---,i—1, (51)

k=2

Oz il 0z;
Hy= H, + 1+ (3 =L H)2 +
2 \/ +(e} 8) > \/ (e 90 1)

*

0
;) )i+ Hl. (52)

Choosing the virtual smooth control z;, , as fol-
lows:

Z;':.l(l'Oa Zi, é) :1

ai($075i>é) = X(

and substituting Eq.(53) into Eq.(50), one can obtain
LV; <

—(Amo — Zi: Bj)x; — O i(cj — > Prj)E; —

—aoy(xo, Z, é)&w

= 53
14+ ©2H;; + H;,), o)

k=j+1
Z( Z ij) ;L di(t)e ?(Zi-&-l _Z:Jrl)"i‘
Jj=1 —J+1
6+ 5 9% Sy 54
( ;;::26’“8@){7 } (54)

In the end, when ¢ = n, 2z,.1 = 2z, ; = wis the
actual control. By Choosing the actual control law and
the adaptive laws for ©

U(l‘o, va @)
é =Tpn = Z H?,lgw

=

—0y (:L‘Oa Zna é)gna
(55)

where v, and H;; (i = 1, - - - , n) are smooth functions.
We choose the nth Lyapunov candidate function

A1 n o1 1.
Vi(z0,E,,0) = Zmé + ;;1 Zsi + 5@2, (56)

. One can easily get

> 5kj)5?—

k=j+1

wheree = ¢, = (61, ,&,)"

LV, < —(Ano— Z}Qﬁj)x‘é— Zl(éj—
j= Jj=

S el (57)

0> (¢ —
j=1 k=j+1

4 Switching control stability
In Section 3, we have considered the case of
xo(to) # 0. The controllers Egs.(7) and (55) for system
(1) are given. Now we turn to the case of zq(tq) = 0. If
the initial is zero, one can choose an open loop control
ug = ugy # 0 to drive the state x, away from zero. So
there exists t¥ > 0 such that zo(t) # 0. After that,
controllers 1y and u given in Egs.(7) and (55) can be
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used. Based on the above analysis, we give the main
results of this paper.

Theorem 1
hold. If the following switching control procedure is
applied to system (1):

Suppose that Assumptions 1 and 2

1) When the initial state belongs to

{(zo(to), z(to)) € R""xo(to) # 0},
we design control inputs ug and v in form Eqgs.(7) and
(55), respectively;
ii) When the initial state belongs to

{(zo(to), z(to)) € R""Hao(to) = 0}
If t € [to, ), one can choose the control law ug = uf
and u = u*; If t € [tf, +00), at the time ¢t = ¢}, we
switch the control inputs ug and u into Egs.(7) and (55),
respectively.

Then, for any initial conditions in the state space,
system (1) will be almost asymptotically stabilized in
probability at the equilibrium and specifically, the states
are globally asymptotically regulated to zero in proba-
bility.

Proof Firstly, we consider the case that the initial
state belongs to {(zo(to), z(ty)) € R"|xzo(ty) # 0}.
One can obtain that x, is asymptotically stable and
will not be zero. One can choose ¢; and ¢; such that
LV, < 0. From Lemma 1 and Eq.(57), one gets sig-
nals €1, - - -, €, are globally asymptotically regulated
to zero in probablhty and bounded in probability, signal
© is bounded in probability also. From © are bounded
in probability and Eq.(11), it is easy to see that z; and
z; are bounded and globally stable in probability. By
z9 = €9 + 25, we have z, is bounded in probability
and converges to zero in probability. With the similar
method, the same results also hold for z3,--- , z,. So
21, , 2, globally asymptotically regulated to zero in
probability and bounded in probability. As a result of
Eq.(8), one gets ¢, x4, - - , x,, are globally asymptoti-
cally converge to zero in probability and all bounded in
probability.

Secondly, when the initial state belongs to

{(zo(to), 2(t0)) € R""H|zo(to) = 0},

we use the constant control 1y = u; # 0 in order to
drive x( far away from the origin. Meanwhile, by ap-
plication of the design procedure proposed in Section
3, we construct a controller 4 = u* , which guarantees
that all the signals are bounded in probability during
[to,t%). Then, in view of xo(tX) # 0, the switching
control strategy is applied to system (1) at the time in-
stant ¢ > 0.

5 Simulation example
Consider the following system:
dxo = do (t)Uth,
d.’L‘l = dl (t)ﬂ?g’llodt + x19dt + 21
dzs = da(t)udt + 2. X(t)dw,
where dy(t) = 1.5, d1(t) = 1+ 0.1sint, do(t) =
0.9+ 0.2sint, X(t) =14 0.125sint.

One can easily obtain that Proposition 1 is satis-
fied withn = 2, 711 = 712 = 1, c1(0) = V1462,
Y21 = 0, Y22 = 723 = 1. In simulation, choose 6 = 1.
Obviously, there exist positive constants A = 0.7 and
p = 1.6 to satisfy A < d;(t) < wp(i = 0,1,2),
11 = 12 = 1.6 which satisfy Assumption 2. According
to Eq.(7), one gets the control

2(t)dw, (58)

Ug = —ToLo- (59)
Defining § = | X(t) X7 (t)|s and © = max{c,(6), 0}.
According to Eq.(21), it is easy to obtain Hy; = ¢; +

711_1_57122’7—1 = Hye}, Hip = ¢+ A\, where ¢; > 0

and ¢; > 0 are design parameters which will be chosen
later. Thus, by Eq.(22), one gets the virtual smooth con-
trol 23,

{Z§($0>217é) =

—041(56‘0, 21, é)Ela

1 = 60
X(\/1+@2H11+H12). (60)

061(30072176)) =

From Eq.(59), we have 02 — 0z 0
we hav = , =0,
4 e %
62; 625 @Hll . .
=0, — = —————=¢;. Next, leti = 2in
Oy 00 A1+ 62 !
Section3andey; ; = 1(¢ =0,1; j =1,---,10), one
can obtain
G, = 1 _ 1 _ . 1 I
2 = 4770% P21 = 9’ P21 = W 47IOM )
_ 3 2 3 82’* 4
Hy =0¢ + 1’75’1 + 721+ 1( 1+ (v &zj )?)®,
| 3 0z5 ... a 3
H22:Cz+1#+1#( 1+(0410Z1) )3+2723+
3 (92 4
375 + 1 2)?)s
Va3 Tt 4770N( + (8,21) )s +
3 0z 4 3 0%z
_ 1 2\2 3 _ 1 72 2
T +<8x0 g1+ G G

\/1+( +u/1+
i(\/ + (e HHZZ@) )%527

4
To =T + H21E2,

and the updating law for © and the smooth control u as
follows:
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O = Hyiel + Hael, u = —az(wo, 21, 0)e, 61) 0.800014 ' ' '
~ 1 ~ 0.800012 3
062(21?0, 21, @) = X( V 1+ 62H21 + H22)7
0.800001 | b
where ¢, > 0 and ¢, > 0 are design parameters. 0.800008 _
) In order: to satisfy _£V2 §= 0, we choose 19 = '3, ® 0.800006 |- .
¢, = 06,6 = 4.2, ¢ = é = 0.1, and the initial 0.800004 - .
values x4(0) = 0.3, 21(0) = 0.09, 2,(0) = —1.3, 0.800002
©(0) = 0.8. Fig.1 gives the response of the closed- ' I |
loop system consisting of Egs.(58)- (60), from which, 0'8000000,0 0|_5 1|,0 1_I5 2.0
the effectiveness of the controller is demonstrated. t/s

Remark 5

controller is demonstrated. However, by Eq.(61), one can ob-

From Fig.1-3, the effectiveness of the

tain that g has great effect on the controller u, that is, the value
of u is determined by that of é, Hoq. In simulation, one can
choose the parameters 0 < e2; ; # 1(¢ =0,1; j = 1,--- ,10)
and the stochastic non-holonomic system (1) is globally asymp-
totically stable, also.

0.4 T T T

0.2 .. i
0.0 _’___;-;-;_. .......... .

021 .
041 .
0.6 1
0.8 1
-1.0 —x
1.2 .

714 1 1 1
0.0 0.5 1.0 1.5 2.0

States

t/s

Fig. 1 The responses of states zq, 1 and xo with
respect to time

,60 1 1 1 1
0.0 0.5 1.0 1.5 2.0

t/s

Fig. 2 The responses of controllers ug and u with
respect to time

Fig. 3 The responses of estimate parameter 6 with
respect to time

6 Conclusions

This paper studies the adaptive state-feedbacks sta-
bilization of stochastic nonholonomic systems with un-
known parameters. A recursive adaptive state-feedback
backstepping controllers is designed. A switching con-
trol strategy for the original system is given which can
guarantee the closed-loop system is almost asymptoti-
cally stabilized at the origin in probability.

There are some remaining problems to be dis-
cussed. For example, how to design the controller for
the stochastic nonholonomic systems when the first sub-
system is stochastic differential equation with uncertain
parameters, especially, in the visual serving feedback
control of nonholonomic moving mobile robots.

References:

[1] ASTOLFI A. Discontinuous control of nonholonomic systems [J].
Systems & Control Letters, 1996, 27(1): 37 — 45.

[2] POMET J. Explicit design of time-varying stabilizing control laws
for a class of controllable system without drift [J]. Systems & Control
Letters, 1992, 18(2): 147 — 158.

[3] JIANG Z. Iterative design of time-varying stabilizers for multi-input
systems in chained form [J]. Systems & Control Letters, 1996, 28(5):
255 - 262.

[4] LUO J, TSIOTRAS P. Control design for chained-form systems with
bounded inputs [J]. Systems & Control Letters, 2000, 39(2): 123 —
131.

[5S]1 ARNOLD V 1. Geometrical Methods in the Theory of Ordinary Dif-
ferential Equations [M]. New York: Springer-Verlag, 1988.

[6] LIANG Z, WANG C. Robust exponential stabilization of nonholo-
nomic wheeled mobile robots with unknown visual parameters [J].
Journal of Control Theory and Applications, 2011, 9(2): 295 —301.

[71 WU Y Y, WU Y Q. Robust stabilization for nonholonomic systems
with state delay and nonlinear drifts [J]. Journal of Control Theory
and Applications, 2011, 9(2): 256 — 260.

[8] TIAN Y, LI S. Exponential stabilization of nonholonomic dynamic
systems by smooth time-varying control [J]. Automatica, 2002, 38(7):
1139 — 1146.

[91 GE S, WANG Z, LEE T. Adaptive stabilization of uncertain nonholo-
nomic systems by state and output feedback [J]. Automatica, 2003,
39(8): 1451 — 1460.

[10] HONG Y, WANG J, XI Z. Stabilization of uncertain chained form
systems within finite settling time [J]. IEEE Transactions on Auto-
matic Control, 2005, 50(9): 1379 — 1384.

[11] KRSTIC M, DENG H. Stability of Nonlinear Uncertain Systems [M].
New York: Springer Publishing, 1998.



No. 11

ZHANG Dong-kai et al: Adaptive state-feedback stabilization for stochastic nonholonomic chained systems 1487

[12] PAN Z, BA¢AR T. Backstepping controller design for nonlinear
stochastic systems under a risk-sensitive cost criterion [J]. STAM Jour-
nal of Control and Optimization, 1999, 37(3): 957 — 995.

[13] DENG H, KRSTIC M, WILLIAMS R. Stabilization of stochastic
nonlinear driven by noise of unknown covariance [J]. IEEE Trans-
actions on Automatic Control, 2001, 46(8):1237 — 1253.

[14] WU Z, XIE X, ZHANG S. Adaptive backstepping controller design
using stochastic small-gain theorem [J]. Automatica, 2007, 43(4):
608 — 620.

[15] XIE X, TIAN J. State-feedback stabilization for high-order stochas-
tic nonlinear systems with stochastuic inverse dynamics [J]. Interna-
tional Journal of Robust and Nonlinear Control, 2007, 17(14): 1343
—1362.

TIAN J, XIE X. Adaptive state-feedback stabilization for high-order
stochastic non-linear systems with uncertain control coefficients [J].
International Journal of Control, 2007, 80(9): 1503 — 1516.

WANG J, GAO Q, LI H. Adaptive robust control of nonholonomic
systems with stochastic disturbances [J]. Science in China: Series F
Information Sciences, 2006, 49(2): 189 —207.

[18] ZHAO Y, YU J, WU Y. State-feedback stabilization for a class of
more general high order stochastic nonholonomic systems [J]. Inter-
national Journal of Adaptive Control and Signal Processing, 2011,
25(8): 687 —706.

LIN W, QIAN C. Adaptive control of nonlinearly parameterized sys-
tems: a nonsmooth feedback framework [J]. IEEE Transactions on
Automatic Control, 2002, 47(8): 757 - 774.

LIN W, QIAN C. Adding one power integrator: a tool for global stabi-
lization of high-order lower-triangular systems [J]. Systems & Control
Letters, 2000, 39(5): 339 — 351.

[16

[17

[19

[20

Appendix

i) We only prove Eq.(13a). The proofs of Eqs.(13b)—(13d)
are similar to that of Eq.(13a). From Assumption 1, Remark 1,
Eqgs.(8) and (11), it is easy to see

i
. 5 fon
| nl_l (J"Oa‘fi?e)' 7717_1,71(93075170) <
Yo Jug ™|

VA
E

E:l aj)Fici(0) =
Jj=1

; i
kZ |2k |73 (z0, Ti)ci () < kE lex] (1 +
=1

(ler] + -+ + leil)vi1 (o, Ti)ei(0)-

ii) In the following, we will prove the inequality Eq.(30).
The proofs of Eqs.(29)(31)—-(37) and (48)—(49) are similar to
that of Eq.(30). By Lemma 2, Assumptionl, 2, Proposition 1,
Eqgs.(8) and (11), one can obtain

3 fi 3 4
gi ——7 < leil” X leklvinei(0) +evinci(0) <
Uq k=1

| 3 14 . ,
kz (451 k, 2€k 7 4 1,13,271'3151' )ci(0) + virgici(0) <

1 4
o z e,kzek+e{z Serdah +nded.
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