随机非完整链式系统的自适应状态反馈镇定

张东凯 ${ }^{1,2}$ ，王朝立 ${ }^{3}$ ，陈 华 ${ }^{4}$
（1．上海理工大学 管理学院，上海 200093；2．石家庄学院 数学系与信息科学系，河北 石家庄 050035； 3．上海理工大学 控制科学与工程系，上海 200093；4．河海大学 数理教学部，江苏 常州 213022 ）

摘要：基于反步技术，对带有不确定非线性项和不确定非线性系数的随机非完整链式系统，设计了自适应状态反馈镇定器．给出了能够保证系统依概率几乎渐近稳定到平衡点的切换控制．最后用仿真验证了控制器的有效性．
关键词：随机非完整系统；状态反馈；反步；切换控制
中图分类号：TP273 文献标识码：A

Adaptive state－feedback stabilization for stochastic nonholonomic chained systems

ZHANG Dong－kai ${ }^{1,2}$ ，WANG Chao－li ${ }^{3}$ ，CHEN Hua ${ }^{4}$
（1．Business School，University of Shanghai for Science and Technology，Shanghai 200093，China；
2．Department of Mathematics and Information Science，Shijiazhuang University，Shijiazhuang Hebei 050035，China； 3．Department of Control Science and Engineering，University of Shanghai for Science and Technology，Shanghai 200093，China；
4．Mathematics and Physics Department，Hohai University，Changzhou Jiangsu 213022，China）

Abstract

Based on the backstepping approach，an adaptive state－feedback backstepping controller is designed for stochastic nonholonomic systems with uncertain nonlinear terms and uncertain nonlinear coefficients．A switching control strategy for the original system is developed which can guarantee that the closed－loop system is almost asymptotically stable at the zero equilibrium in probability．A simulation example is provided to illustrate the effectiveness of the controller．

Key words：stochastic nonholonomic systems；state－feedback；backstepping；switching control strategy

1 Introduction

Let us consider stochastic nonholonomic chained systems described by

$$
\begin{equation*}
\mathrm{d} x_{0}=d_{0}(t) u_{0} \mathrm{~d} t \tag{1a}
\end{equation*}
$$

$$
\left\{\begin{align*}
\mathrm{d} x_{i}= & d_{i}(t) u_{0} x_{i+1} \mathrm{~d} t+f_{i}\left(x_{0}, \bar{x}_{i}, \theta\right) \mathrm{d} t+ \tag{1b}\\
& g_{i}^{\mathrm{T}}\left(x_{0}, \bar{x}_{i}\right) \Sigma(t) \mathrm{d} \omega \\
& i=1, \cdots, n-1 \\
\mathrm{~d} x_{n}= & d_{n}(t) u \mathrm{~d} t+f_{n}\left(x_{0}, x, \theta\right) \mathrm{d} t+ \\
& g_{n}^{\mathrm{T}}\left(x_{0}, x\right) \Sigma(t) \mathrm{d} \omega
\end{align*}\right.
$$

where u_{0} and u are control inputs，$x_{0} \in \mathbb{R}$ and $x=$ $\left(x_{1}, \cdots, x_{n}\right)^{\mathrm{T}} \in \mathbb{R}^{n}$ are system states， $\bar{x}_{i}=\left(x_{1}, \cdots\right.$ ， $\left.x_{i}\right)^{\mathrm{T}}, \bar{x}_{n}=x, \theta \in \mathbb{R}^{m}$ is an unknown constant vec－ tor，$f_{i}\left(x_{0}, \bar{x}_{i}, \theta\right): \mathbb{R}^{i+1} \times \mathbb{R}^{m} \rightarrow \mathbb{R}(1 \leqslant i \leqslant n)$ are smooth functions，which can be also named uncertain parameter based nonlinear drifts，with $f_{i}(0,0, \theta)=0$ ， $g_{i}\left(x_{0}, \bar{x}_{i}\right): \mathbb{R}^{i+1} \rightarrow \mathbb{R}^{r}(1 \leqslant i \leqslant n)$ are smooth functions with $g_{i}(0,0)=0, d_{i}(t): \mathbb{R}^{+} \rightarrow \mathbb{R}(0 \leqslant$ $i \leqslant n)$ are unknown uncertain time－varying control co－
efficients with known sign，$\Sigma(t): \mathbb{R}^{+} \rightarrow \mathbb{R}^{r \times r}$ is a bounded Borel measurable function which is nonnega－ tive definite for each t ，time－varying coefficient，also， and $\omega \in \mathbb{R}^{r}$ is an r－dimensional independent standard Wiener process defined on a complete probability space (Ω, \mathcal{F}, P) with Ω being a sample space， \mathcal{F} being a fil－ tration，and P being a probability measure．

During the past decades，many results have been reported on the stabilization problem of nonholonomic control systems．In the existing literature，three meth－ ods are adopted for stabilization of nonholonomic sys－ tems．The first is discontinuous time－invariant stabiliza－ tion ${ }^{[1]}$ ．The second is smooth time－varying stabiliza－ tion ${ }^{[2-3]}$ ．The third is hybrid stabilization ${ }^{[4]}$ ．It is known that a nonholonomic system could be transformed into a chained form system by using state and input trasfor－ mations in［5］．There has been increasing attention de－ voted to the stability problem of the chained form sys－ tems ${ }^{[6-10]}$ ．

[^0]It's well known that stochastic signals are very prevalent in practical engineering and much progress has been made in stabilization of stochastic differential equations (SDE). Especially, when backstepping designs were firstly introduced, stochastic nonlinear control had experienced a breakthrough ${ }^{[11-12]}$. Based on quartic Lyapunov functions, the asymptotical stabilization control in the large of the open-loop system was discussed in [13]. Further research was developed by the recent work ${ }^{[14-16]}$.

The almost global adaptive asymptotical controllers of stochastic nonholonomic systems with unknown time-varying coefficients before $\mathrm{d} \omega$ were discussed by using discontinuous control, but the systems didn't contain nonlinear drifts and unknown time-varying coefficients before $\mathrm{d} t^{[17]}$. When the subsystem (1a) is given by the system of ordinary differential equations, the problem of state-feedback stabilization control for a class of high order stochastic nonholonomic systems with nonlinear drifts and uncertain time-varying coefficients was studied by the backstepping approach, but nonlinear drifts in the systems didn't contain uncertain parameters ${ }^{[18]}$. So, there exists a problem which is how to design an adaptive state-feedback stabilizing controller for stochastic nonholonomic systems with unknown parameters based nonlinear drifts and uncertain time-varying coefficients simultaneously. The main idea of this paper is highlighted as follows:
i) A stabilization controller is designed for stochastic nonholonomic systems with uncertain parameters based nonlinear drifts and uncertain time-varying coefficients simultaneously by adaptive state-feedback backstepping technique.
ii) A switching control strategy for the original system is presented. It guarantees the closed-loop system is almost asymptotically stabilized at the zero equilibrium point in probability. The states are globally asymptotically stabilized to zero in probability.

The paper is organized as follows: Section 2 begins with the mathematical preliminaries. In Section 3, the adaptive state-feedback backstepping controller is designed. In Section 4, a switching control strategy for the original system is discussed. Finally, a simulation example is given to show the effectiveness of the controller in Section 5.

2 Preliminaries

The following notations will be used throughout the paper. \mathbb{R}^{+}denotes the set of all nonnegative real numbers, \mathbb{R}^{n} denotes the real n-dimensional space. For a given vector or matrix X, X^{T} denotes its transpose, $\operatorname{tr}\{X\}$ denotes its trace, when X is square, $|X|$ denotes the Euclidean norm, $|X|_{\infty}=\sup _{t \in \mathbb{R}_{+}}|X|$.

Consider the following stochastic nonlinear system

$$
\begin{equation*}
\mathrm{d} x=f(x) \mathrm{d} t+g^{\mathrm{T}}(x) \mathrm{d} \omega, x(0)=x_{0} \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$ is the state, the Borel measurable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times r}$ are locally Lipschitz in x, and $\omega \in \mathbb{R}^{r}$ is an r-dimensional independent standard Wiener process defined on the complete probability space (Ω, \mathcal{F}, P). The following definitions and lemmas will be used in the paper.

Definition $1^{[11]}$ For any given $V(x) \in \mathcal{C}^{2}$, associated with stochastic system (2), the differential operator \mathcal{L} is defined as follows:

$$
\begin{equation*}
\mathcal{L} V(x)=\frac{\partial V}{\partial x} f(x)+\frac{1}{2} \operatorname{tr}\left\{g(x) \frac{\partial^{2} V}{\partial x^{2}} g^{\mathrm{T}}(x)\right\} \tag{3}
\end{equation*}
$$

Definition $2{ }^{[13]}$ The equilibrium $x=0$ of Eq.(2) is

- globally stable in probability if for $\forall \varepsilon>0$, there exists a class \mathcal{K} function $\gamma(\cdot)$ such that

$$
\mathrm{P}\left\{|x(t)|<\gamma\left(\left|x_{0}\right|\right)\right\} \geqslant 1-\varepsilon, \forall t \geqslant 0, x_{0} \in \mathbb{R}^{n} \backslash\{0\}
$$

- globally asymptotically stable in probability if it is globally stable in probability and

$$
\mathrm{P}\left\{\lim _{t \rightarrow \infty}|x(t)|=0\right\}=1, \forall x_{0} \in \mathbb{R}^{n}
$$

Lemma $1^{[13]}$ Considering the stochastic system (2), if there exists a \mathcal{C}^{2} function $V(x)$, class \mathcal{K}_{∞} functions $\alpha_{1}(\cdot)$ and $\alpha_{2}(\cdot)$, constants $c_{1}>0, c_{2} \geqslant 0$, and a nonnegative function $W(x)$ such that

$$
\left\{\begin{array}{l}
\alpha_{1}(|x|) \leqslant V(x) \leqslant \alpha_{2}(|x|) \tag{4}\\
\mathcal{L} V(x) \leqslant-c_{1} W(x)+c_{2}
\end{array}\right.
$$

then
i) for Eq.(2), there exists an almost surely unique solution on $[0, \infty)$ for each $x_{0} \in \mathbb{R}^{n}$;
ii) when $c_{2}=0, f(0)=0, g(0)=0$ and $W(x)$ is continuous, then the equilibrium $x=0$ is globally stable in probability and $\mathrm{P}\left\{\lim _{t \rightarrow \infty} W(x(t))=0\right\}=1$ for $\forall x_{0} \in \mathbb{R}^{n}$.

Lemma $2{ }^{[19]}$ Let x and y be real variables. Then, for any positive integers m, n and any real number $\varepsilon>0$, the following inequality holds:

$$
\begin{equation*}
|x|^{m}|y|^{n} \leqslant \frac{m}{m+n} \varepsilon|x|^{m+n}+\frac{n}{m+n} \varepsilon^{-\frac{m}{n}}|y|^{m+n} \tag{5}
\end{equation*}
$$

Lemma $3^{[20]}$ For any vector-valued continuous function $f(x, y)$, where $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, there are smooth scalar functions $a(x) \geqslant 1$ and $b(x) \geqslant 1$ such that

$$
\begin{equation*}
|f(x, y)| \leqslant a(x) b(y) \tag{6}
\end{equation*}
$$

3 State feedback control

For system (1), the following assumptions and remarks are needed.

Assumption 1 For smooth functions $f_{i}(\cdot)$ and $g_{i}(\cdot), i=1, \cdots, n$, there exist known non-negative smooth functions $\bar{\gamma}_{i}: \mathbb{R}^{i+1} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{+}$and $\bar{\xi}_{i}:$ $\mathbb{R}^{i+1} \rightarrow \mathbb{R}^{+}$such that for any x_{0}, \bar{x}_{i} and $\theta:$
$\left|f_{i}\left(x_{0}, \bar{x}_{i}, \theta\right)\right| \leqslant\left(\left|x_{1}\right|+\cdots+\left|x_{i}\right|\right) \bar{\gamma}_{i}\left(x_{0}, \bar{x}_{i}, \theta\right)$,
$\left|g_{i}\left(x_{0}, \bar{x}_{i}\right)\right| \leqslant\left(\left|x_{1}\right|+\cdots+\left|x_{i}\right|\right) \bar{\xi}_{i}\left(x_{0}, \bar{x}_{i}\right)$.
Remark 1 There exist positive smooth functions $c_{i}(\theta)$ and $\gamma_{i}\left(x_{0}, \bar{x}_{i}\right), i=1, \cdots, n$, such that

$$
\left|f_{i}\left(x_{0}, \bar{x}_{i}, \theta\right)\right| \leqslant\left(\left|x_{1}\right|+\cdots+\left|x_{i}\right|\right) \gamma_{i}\left(x_{0}, \bar{x}_{i}\right) c_{i}(\theta) .
$$

Assumption 2 For any $t>0$, there exist known positive constants λ and μ such that

$$
\lambda \leqslant d_{i}(t) \leqslant \mu, i=0,1, \cdots, n
$$

Remark 2 Assumption 1 is similar to the Assumption 1 in [15], (H1) and (H2) in [20]. The Assumption 2 is same to the Assumption 3 in [18].

In the following two subsections, we will consider system (1) under the condition of $x_{0}\left(t_{0}\right) \neq 0$ and the case of $x_{0}\left(t_{0}\right)=0$ will be discussed in the Section 4 .

3.1 The first state stabilization

Let us consider the subsystem (1a). The control u_{0} is designed to guarantee that x_{0} converges to zero but never crosses zero. So one can take u_{0} as follows:

$$
\begin{equation*}
u_{0}=-\eta_{0} x_{0} \tag{7}
\end{equation*}
$$

where η_{0} is a positive gain. We employ a Lyapunov function of the form

$$
V_{0}\left(x_{0}\right)=\frac{1}{4} x_{0}^{4}
$$

Obviously, for any nonzero initial condition $\left(t_{0}, x_{0}\left(t_{0}\right)\right)$ with $t_{0} \geqslant 0$, solution of the subsystem (1a) is asymptotically stable and will not reach zero.

In subsection 3.2, other states will be regulated to the origin in probability by the design of the control input u.

3.2 Other states stabilization

Let us consider the subsystem (1b). In order to design a smooth adaptive state-feedback controller, the following state-input scaling discontinuous transformation defined by Eq.(8) is needed:

$$
\begin{equation*}
z_{i}=\frac{x_{i}}{u_{0}^{n-i}}, 1 \leqslant i \leqslant n \tag{8}
\end{equation*}
$$

under the new z-coordinate (8), the subsystem (1b) is transformed into

$$
\left\{\begin{align*}
\mathrm{d} z_{i}= & d_{i}(t) z_{i+1} \mathrm{~d} t+\left(\frac{f_{i}}{u_{0}^{n-i}}+\eta_{0}(n-i) d_{0}(t) z_{i}\right) \mathrm{d} t+ \tag{9}\\
& \frac{g_{i}^{\mathrm{T}}}{u_{0}^{n-i}} \Sigma(t) \mathrm{d} \omega, i=1, \cdots, n-1 \\
\mathrm{~d} z_{n}= & d_{n}(t) u \mathrm{~d} t+f_{n} \mathrm{~d} t+g_{n}^{\mathrm{T}} \Sigma(t) \mathrm{d} \omega
\end{align*}\right.
$$

Remark 3 For the initial state $x_{0}\left(t_{0}\right) \neq 0$, from the subsection 3.1, one can obtain that the transformation (8) is meaningful.

Remark 4 From the subsection 3.1 and the stateinput scaling discontinuous transformation (8), we know that x_{0}, i.e., u_{0} asymptotically converges to zero, which means $x_{i}(t)$ converge to zero in probability with $z_{i}(t)$ converge to zero
in probability as t goes to infinity.
To deal with the uncertain nonlinear drifts and uncertain time-varying coefficients simultaneously, define the estimate parameter

$$
\begin{equation*}
\Theta=\max _{1 \leqslant i \leqslant n}\left\{c_{i}(\theta), \bar{\theta}\right\} \tag{10}
\end{equation*}
$$

and the error variables ε_{i} are given by

$$
\begin{equation*}
\varepsilon_{1}=z_{1}, \varepsilon_{i}=z_{i}-z_{i}^{*}\left(x_{0}, \bar{z}_{i-1}, \hat{\Theta}\right), i=2, \cdots, n \tag{11}
\end{equation*}
$$

where $\bar{\theta}=\left|\Sigma(t) \Sigma^{\mathrm{T}}(t)\right|_{\infty}, \bar{z}_{i}=\left(z_{1}, \cdots, z_{i}\right)^{\mathrm{T}}, z=$ $\bar{z}_{n}, z_{i}^{*}(i=2, \cdots, n)$ are virtual smooth controllers and z_{i}^{*} will be designed later. Then, we have

$$
\left\{\begin{align*}
\mathrm{d} \varepsilon_{i}= & d_{i}(t) z_{i+1} \mathrm{~d} t+F_{i} \mathrm{~d} t+G_{i}^{\mathrm{T}} \Sigma(t) \mathrm{d} \omega \tag{12}\\
& i=1, \cdots, n-1 \\
\mathrm{~d} \varepsilon_{n}= & d_{n}(t) u \mathrm{~d} t+F_{n} \mathrm{~d} t+G_{n}^{\mathrm{T}} \Sigma(t) \mathrm{d} \omega
\end{align*}\right.
$$

where

$$
\begin{aligned}
& F_{i}\left(x_{0}, \bar{z}_{i}, \hat{\Theta}\right)= \\
& \frac{f_{i}}{u_{0}^{n-i}}+\eta_{0}(n-i) d_{0}(t) z_{i}- \\
& \sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}}\left\{d_{k}(t) z_{k+1}+\frac{f_{k}}{u_{0}^{n-k}}+\eta_{0}(n-k) d_{0}(t) z_{k}\right\}- \\
& \eta_{0} d_{0}(t) \frac{\partial z_{i}^{*}}{\partial x_{0}} x_{0}-\frac{\partial z_{i}^{*}}{\partial \hat{\Theta}} \dot{\hat{\Theta}}- \\
& \frac{1}{2} \sum_{j, k=1}^{i-1} \frac{\partial^{2} z_{i}^{*}}{\partial z_{j} \partial z_{k}} \frac{g_{j}^{\mathrm{T}}}{u_{0}^{n-j}} \Sigma(t) \Sigma^{\mathrm{T}}(t) \frac{g_{k}}{u_{0}^{n-k}} \\
& G_{i}^{\mathrm{T}}\left(x_{0}, \bar{z}_{i}, \hat{\Theta}\right)=\frac{g_{i}^{\mathrm{T}}}{u_{0}^{n-i}}-\sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}} \frac{g_{k}^{\mathrm{T}}}{u_{0}^{n-k}} \\
& \quad i=1, \cdots, n-1
\end{aligned}
$$

By Assumption 1, Remark 1, Eqs.(8) and (11), we have the following proposition, whose proof is given in Appendix.

Proposition 1 For smooth functions $f_{i}(\cdot)$ and $g_{i}(\cdot), i=1, \cdots, n$, there exist known non-negative smooth functions $\gamma_{i j}\left(x_{0}, \bar{z}_{i}\right): \mathbb{R}^{i+1} \rightarrow \mathbb{R}^{+}, c_{i}(\theta):$ $\mathbb{R}^{m} \rightarrow \mathbb{R}^{+}, j=1,2,3,4$, such that for any x_{0}, \bar{x}_{i} and θ :

$$
\begin{align*}
& \left|\frac{f_{i}}{u_{0}^{n-i}}\right| \leqslant\left(\sum_{k=1}^{i}\left|\varepsilon_{k}\right|\right) \gamma_{i 1} c_{i}(\theta) \tag{13a}\\
& \left|\frac{g_{i}^{\mathrm{T}}}{u_{0}^{n-i}}\right| \leqslant\left(\sum_{k=1}^{i}\left|\varepsilon_{k}\right|\right) \gamma_{i 2} \tag{13b}\\
& \left|\frac{g_{i}^{\mathrm{T}}}{u_{0}^{n-i}}-\sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}} \frac{g_{k}}{u_{0}^{n-k}}\right| \leqslant\left(\sum_{k=1}^{i}\left|\varepsilon_{k}\right|\right) \gamma_{i 3} \tag{13c}\\
& \left|-\frac{1}{2} \sum_{j, k=1}^{i-1} \frac{\partial^{2} z_{i}^{*}}{\partial z_{j} \partial z_{k}} \frac{g_{j}^{\mathrm{T}}}{u_{0}^{n-j}} \frac{g_{k}}{u_{0}^{n-k}}\right| \leqslant\left(\sum_{k=1}^{i-1}\left|\varepsilon_{k}\right|\right) \gamma_{i 4} \tag{13d}
\end{align*}
$$

Now we design the adaptive backstepping controller of the subsystem (1b).

Step 1 Define the 1st Lyapunov candidate function

$$
\begin{equation*}
V_{1}\left(x_{0}, z_{1}, \hat{\Theta}\right)=\frac{1}{4} x_{0}^{4}+\frac{1}{4} \varepsilon_{1}^{4}+\frac{1}{2} \tilde{\Theta}^{2} \tag{14}
\end{equation*}
$$

where $\tilde{\Theta}=\Theta-\hat{\Theta}$ is the parameter estimation error.
$\mathcal{L} V_{1} \leqslant-\lambda \eta_{0} x_{0}^{4}+\varepsilon_{1}^{3} d_{1}(t) z_{2}+\varepsilon_{1}^{3} \eta_{0}(n-1) d_{0}(t) z_{1}+$

$$
\left|\varepsilon_{1}\right|^{3}\left|\frac{f_{1}}{u_{0}^{n-1}}\right|+\frac{3}{2} \varepsilon_{1}^{2}\left|\frac{g_{1}^{\mathrm{T}}}{u_{0}^{n-1}}\right|^{2}\left|\Sigma(t) \Sigma^{\mathrm{T}}(t)\right|_{\infty}-
$$

$$
\begin{equation*}
\tilde{\Theta} \dot{\hat{\Theta}} \tag{15}
\end{equation*}
$$

By Proposition 1, there exist nonnegative smooth functions $\gamma_{11}\left(x_{0}, z_{1}\right), c_{1}(\theta)$ and $\gamma_{12}\left(x_{0}, z_{1}\right)$, such that

$$
\begin{align*}
& \left|\frac{f_{1}}{u_{0}^{n-1}}\right| \leqslant\left|\varepsilon_{1}\right| \gamma_{11}\left(x_{0}, z_{1}\right) c_{1}(\theta) \tag{16}\\
& \left|\frac{g_{1}}{u_{0}^{n-1}}\right| \leqslant\left|\varepsilon_{1}\right| \gamma_{12}\left(x_{0}, z_{1}\right) \tag{17}
\end{align*}
$$

Substituting Eqs.(16) and (17) into (15), we have

$$
\begin{align*}
\mathcal{L} V_{1} \leqslant & -\lambda \eta_{0} x_{0}^{4}+\varepsilon_{1}^{3} d_{1}(t)\left(z_{2}-z_{2}^{*}\right)+\varepsilon_{1}^{3} d_{1}(t) z_{2}^{*}+ \\
& \eta_{0} \mu(n-1) \varepsilon_{1}^{4}+\Theta\left\{\gamma_{11}+\frac{3}{2} \gamma_{12}^{2}\right\} \varepsilon_{1}^{4}-\tilde{\Theta} \dot{\hat{\Theta}} \tag{18}
\end{align*}
$$

Suppose that

$$
z_{2}^{*}\left(x_{0}, z_{1}, \hat{\Theta}\right)=-\alpha_{1}\left(x_{0}, z_{1}, \hat{\Theta}\right) \varepsilon_{1}
$$

where $\alpha_{1}(\cdot) \geqslant 0$ is a smooth function to be chosen. Thus, by Assumption 2, we have

$$
\begin{equation*}
d_{1} \varepsilon_{1}^{3} z_{2}^{*}=-d_{1} \varepsilon_{1}^{4} \alpha_{1} \leqslant-\lambda \varepsilon_{1}^{4} \alpha_{1}=\lambda \varepsilon_{1}^{3} z_{2}^{*} . \tag{19}
\end{equation*}
$$

Then, adding and subtracting the term $\bar{c}_{1} \Theta \varepsilon_{1}^{4}+\overline{\bar{c}}_{1} \varepsilon_{1}^{4}$ on the right-hand side of Eq.(18), and using Eq.(19), one gets

$$
\begin{align*}
\mathcal{L} V_{1} \leqslant & -\lambda \eta_{0} x_{0}^{4}-\bar{c}_{1} \Theta \varepsilon_{1}^{4}-\overline{\bar{c}}_{1} \varepsilon_{1}^{4}+d_{1}(t) \varepsilon_{1}^{3}\left(z_{2}-z_{2}^{*}\right)+ \\
& \lambda \varepsilon_{1}^{3}\left\{z_{2}^{*}+\frac{1}{\lambda}\left(\sqrt{1+\hat{\Theta}^{2}} H_{11}+H_{12}\right) \varepsilon_{1}\right\}+ \\
& \tilde{\Theta}\left\{\tau_{1}-\dot{\hat{\Theta}}\right\} \tag{20}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
H_{11}=\bar{c}_{1}+\gamma_{11}+\frac{3}{2} \gamma_{12}^{2}, \tau_{1}=H_{11} \varepsilon_{1}^{4}, \tag{21}\\
H_{12}=\overline{\bar{c}}_{1}+\lambda \mu(n-1) .
\end{array}\right.
$$

Choosing the virtual smooth control z_{2}^{*} as follows:

$$
\left\{\begin{array}{l}
z_{2}^{*}\left(x_{0}, z_{1}, \hat{\Theta}\right)=-\alpha_{1}\left(x_{0}, z_{1}, \hat{\Theta}\right) \varepsilon_{1} \tag{22}\\
\alpha_{1}\left(x_{0}, z_{1}, \hat{\Theta}\right)=\frac{1}{\lambda}\left(\sqrt{1+\hat{\Theta}^{2}} H_{11}+H_{12}\right)
\end{array}\right.
$$

and substituting Eq.(22) into Eq.(20), one can obtain

$$
\begin{align*}
\mathcal{L} V_{1} \leqslant & -\lambda \eta_{0} x_{0}^{4}-\bar{c}_{1} \Theta \varepsilon_{1}^{4}-\overline{\bar{c}}_{1} \varepsilon_{1}^{4}+ \\
& d_{1}(t) \varepsilon_{1}^{3}\left(z_{2}-z_{2}^{*}\right)+\tilde{\Theta}\left\{\tau_{1}-\dot{\hat{\Theta}}\right\} \tag{23}
\end{align*}
$$

Step $\boldsymbol{i}(2 \leqslant i \leqslant n) \quad$ Suppose that the design steps from 1 to $i-1$ have been finished, the smooth virtual control z_{j}^{*}, the updating law for $\hat{\Theta}_{1, j-1}$ and the tuning function τ_{j-1} for Step $j-1(j=2, \cdots, i)$ have been chosen as follows:

$$
\left\{\begin{array}{l}
z_{j}^{*}\left(x_{0}, \bar{z}_{j-1}, \hat{\Theta}\right)=-\alpha_{j-1}\left(x_{0}, \bar{z}_{j-1}, \hat{\Theta}\right) \varepsilon_{j-1} \tag{24}\\
\tau_{j-1}=\tau_{j-2}+H_{j-1,1} \varepsilon_{j-1}^{4}
\end{array}\right.
$$

where α_{j-1} and τ_{j-1} are smooth functions, and the ($i-1$)th Lyapunov candidate function

$$
\begin{equation*}
V_{i-1}\left(x_{0}, \bar{\varepsilon}_{i-1}, \hat{\Theta}\right)=V_{i-2}\left(x_{0}, \bar{\varepsilon}_{i-2}, \hat{\Theta}\right)+\frac{1}{4} \varepsilon_{i-1}^{4}, \tag{25}
\end{equation*}
$$

where $\bar{\varepsilon}_{i}=\left(\varepsilon_{1}, \cdots, \varepsilon_{i}\right)^{\mathrm{T}}$, for Step $i-1$ satisfies

$$
\begin{align*}
& \mathcal{L} V_{i-1} \leqslant \\
& -\left(\lambda \eta_{0}-\sum_{j=2}^{i-1} \beta_{j}\right) x_{0}^{4}-\Theta \sum_{j=1}^{i-1}\left(\bar{c}_{j}-\sum_{k=j+1}^{i-1} \bar{\rho}_{k j}\right) \varepsilon_{j}^{4}- \\
& \sum_{j=1}^{i-1}\left(\overline{\bar{c}}_{j}-\sum_{k=j+1}^{i-1} \overline{\bar{\rho}}_{k j}\right) \varepsilon_{j}^{4}+d_{i-1}(t) \varepsilon_{i-1}^{3}\left(z_{i}-z_{i}^{*}\right)+ \\
& \left(\tilde{\Theta}+\sum_{k=2}^{i-1} \varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}}\right)\left\{\tau_{i-1}-\dot{\hat{\Theta}}\right\} . \tag{26}
\end{align*}
$$

In the following, we will prove that Eq.(26) also holds for i.

Define the i th Lyapunov candidate function

$$
\begin{equation*}
V_{i}\left(x_{0}, \bar{\varepsilon}_{i}, \hat{\Theta}\right)=V_{i-1}\left(x_{0}, \bar{\varepsilon}_{i-1}, \hat{\Theta}\right)+\frac{1}{4} \varepsilon_{i}^{4} . \tag{27}
\end{equation*}
$$

From Eqs.(12)(27) and Itô formula, one has $\mathcal{L} V_{i} \leqslant$

$$
\begin{aligned}
& -\left(\lambda \eta_{0}-\sum_{j=2}^{i-1} \beta_{j}\right) x_{0}^{4}-\Theta \sum_{j=1}^{i-1}\left(\bar{c}_{j}-\sum_{k=j+1}^{i-1} \bar{\rho}_{k j}\right) \varepsilon_{j}^{4}- \\
& \sum_{j=1}^{i-1}\left(\overline{\bar{c}}_{j}-\sum_{k=j+1}^{i-1} \overline{\bar{\rho}}_{k j}\right) \varepsilon_{j}^{4}+d_{i-1}(t) \varepsilon_{i-1}^{3}\left(z_{i}-z_{i}^{*}\right)+ \\
& \left(\tilde{\Theta}+\sum_{k=2}^{i-1} \varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}}\right)\left\{\tau_{i-1}-\dot{\hat{\Theta}}\right\}+d_{i}(t) \varepsilon_{i}^{3} z_{i+1}^{*}+ \\
& d_{i}(t) \varepsilon_{i}^{3}\left(z_{i+1}-z_{i+1}^{*}\right)+\varepsilon_{i}^{3}\left\{\frac{f_{i}}{u_{0}^{n-i}}+\right.
\end{aligned}
$$

$$
\lambda(n-i) d_{0}(t) z_{i}-\sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}}\left(d_{k}(t) z_{k+1}+\frac{f_{k}}{u_{0}^{n-k}}+\right.
$$

$$
\left.\lambda(n-k) d_{0}(t) z_{k}\right)-\lambda d_{0}(t) \frac{\partial z_{i}^{*}}{\partial x_{0}} x_{0}-\varepsilon_{i}^{3} \frac{\partial z_{i}^{*}}{\partial \hat{\Theta}} \dot{\hat{\Theta}}-
$$

$$
\left.\frac{1}{2} \sum_{j, k=1}^{i-1} \frac{\partial^{2} z_{i}^{*}}{\partial z_{j} \partial z_{k}} \frac{g_{j}^{\mathrm{T}}}{u_{0}^{n-j}} \Sigma(t) \Sigma^{\mathrm{T}}(t) \frac{g_{k}}{u_{0}^{n-k}}\right\}+
$$

$$
\begin{equation*}
\frac{3}{2} \varepsilon_{i}^{2}\left|\frac{g_{i}^{\mathrm{T}}}{u_{0}^{n-i}}-\sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}} \frac{g_{k}^{\mathrm{T}}}{u_{0}^{n-k}}\right|^{2}\left|\Sigma \Sigma^{\mathrm{T}}\right|_{\infty} \tag{28}
\end{equation*}
$$

By Lemma 2, Assumptions 1-2, Proposition 1, Eqs.(8) and (11), one can obtain the following inequalities, which are proved in Appendix:

$$
\begin{align*}
& d_{i-1}(t) \varepsilon_{i-1}^{3}\left(z_{i}-z_{i}^{*}\right) \leqslant \\
& \frac{3}{4} \mu \varepsilon_{i, i-1,1} \varepsilon_{i-1}^{4}+\frac{1}{4} \mu \varepsilon_{i, i-1,1}^{-3} \varepsilon_{i}^{4}, \tag{29}\\
& \varepsilon_{i}^{3} \frac{f_{i}}{u_{0}^{n-i}} \leqslant \Theta \sum_{k=1}^{i-1} \frac{1}{4} \varepsilon_{i, k, 2} \varepsilon_{k}^{4}+ \\
& \Theta\left\{\sum_{k=1}^{i-1} \frac{3}{4} \varepsilon_{i, k, 2}^{-\frac{1}{3}} \gamma_{i 1}^{\frac{4}{3}}+\gamma_{i 1}\right\} \varepsilon_{i}^{4}, \tag{30}\\
& \varepsilon_{i}^{3} \eta_{0}(n-i) d_{0}(t) z_{i} \leqslant \frac{1}{4} \mu \eta_{0}(n-i) \varepsilon_{i, i-1,3} \varepsilon_{i-1}^{4}+ \\
& \frac{3}{4} \mu \eta_{0}(n-i) \varepsilon_{i, i-1,3}^{-\frac{1}{3}} \alpha_{i-1}^{\frac{4}{3}} \varepsilon_{i}^{4}, \tag{31}
\end{align*}
$$

$$
\begin{align*}
& -\varepsilon_{i}^{3} \sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}} d_{k}(t) z_{k+1} \leqslant \\
& \mu \sum_{k=1}^{i-2} \frac{1}{4} \varepsilon_{i, k+1,4} \varepsilon_{k+1}^{4}+\mu \sum_{k=1}^{i-1} \frac{1}{4} \varepsilon_{i, k, 5} \varepsilon_{k}^{4}+ \\
& \mu\left\{\sum_{k=1}^{i-2} \frac{3}{4} \varepsilon_{i, k+1,4}^{-\frac{1}{3}}\left(\sqrt{1+\left(\frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}}\right)^{\frac{4}{3}}+\sqrt{1+\left(\frac{\partial z_{i}^{*}}{\partial z_{i-1}}\right)^{2}}+\right. \\
& \left.\sum_{k=1}^{i-1} \frac{3}{4} \varepsilon_{i, k, 5}^{-\frac{1}{3}}\left(\sqrt{1+\left(\alpha_{k} \frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}}\right)^{\frac{4}{3}}\right\} \varepsilon_{i}^{4}, \tag{32}\\
& -\varepsilon_{i}^{3} \sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}} \frac{f_{k}}{u_{0}^{n-k}} \leqslant \\
& \Theta \sum_{k=1}^{i-1} \sum_{j=1}^{k} \frac{1}{4} \varepsilon_{i, j, 6} \varepsilon_{j}^{4}+ \\
& \Theta \sum_{k=1}^{i-1} \sum_{j=1}^{k} \frac{3}{4} \varepsilon_{i, j, 6}^{-\frac{1}{3}}\left(\sqrt{1+\left(\gamma_{k 1} \frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}}\right)^{\frac{4}{3}} \varepsilon_{i}^{4}, \tag{33}\\
& -\varepsilon_{i}^{3} \sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}} \eta_{0}(n-k) d_{0}(t) z_{k} \leqslant \\
& \mu \eta_{0} \sum_{k=1}^{i-1}(n-k) \frac{1}{4}\left\{\varepsilon_{i, k-1,8} \varepsilon_{k-1}^{4}+\varepsilon_{i, k, 7} \varepsilon_{k}^{4}\right\}+ \\
& \mu \eta_{0} \sum_{k=1}^{i-1}(n-k)\left\{\frac{3}{4} \varepsilon_{i, k, 7}^{-\frac{1}{3}}\left(\sqrt{1+\left(\frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}}\right)^{\frac{4}{3}}+\right. \\
& \left.\frac{3}{4} \varepsilon_{i, k-1,8}^{-\frac{1}{3}}\left(\sqrt{1+\left(\alpha_{k-1} \frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}}\right)^{\frac{4}{3}}\right\} \varepsilon_{i}^{4}, \tag{34}\\
& -\varepsilon_{i}^{3} \eta_{0} d_{0}(t) \frac{\partial z_{i}^{*}}{\partial x_{0}} x_{0} \leqslant \\
& \mu \eta_{0}\left\{\frac{1}{4} \varepsilon_{i, 0,9} x_{0}^{4}+\frac{3}{4} \varepsilon_{i, 0,9}^{-\frac{1}{3}}\left(\sqrt{1+\left(\frac{\partial z_{i}^{*}}{\partial x_{0}}\right)^{2}}\right)^{\frac{4}{3}} \varepsilon_{i}^{4}\right\}, \tag{35}\\
& -\frac{1}{2} \varepsilon_{i}^{3} \sum_{j, k=1}^{i-1} \frac{\partial^{2} z_{i}^{*}}{\partial z_{j} \partial z_{k}}\left(\frac{g_{j}}{u_{0}^{n-j}}\right)^{\mathrm{T}} \Sigma(t) \Sigma^{\mathrm{T}}(t)\left(\frac{g_{k}}{u_{0}^{n-k}}\right) \leqslant \\
& \Theta \sum_{k=1}^{i-1} \frac{1}{4} \varepsilon_{i, k, 10} \varepsilon_{k}^{4}+\Theta \sum_{k=1}^{i-1} \frac{3}{4} \varepsilon_{i, k, 10}^{-\frac{1}{3}} \gamma_{i 4}^{\frac{4}{3}} \varepsilon_{i}^{4}, \tag{36}\\
& \frac{3}{2} \varepsilon_{i}^{2}\left|\frac{g_{i}}{u_{0}^{n-i}}-\sum_{k=1}^{i-1} \frac{\partial z_{i}^{*}}{\partial z_{k}} \frac{g_{k}}{u_{0}^{n-k}}\right|^{2} \Sigma(t) \Sigma^{\mathrm{T}}(t) \leqslant \\
& \Theta\left\{\frac{3}{4} i \sum_{k=1}^{i-1} \gamma_{i 3}^{4} \varepsilon_{i, k, 11}^{-1}+\frac{3}{2} \gamma_{i 3}^{2}\right\} \varepsilon_{i}^{4}+ \\
& \Theta \frac{3}{4} i \sum_{k=1}^{i-1} \varepsilon_{i, k, 11} \varepsilon_{k}^{4}, \tag{37}
\end{align*}
$$

and substituting Eqs.(29)-(37) into Eq.(28), one gets $\mathcal{L} V_{i} \leqslant$

$$
\begin{aligned}
& -\left(\lambda \eta_{0}-\sum_{j=2}^{i-1} \beta_{j}\right) x_{0}^{4}-\Theta \sum_{j=1}^{i-1}\left(\bar{c}_{j}-\sum_{k=j+1}^{i-1} \bar{\rho}_{k j}\right) \varepsilon_{j}^{4}- \\
& \sum_{j=1}^{i-1}\left(\overline{\bar{c}}_{j}-\sum_{k=j+1}^{i-1} \overline{\bar{\rho}}_{k j}\right) \varepsilon_{j}^{4}+d_{i}(t) \varepsilon_{i}^{3}\left(z_{i+1}-z_{i+1}^{*}\right)+ \\
& \left(\tilde{\Theta}+\sum_{k=2}^{i-1} \varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}}\right)\left\{\tau_{i-1}-\dot{\hat{\Theta}}\right\}+d_{i}(t) \varepsilon_{i}^{3} z_{i+1}^{*}+ \\
& \left\{\frac{1}{4} \mu \eta_{0} \varepsilon_{i, 0,9}\right\} x_{0}^{4}+\Theta \bar{H}_{i 1} \varepsilon_{i-1}^{4}+\bar{H}_{i 2}^{\prime} \varepsilon_{i}^{4}+
\end{aligned}
$$

$$
\begin{align*}
& \Theta \sum_{k=1}^{i-1}\left\{\frac{1}{4} \varepsilon_{i, k, 2}+\frac{1}{4} \varepsilon_{i, k, 10}+\frac{3}{4} i \varepsilon_{i, k, 11}\right\} \varepsilon_{k}^{4}+ \\
& \left\{\frac{3}{4} \mu \varepsilon_{i, i-1,1}+\mu \eta_{0}(n-i) \frac{1}{4} \varepsilon_{i, i-1,3}\right\} \varepsilon_{i-1}^{4}+ \\
& \Theta \sum_{k=1}^{i-1} \sum_{j=1}^{k} \frac{1}{4} \varepsilon_{i, j, 6} \varepsilon_{j}^{4}+\mu \sum_{k=1}^{i-2} \frac{1}{4} \varepsilon_{i, k+1,4} \varepsilon_{k+1}^{4}+ \\
& \left\{\mu \sum_{k=1}^{i-1} \frac{1}{4} \varepsilon_{i, k, 5}+\mu \eta_{0} \sum_{k=1}^{i-1}(n-k) \frac{1}{4} \varepsilon_{i, k, 7}\right\} \varepsilon_{k}^{4}+ \\
& \mu \eta_{0} \sum_{k=1}^{i-1}(n-k) \frac{1}{4} \varepsilon_{i, k-1,8} \varepsilon_{k-1}^{4}-\varepsilon_{i}^{3} \frac{\partial z_{i}^{*}}{\partial \hat{\Theta}} \dot{\hat{\Theta}}, \tag{38}
\end{align*}
$$

where

$$
\begin{aligned}
\bar{H}_{i 1}= & \sum_{k=1}^{i-1} \frac{3}{4}\left\{\varepsilon_{i, k, 2}^{-\frac{1}{3}} \gamma_{i 1}^{\frac{4}{3}}+\varepsilon_{i, k, 10}^{-\frac{1}{3}} \gamma_{i 4}^{\frac{4}{3}}+i \gamma_{i 3}^{4} \varepsilon_{i, k, 11}^{-1}\right\}+ \\
& \gamma_{i 1}+\sum_{k=1}^{i-1} \sum_{j=1}^{k} \frac{3}{4} \varepsilon_{i, j, 6}^{-\frac{1}{3}}\left(\sqrt{1+\left(\gamma_{k 1} \frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}}\right)^{\frac{4}{3}}+\frac{3}{2} \gamma_{i 3}^{2}, \\
\bar{H}_{i 2}^{\prime}= & \frac{1}{4} \mu \varepsilon_{i, 1,1}^{-3}+\mu \eta_{0}(n-i)\left(1+\frac{3}{4} \varepsilon_{i, i-1,3}^{-\frac{1}{3}} \alpha_{i-1}^{\frac{4}{3}}\right)+ \\
& \sum_{k=1}^{i-2} \frac{3}{4} \mu \varepsilon_{i, k+1,4}^{-\frac{1}{3}}\left(\sqrt{1+\left(\frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}}\right)^{\frac{4}{3}}+ \\
& \mu \sqrt{1+\left(\frac{\partial z_{i}^{*}}{\partial z_{i-1}}\right)^{2}+} \\
& \frac{3}{4} \mu \eta_{0} \varepsilon_{i, 0,9}^{-\frac{1}{3}}\left(\sqrt{\left.1+\left(\frac{\partial z_{i}^{*}}{\partial x_{0}}\right)^{2}\right)^{\frac{4}{3}}+}\right. \\
& \sum_{k=1}^{i-1} \frac{3}{4} \mu \varepsilon_{i, k, 5}^{-\frac{1}{3}}\left(\sqrt{\left.1+\left(\alpha_{k} \frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}\right)^{\frac{4}{3}}+}\right. \\
& \frac{3}{4} \mu \eta_{0} \sum_{k=1}^{i-1}(n-k) \varepsilon_{i, k, 7}^{-\frac{1}{3}}\left(\sqrt{1+\left(\frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}}\right)^{\frac{4}{3}}+ \\
& \frac{3}{4} \mu \eta_{0} \varepsilon_{i, k-1,8}^{-\frac{1}{3}}\left(\sqrt{\left.1+\left(\alpha_{k-1} \frac{\partial z_{i}^{*}}{\partial z_{k}}\right)^{2}\right)^{\frac{4}{3}}} .\right.
\end{aligned}
$$

From simple operation, one can obtain

$$
\begin{align*}
& \mu \sum_{k=1}^{i-2} \frac{1}{4} \varepsilon_{i, k+1,4} \varepsilon_{k+1}^{4}=\mu \sum_{k=2}^{i-1} \frac{1}{4} \varepsilon_{i, k, 4} \varepsilon_{k}^{4} \tag{39}\\
& \Theta \sum_{k=1}^{i-1} \sum_{j=1}^{k} \frac{1}{4} \varepsilon_{i, j, 6} \varepsilon_{j}^{4}=\Theta \sum_{k=1}^{i-1} \frac{1}{4}(i-k) \varepsilon_{i, k, 6} \varepsilon_{k}^{4}, \\
& \mu \eta_{0} \sum_{k=1}^{i-1}(n-k) \frac{1}{4} \varepsilon_{i, k-1,8} \varepsilon_{k-1}^{4}= \tag{40}\\
& \mu \eta_{0} \sum_{k=1}^{i-2}(n-k-1) \frac{1}{4} \varepsilon_{i, k, 8} \varepsilon_{k}^{4} \tag{41}
\end{align*}
$$

Suppose that

$$
z_{i+1}^{*}\left(x_{0}, \bar{z}_{i}, \hat{\Theta}\right)=-\alpha_{i}\left(x_{0}, \bar{z}_{i}, \hat{\Theta}\right) \varepsilon_{i}
$$

where $\alpha_{i}(\cdot) \geqslant 0$ is a smooth function to be chosen. Thus, by Assumption 2, we have

$$
\begin{equation*}
d_{i} \varepsilon_{i}^{3} z_{i+1}^{*} \leqslant \lambda \varepsilon_{i}^{3} z_{i+1}^{*} . \tag{42}
\end{equation*}
$$

Substituting Eqs.(39)-(42) into Eq.(38), adding and subtracting the term $\Theta \bar{c}_{i} \varepsilon_{i}^{4}+\overline{\bar{c}}_{i} \varepsilon_{i}^{4}$ on the right-hand side of Eq.(38), we have

$$
\begin{align*}
\hline \mathcal{L} V_{i} \leqslant & -\left(\lambda \eta_{0}-\sum_{j=2}^{i} \beta_{j}\right) x_{0}^{4}-\Theta \sum_{j=1}^{i}\left(\bar{c}_{j}-\sum_{k=j+1}^{i} \bar{\rho}_{k j}\right) \varepsilon_{j}^{4}- \\
& \sum_{j=1}^{i-1}\left(\overline{\bar{c}}_{j}-\sum_{k=j+1}^{i-1} \overline{\bar{\rho}}_{k j}\right) \varepsilon_{j}^{4}+\lambda \varepsilon_{i}^{3} z_{i+1}^{*}-\overline{\bar{c}}_{i} \varepsilon_{i}^{4}+ \\
& d_{i}(t) \varepsilon_{i}^{3}\left(z_{i+1}-z_{i+1}^{*}\right)+H_{i 2}^{\prime} \varepsilon_{i}^{4}+\overline{\bar{\rho}}_{i 1}^{\prime} \varepsilon_{1}^{4}+ \\
& \hat{\Theta} H_{i 1} \varepsilon_{i}^{4}+\sum_{j=2}^{i-2} \overline{\bar{\rho}}_{i j}^{\prime} \varepsilon_{j}^{4}+\overline{\bar{\rho}}_{i, i-1}^{\prime} \varepsilon_{i-1}^{4}- \\
& \sum_{k=2}^{i-1} \varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}} H_{i 1} \varepsilon_{i}^{4}+\left(\tilde{\Theta}-\varepsilon_{i}^{3} \tau_{i} \frac{\partial z_{i}^{*}}{\partial \hat{\Theta}}+\right. \\
& \left.\sum_{k=2}^{i} \varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}}\right)\left\{\tau_{i}-\dot{\hat{\Theta}}\right\}, \tag{43}
\end{align*}
$$

where

$$
\begin{align*}
\beta_{i}= & \frac{1}{4} \mu \eta_{0} \varepsilon_{i, 0,9}, \tau_{i}=\tau_{i-1}+H_{i 1} \varepsilon_{i}^{4}, \tag{44}\\
\bar{\rho}_{i k}= & \frac{1}{4} \varepsilon_{i, k, 2}+\frac{1}{4}(i-k) \varepsilon_{i, k, 6}+\frac{1}{4} \varepsilon_{i, k, 10}+ \\
& \frac{3}{4} i \varepsilon_{i, k, 11}, k=1, \cdots, i-2 \tag{45}\\
\bar{\rho}_{i, i-1}= & \frac{3}{4} \varepsilon_{i, i-1,1}+\frac{1}{4} \varepsilon_{i, i-1,2}+\frac{1}{4} \varepsilon_{i, i-1,6}+ \\
& \frac{1}{4} \varepsilon_{i, i-1,10}+\frac{3}{4} i \varepsilon_{i, i-1,11}, \tag{46}\\
\overline{\bar{\rho}}_{i 1}^{\prime}= & \frac{1}{4} \mu\left\{\varepsilon_{i, 1,5}+\eta_{0}(n-1) \varepsilon_{i, 1,7}+\eta_{0}(n-2) \varepsilon_{i, 1,8}\right\}, \\
\overline{\bar{\rho}}_{i k}^{\prime}= & \frac{1}{4} \mu \varepsilon_{i, k, 4}+\frac{1}{4} \mu \varepsilon_{i, k, 5}+\frac{1}{4} \mu \eta_{0}(n-k) \varepsilon_{i, k, 7}+ \\
& \frac{1}{4} \mu \eta_{0}(n-k-1) \varepsilon_{i, k, 8}, k=2, \cdots, i-2, \\
\overline{\bar{\rho}}_{i, i-1}^{\prime}= & \frac{3}{4} \mu \varepsilon_{i, i-1,1}+\frac{1}{4} \mu \eta_{0}(n-i) \varepsilon_{i, i-1,3}+ \\
& \frac{1}{4} \mu \varepsilon_{i, i-1,4}+\frac{1}{4} \mu \varepsilon_{i, i-1,5}+ \\
& \frac{1}{4} \mu \eta_{0}(n-i+1) \varepsilon_{i, k, 7}, \\
H_{i 1}= & \bar{c}_{i}+\bar{H}_{i 1}, H_{i 2}^{\prime}=\overline{\bar{c}}_{i}+\bar{H}_{i 2}^{\prime} .
\end{align*}
$$

By Eq.(43) and Lemma 2, the following inequalities hold:

$$
\begin{align*}
-\varepsilon_{i}^{3} \tau_{i} \frac{\partial z_{i}^{*}}{\partial \hat{\Theta}} \leqslant & \sum_{k=1}^{i-1} \frac{1}{4} \varepsilon_{i, k, 12} \varepsilon_{k}^{4}+\sqrt{1+\left(\varepsilon_{i}^{3} H_{i 1} \frac{\partial z_{i}^{*}}{\partial \hat{\Theta}}\right)^{2}} \varepsilon_{i}^{4}+ \\
& \sum_{k=1}^{i-1} \frac{3}{4} \varepsilon_{i, k, 12}^{-\frac{1}{3}}\left(\sqrt{1+\left(\varepsilon_{k}^{3} H_{k 1} \frac{\partial z_{i}^{*}}{\partial \hat{\Theta}}\right)^{2}}\right)^{\frac{4}{3}} \varepsilon_{i}^{4} \tag{48}
\end{align*}
$$

$$
\begin{equation*}
-\sum_{k=2}^{i-1} \varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}} H_{i 1} \varepsilon_{i}^{4} \leqslant \sum_{k=2}^{i-1} \sqrt{1+\left(\varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}} H_{i 1}\right)^{2}} \varepsilon_{i}^{4} \tag{49}
\end{equation*}
$$

Substituting Eqs.(48) and (49) into Eq.(43) results in
$\mathcal{L} V_{i} \leqslant$

$$
-\left(\lambda \eta_{0}-\sum_{j=2}^{i} \beta_{j}\right) x_{0}^{4}-\Theta \sum_{j=1}^{i}\left(\bar{c}_{j}-\sum_{k=j+1}^{i} \bar{\rho}_{k j}\right) \varepsilon_{j}^{4}-
$$

$$
\begin{align*}
& \sum_{j=1}^{i}\left(\overline{\bar{c}}_{j}-\sum_{k=j+1}^{i} \overline{\bar{\rho}}_{k j}\right) \varepsilon_{j}^{4}+d_{i}(t) \varepsilon_{i}^{3}\left(z_{i+1}-z_{i+1}^{*}\right)+ \\
& \lambda \varepsilon_{i}^{3} z_{i+1}^{*}+\lambda\left\{\frac{1}{\lambda}\left(\sqrt{1+\hat{\Theta}^{2}} H_{i 1}+H_{i 2}\right)\right\} \varepsilon_{i}^{4}+ \\
& \left(\tilde{\Theta}+\sum_{k=2}^{i} \varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}}\right)\left\{\tau_{i}-\dot{\hat{\Theta}}\right\} \tag{50}
\end{align*}
$$

where
$\overline{\bar{\rho}}_{i k}=\overline{\bar{\rho}}_{i k}^{\prime}+\frac{1}{4} \varepsilon_{i, k, 12}, k=1, \cdots, i-1$,

$$
\begin{align*}
H_{i 2}= & \sqrt{1+\left(\varepsilon_{i}^{3} H_{i 1} \frac{\partial z_{i}^{*}}{\partial \hat{\Theta}}\right)^{2}}+\sum_{k=2}^{i-1} \sqrt{1+\left(\varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}} H_{i 1}\right)^{2}}+ \tag{51}\\
& \sum_{k=1}^{i-1} \frac{3}{4} \varepsilon_{i, k, 12}^{-\frac{1}{3}}\left(\sqrt{\left.1+\left(\varepsilon_{k}^{3} H_{k 1} \frac{\partial z_{i}^{*}}{\partial \hat{\Theta}}\right)^{2}\right)^{\frac{4}{3}}+H_{i 2}^{\prime} .}\right. \text { (52) } \tag{52}
\end{align*}
$$

Choosing the virtual smooth control z_{i+1}^{*} as follows:

$$
\left\{\begin{array}{l}
z_{i+1}^{*}\left(x_{0}, \bar{z}_{i}, \hat{\Theta}\right)=-\alpha_{i}\left(x_{0}, \bar{z}_{i}, \hat{\Theta}\right) \varepsilon_{i} \tag{53}\\
\alpha_{i}\left(x_{0}, \bar{z}_{i}, \hat{\Theta}\right)=\frac{1}{\lambda}\left(\sqrt{1+\hat{\Theta}^{2}} H_{i 1}+H_{i 2}\right)
\end{array}\right.
$$

and substituting Eq.(53) into Eq.(50), one can obtain
$\mathcal{L} V_{i} \leqslant$

$$
\begin{align*}
& -\left(\lambda \eta_{0}-\sum_{j=2}^{i} \beta_{j}\right) x_{0}^{4}-\Theta \sum_{j=1}^{i}\left(\bar{c}_{j}-\sum_{k=j+1}^{i} \bar{\rho}_{k j}\right) \varepsilon_{j}^{4}- \\
& \sum_{j=1}^{i}\left(\overline{\bar{c}}_{j}-\sum_{k=j+1}^{i} \overline{\bar{\rho}}_{k j}\right) \varepsilon_{j}^{4}+d_{i}(t) \varepsilon_{i}^{3}\left(z_{i+1}-z_{i+1}^{*}\right)+ \\
& \left(\tilde{\Theta}+\sum_{k=2}^{i} \varepsilon_{k}^{3} \frac{\partial z_{k}^{*}}{\partial \hat{\Theta}}\right)\left\{\tau_{i}-\dot{\hat{\Theta}}\right\} . \tag{54}
\end{align*}
$$

In the end, when $i=n, z_{n+1}=z_{n+1}^{*}=u$ is the actual control. By Choosing the actual control law and the adaptive laws for $\hat{\theta}$

$$
\left\{\begin{array}{l}
u\left(x_{0}, \bar{z}_{n}, \hat{\Theta}\right)=-\alpha_{n}\left(x_{0}, \bar{z}_{n}, \hat{\Theta}\right) \varepsilon_{n} \tag{55}\\
\dot{\hat{\Theta}}=\tau_{n}=\sum_{i=1}^{n} H_{i 1} \varepsilon_{i}^{4}
\end{array}\right.
$$

where α_{n} and $H_{i 1}(i=1, \cdots, n)$ are smooth functions. We choose the nth Lyapunov candidate function

$$
\begin{equation*}
V_{n}\left(x_{0}, \bar{\varepsilon}_{n}, \hat{\Theta}\right)=\frac{1}{4} x_{0}^{4}+\sum_{k=1}^{n} \frac{1}{4} \varepsilon_{k}^{4}+\frac{1}{2} \hat{\Theta}^{2} \tag{56}
\end{equation*}
$$

where $\varepsilon=\varepsilon_{n}=\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)^{\mathrm{T}}$. One can easily get

$$
\begin{align*}
\mathcal{L} V_{n} \leqslant & -\left(\lambda \eta_{0}-\sum_{j=2}^{n} \beta_{j}\right) x_{0}^{4}-\sum_{j=1}^{n}\left(\overline{\bar{c}}_{j}-\sum_{k=j+1}^{n} \overline{\bar{\rho}}_{k j}\right) \varepsilon_{j}^{4}- \\
& \Theta \sum_{j=1}^{n}\left(\bar{c}_{j}-\sum_{k=j+1}^{n} \bar{\rho}_{k j}\right) \varepsilon_{j}^{4} . \tag{57}
\end{align*}
$$

4 Switching control stability

In Section 3, we have considered the case of $x_{0}\left(t_{0}\right) \neq 0$. The controllers Eqs.(7) and (55) for system (1) are given. Now we turn to the case of $x_{0}\left(t_{0}\right)=0$. If the initial is zero, one can choose an open loop control $u_{0}=u_{0}^{*} \neq 0$ to drive the state x_{0} away from zero. So there exists $t_{\mathrm{s}}^{*}>0$ such that $x_{0}\left(t_{\mathrm{s}}^{*}\right) \neq 0$. After that, controllers u_{0} and u given in Eqs.(7) and (55) can be
used. Based on the above analysis, we give the main results of this paper.

Theorem 1 Suppose that Assumptions 1 and 2 hold. If the following switching control procedure is applied to system (1):
i) When the initial state belongs to

$$
\left\{\left(x_{0}\left(t_{0}\right), x\left(t_{0}\right)\right) \in \mathbb{R}^{n+1} \mid x_{0}\left(t_{0}\right) \neq 0\right\}
$$

we design control inputs u_{0} and u in form Eqs.(7) and (55), respectively;
ii) When the initial state belongs to

$$
\left\{\left(x_{0}\left(t_{0}\right), x\left(t_{0}\right)\right) \in \mathbb{R}^{n+1} \mid x_{0}\left(t_{0}\right)=0\right\}
$$

If $t \in\left[t_{0}, t_{\mathrm{s}}^{*}\right)$, one can choose the control law $u_{0}=u_{0}^{*}$ and $u=u^{*}$; If $t \in\left[t_{\mathrm{s}}^{*},+\infty\right)$, at the time $t=t_{\mathrm{s}}^{*}$, we switch the control inputs u_{0} and u into Eqs.(7) and (55), respectively.

Then, for any initial conditions in the state space, system (1) will be almost asymptotically stabilized in probability at the equilibrium and specifically, the states are globally asymptotically regulated to zero in probability.

Proof Firstly, we consider the case that the initial state belongs to $\left\{\left(x_{0}\left(t_{0}\right), x\left(t_{0}\right)\right) \in \mathbb{R}^{n+1} \mid x_{0}\left(t_{0}\right) \neq 0\right\}$. One can obtain that x_{0} is asymptotically stable and will not be zero. One can choose \bar{c}_{j} and $\overline{\bar{c}}_{j}$ such that $\mathcal{L} V_{n}<0$. From Lemma 1 and Eq.(57), one gets signals $\varepsilon_{1}, \cdots, \varepsilon_{n}$ are globally asymptotically regulated to zero in probability and bounded in probability, signal $\hat{\Theta}$ is bounded in probability also. From $\hat{\Theta}$ are bounded in probability and Eq.(11), it is easy to see that z_{1} and z_{2}^{*} are bounded and globally stable in probability. By $z_{2}=\varepsilon_{2}+z_{2}^{*}$, we have z_{2} is bounded in probability and converges to zero in probability. With the similar method, the same results also hold for z_{3}, \cdots, z_{n}. So z_{1}, \cdots, z_{n} globally asymptotically regulated to zero in probability and bounded in probability. As a result of Eq.(8), one gets $x_{0}, x_{1}, \cdots, x_{n}$ are globally asymptotically converge to zero in probability and all bounded in probability.

Secondly, when the initial state belongs to

$$
\left\{\left(x_{0}\left(t_{0}\right), x\left(t_{0}\right)\right) \in \mathbb{R}^{n+1} \mid x_{0}\left(t_{0}\right)=0\right\}
$$

we use the constant control $u_{0}=u_{0}^{*} \neq 0$ in order to drive x_{0} far away from the origin. Meanwhile, by application of the design procedure proposed in Section 3 , we construct a controller $u=u^{*}$, which guarantees that all the signals are bounded in probability during $\left[t_{0}, t_{\mathrm{s}}^{*}\right)$. Then, in view of $x_{0}\left(t_{\mathrm{s}}^{*}\right) \neq 0$, the switching control strategy is applied to system (1) at the time in$\operatorname{stant} t_{\mathrm{s}}^{*}>0$.

5 Simulation example

Consider the following system:

$$
\left\{\begin{array}{l}
\mathrm{d} x_{0}=d_{0}(t) u_{0} \mathrm{~d} t \tag{58}\\
\mathrm{~d} x_{1}=d_{1}(t) x_{2} u_{0} \mathrm{~d} t+x_{1} \theta \mathrm{~d} t+x_{1} \Sigma(t) \mathrm{d} \omega \\
\mathrm{~d} x_{2}=d_{2}(t) u \mathrm{~d} t+x_{2} \Sigma(t) \mathrm{d} \omega
\end{array}\right.
$$

where $d_{0}(t)=1.5, d_{1}(t)=1+0.1 \sin t, d_{2}(t)=$ $0.9+0.2 \sin t, \Sigma(t)=1+0.125 \sin t$.

One can easily obtain that Proposition 1 is satisfied with $n=2, \gamma_{11}=\gamma_{12}=1, c_{1}(\theta)=\sqrt{1+\theta^{2}}$, $\gamma_{21}=0, \gamma_{22}=\gamma_{23}=1$. In simulation, choose $\theta=1$. Obviously, there exist positive constants $\lambda=0.7$ and $\mu=1.6$ to satisfy $\lambda \leqslant d_{i}(t) \leqslant \mu(i=0,1,2)$, $\eta_{1}=\eta_{2}=1.6$ which satisfy Assumption 2. According to Eq.(7), one gets the control

$$
\begin{equation*}
u_{0}=-\eta_{0} x_{0} \tag{59}
\end{equation*}
$$

Defining $\bar{\theta}=\left|\Sigma(t) \Sigma^{\mathrm{T}}(t)\right|_{\infty}$ and $\Theta=\max \left\{c_{1}(\theta), \bar{\theta}\right\}$. According to Eq.(21), it is easy to obtain $H_{11}=\bar{c}_{1}+$ $\gamma_{11}+\frac{3}{2} \gamma_{12}^{2}, \tau_{1}=H_{11} \varepsilon_{1}^{4}, H_{12}=\overline{\bar{c}}_{1}+\lambda \mu$, where $\bar{c}_{1}>0$ and $\overline{\bar{c}}_{1}>0$ are design parameters which will be chosen later. Thus, by Eq.(22), one gets the virtual smooth control z_{2}^{*},

$$
\left\{\begin{array}{l}
z_{2}^{*}\left(x_{0}, z_{1}, \hat{\Theta}\right)=-\alpha_{1}\left(x_{0}, z_{1}, \hat{\Theta}\right) \varepsilon_{1} \tag{60}\\
\alpha_{1}\left(x_{0}, z_{1}, \hat{\Theta}\right)=\frac{1}{\lambda}\left(\sqrt{1+\hat{\Theta}^{2}} H_{11}+H_{12}\right)
\end{array}\right.
$$

From Eq.(59), we have $\frac{\partial z_{2}^{*}}{\partial z_{1}}=-\alpha_{1}, \frac{\partial^{2} z_{2}^{*}}{\partial z_{1}^{2}}=0$, $\frac{\partial z_{2}^{*}}{\partial x_{0}}=0, \frac{\partial z_{2}^{*}}{\partial \hat{\Theta}}=-\frac{\hat{\Theta} H_{11}}{\lambda \sqrt{1+\hat{\Theta}^{2}}} \varepsilon_{1}$. Next, let $i=2$ in Section 3 and $\varepsilon_{2, i, j}=1(i=0,1 ; j=1, \cdots, 10)$, one can obtain

$$
\begin{aligned}
& \beta_{2}=\frac{1}{4} \eta_{0} \mu, \bar{\rho}_{21}=\frac{1}{2}, \overline{\bar{\rho}}_{21}=\mu+\frac{1}{4} \eta_{0} \mu+2, \\
& H_{21}=\bar{c}_{2}+\frac{3}{4} \gamma_{21}^{\frac{4}{3}}+\gamma_{21}+\frac{3}{4}\left(\sqrt{\left.1+\left(\gamma_{11} \frac{\partial z_{2}^{*}}{\partial z_{1}}\right)^{2}\right)^{\frac{4}{3}}},\right. \\
& H_{22}=\overline{\bar{c}}_{2}+\frac{1}{4} \mu+\frac{3}{4} \mu\left(\sqrt{1+\left(\alpha_{1} \frac{\partial z_{2}^{*}}{\partial z_{1}}\right)^{2}}\right)^{\frac{4}{3}}+\frac{3}{2} \gamma_{23}^{4}+ \\
& 3 \gamma_{23}^{2}+\frac{3}{4} \eta_{0} \mu\left(\sqrt{\left.1+\left(\frac{\partial z_{2}^{*}}{\partial z_{1}}\right)^{2}\right)^{\frac{4}{3}}}+\right. \\
& \frac{3}{4} \eta_{0}\left(\sqrt{1+\left(\frac{\partial z_{2}^{*}}{\partial x_{0}}\right)^{2}}\right)^{\frac{4}{3}}+\frac{3}{4} \sqrt{1+\left(\gamma_{24} \frac{\partial^{2} z_{2}^{*}}{\partial z_{1}^{2}}\right)^{2}}+ \\
& \sqrt{1+\left(\varepsilon_{2}^{3} H_{21} \frac{\partial z_{2}^{*}}{\partial \hat{\Theta}}\right)^{2} \varepsilon_{2}^{4}}+\mu \sqrt{1+\left(\frac{\partial z_{2}^{*}}{\partial z_{1}}\right)^{2}}+ \\
& \frac{3}{4}\left(\sqrt{1+\left(\varepsilon_{1}^{3} H_{11} \frac{\partial z_{2}^{*}}{\partial \hat{\Theta}}\right)^{2}}\right)^{\frac{4}{3}} \varepsilon_{2}^{4}, \\
& \tau_{2}=\tau_{1}+H_{21} \varepsilon_{2}^{4},
\end{aligned}
$$

and the updating law for Θ and the smooth control u as follows:
$\left\{\begin{array}{l}\dot{\hat{\Theta}}=H_{11} \varepsilon_{1}^{4}+H_{21} \varepsilon_{2}^{4}, u=-\alpha_{2}\left(x_{0}, z_{1}, \hat{\Theta}\right) \varepsilon_{2}, \\ \alpha_{2}\left(x_{0}, z_{1}, \hat{\Theta}\right)=\frac{1}{\lambda}\left(\sqrt{1+\hat{\Theta}^{2}} H_{21}+H_{22}\right),\end{array}\right.$
where $\bar{c}_{2}>0$ and $\overline{\bar{c}}_{2}>0$ are design parameters.
In order to satisfy $\mathcal{L} V_{2} \leqslant 0$, we choose $\eta_{0}=3$, $\bar{c}_{1}=0.6, \overline{\bar{c}}_{1}=4.2, \bar{c}_{2}=\overline{\bar{c}}_{2}=0.1$, and the initial values $x_{0}(0)=0.3, x_{1}(0)=0.09, x_{2}(0)=-1.3$, $\hat{\Theta}(0)=0.8$. Fig. 1 gives the response of the closedloop system consisting of Eqs.(58)- (60), from which, the effectiveness of the controller is demonstrated.

Remark 5 From Fig.1-3, the effectiveness of the controller is demonstrated. However, by Eq.(61), one can obtain that α_{2} has great effect on the controller u, that is, the value of u is determined by that of $\hat{\Theta}, H_{21}$. In simulation, one can choose the parameters $0<\varepsilon_{2, i, j} \neq 1(i=0,1 ; j=1, \cdots, 10)$ and the stochastic non-holonomic system (1) is globally asymptotically stable, also.

Fig. 1 The responses of states x_{0}, x_{1} and x_{2} with respect to time

Fig. 2 The responses of controllers u_{0} and u with respect to time

Fig. 3 The responses of estimate parameter $\hat{\Theta}$ with respect to time

6 Conclusions

This paper studies the adaptive state-feedbacks stabilization of stochastic nonholonomic systems with unknown parameters. A recursive adaptive state-feedback backstepping controllers is designed. A switching control strategy for the original system is given which can guarantee the closed-loop system is almost asymptotically stabilized at the origin in probability.

There are some remaining problems to be discussed. For example, how to design the controller for the stochastic nonholonomic systems when the first subsystem is stochastic differential equation with uncertain parameters, especially, in the visual serving feedback control of nonholonomic moving mobile robots.

References:

[1] ASTOLFI A. Discontinuous control of nonholonomic systems [J]. Systems \& Control Letters, 1996, 27(1): $37-45$.
[2] POMET J. Explicit design of time-varying stabilizing control laws for a class of controllable system without drift [J]. Systems \& Control Letters, 1992, 18(2): 147 - 158.
[3] JIANG Z. Iterative design of time-varying stabilizers for multi-input systems in chained form [J]. Systems \& Control Letters, 1996, 28(5): 255-262.
[4] LUO J, TSIOTRAS P. Control design for chained-form systems with bounded inputs [J]. Systems \& Control Letters, 2000, 39(2): 123 131.
[5] ARNOLD V I. Geometrical Methods in the Theory of Ordinary Differential Equations [M]. New York: Springer-Verlag, 1988.
[6] LIANG Z, WANG C. Robust exponential stabilization of nonholonomic wheeled mobile robots with unknown visual parameters [J]. Journal of Control Theory and Applications, 2011, 9(2): 295-301.
[7] WU Y Y, WU Y Q. Robust stabilization for nonholonomic systems with state delay and nonlinear drifts [J]. Journal of Control Theory and Applications, 2011, 9(2): 256-260.
[8] TIAN Y, LI S. Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control [J]. Automatica, 2002, 38(7): 1139 - 1146.
[9] GE S, WANG Z, LEE T. Adaptive stabilization of uncertain nonholonomic systems by state and output feedback [J]. Automatica, 2003, 39(8): 1451 - 1460.
[10] HONG Y, WANG J, XI Z. Stabilization of uncertain chained form systems within finite settling time [J]. IEEE Transactions on Automatic Control, 2005, 50(9): 1379-1384.
[11] KRSTIC M, DENG H. Stability of Nonlinear Uncertain Systems [M]. New York: Springer Publishing, 1998.
［12］PAN Z，BAçAR T．Backstepping controller design for nonlinear stochastic systems under a risk－sensitive cost criterion［J］．SIAM Jour－ nal of Control and Optimization，1999，37（3）： 957 － 995.
［13］DENG H，KRSTIC M，WILLIAMS R．Stabilization of stochastic nonlinear driven by noise of unknown covariance［J］．IEEE Trans－ actions on Automatic Control，2001，46（8）：1237－1253．
［14］WU Z，XIE X，ZHANG S．Adaptive backstepping controller design using stochastic small－gain theorem［J］．Automatica，2007，43（4）： 608－620．
［15］XIE X，TIAN J．State－feedback stabilization for high－order stochas－ tic nonlinear systems with stochastuic inverse dynamics［J］．Interna－ tional Journal of Robust and Nonlinear Control，2007，17（14）： 1343 － 1362.
［16］TIAN J，XIE X．Adaptive state－feedback stabilization for high－order stochastic non－linear systems with uncertain control coefficients［J］． International Journal of Control，2007，80（9）： 1503 － 1516.
［17］WANG J，GAO Q，LI H．Adaptive robust control of nonholonomic systems with stochastic disturbances［J］．Science in China：Series F Information Sciences，2006，49（2）：189－207．
［18］ZHAO Y，YU J，WU Y．State－feedback stabilization for a class of more general high order stochastic nonholonomic systems［J］．Inter－ national Journal of Adaptive Control and Signal Processing，2011， 25（8）： 687 － 706.
［19］LIN W，QIAN C．Adaptive control of nonlinearly parameterized sys－ tems：a nonsmooth feedback framework［J］．IEEE Transactions on Automatic Control，2002，47（8）： 757 － 774.
［20］LIN W，QIAN C．Adding one power integrator：a tool for global stabi－ lization of high－order lower－triangular systems［J］．Systems \＆Control Letters，2000，39（5）： $339-351$.

Appendix

i）We only prove Eq．（13a）．The proofs of Eqs．（13b）－（13d） are similar to that of Eq．（13a）．From Assumption 1，Remark 1， Eqs．（8）and（11），it is easy to see

$$
\begin{aligned}
& \left|\frac{f_{i}}{u_{0}^{n-i}}\left(x_{0}, \bar{x}_{i}, \theta\right)\right| \leqslant \frac{\sum_{k=1}^{i}\left|x_{k}\right|}{\left|u_{0}^{n-i}\right|} \bar{\gamma}_{i}\left(x_{0}, \bar{x}_{i}, \theta\right) \leqslant \\
& \sum_{k=1}^{i}\left|z_{k}\right| \tilde{\gamma}_{i}\left(x_{0}, \bar{x}_{i}\right) c_{i}(\theta) \leqslant \sum_{k=1}^{i}\left|\varepsilon_{k}\right|\left(1+\sum_{j=1}^{i-1} \alpha_{j}\right) \tilde{\gamma}_{i} c_{i}(\theta)= \\
& \left(\left|\varepsilon_{1}\right|+\cdots+\left|\varepsilon_{i}\right|\right) \gamma_{i 1}\left(x_{0}, \bar{x}_{i}\right) c_{i}(\theta) .
\end{aligned}
$$

ii）In the following，we will prove the inequality Eq．（30）． The proofs of Eqs．（29）（31）－（37）and（48）－（49）are similar to that of Eq．（30）．By Lemma 2，Assumption1，2，Proposition 1， Eqs．（8）and（11），one can obtain

$$
\begin{aligned}
& \varepsilon_{i}^{3} \frac{f_{i}}{u_{0}^{n-i}} \leqslant\left|\varepsilon_{i}\right|^{3} \sum_{k=1}^{i-1}\left|\varepsilon_{k}\right| \gamma_{i 1} c_{i}(\theta)+\varepsilon_{i}^{4} \gamma_{i 1} c_{i}(\theta) \leqslant \\
& \sum_{k=1}^{i-1}\left(\frac{1}{4} \varepsilon_{i, k, 2} \varepsilon_{k}^{4}+\frac{3}{4} \varepsilon_{i, k, 2}^{-\frac{1}{3}} \gamma_{i 1}^{\frac{4}{3}} \varepsilon_{i}^{4}\right) c_{i}(\theta)+\gamma_{i 1} \varepsilon_{i}^{4} c_{i}(\theta) \leqslant \\
& \Theta \sum_{k=1}^{i-1} \frac{1}{4} \varepsilon_{i, k, 2} \varepsilon_{k}^{4}+\Theta\left\{\sum_{k=1}^{i-1} \frac{3}{4} \varepsilon_{i, k, 2}^{-\frac{1}{3}} \gamma_{i 1}^{\frac{4}{3}}+\gamma_{i 1}\right\} \varepsilon_{i}^{4}
\end{aligned}
$$

作者简介：

张东凯（1980－），男，博士研究生，讲师，主要研究方向为非线性系统控制，随机非线性系统控制等，E－mail：zdkmailhot＠126．com；

王朝立（1965－），男，教授，博士生导师，主要研究方向为非线性控制，变结构控制，鲁棒控制，机器人控制等，E－mail：clclwang＠ 126．com；

陈 华（1978－），男，博士，讲师，主要研究方向为非线性控制，受限控制，变结构控制，机器人控制等，E－mail：chenhua112＠163． com．

[^0]: Received 18 October 2011；revised 15 July 2012.
 This work is supported by the Natural Science Foundation of China（Nos．60874002，10972011），Natural Science Foundation of Hebei Province of China（No．A2010001943），Natural Science Foundation of Hebei Education Committee（Nos．Z2011119，Z2012003），and The Youth Fund of Hohai University（No．2010B23514）．

