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Closed-loop robust model predictive control for time-delay systems
with structured uncertainties
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Abstract: In the controller design, we adopt both the dual-mode framework and the closed-loop strategy to augment the
degrees of freedom. On the basis of the control invariant set, the closed-loop robust model predictive control approach is de-
veloped. The proposed approach enlarges the region of attraction and achieves good control performance. The effectiveness
of the proposed approach is validated by a simulation.
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1 Introduction
Over the last decade, robust model predictive con-

trol (MPC) has attracted much attention and developed
greatly. The uncertain systems with polytopic uncer-
tainty or structured uncertainty are two familiar cate-
gories of uncertain systems. Many past works study the
MPC problem of these two categories of systems, such
as [1–5]. For polytopic systems, [1] proposes an effi-
cient approach for robust MPC using control invariant
sets and linear matrix inequalities (LMIs). [2] and [3]
improve the technique in [1] and achieve better con-
trol performance by applying parameter dependent Lya-
punov function. [4] and [5] develop robust constrained
MPC algorithms which design a sequence of explicit
control laws corresponding to a sequence of asymp-
totically stable invariant ellipsoids constructed off-line
one within another in state space. For structured un-
certainty, [1] and [6] also propose robust MPC design
by using control invariant sets and LMIs. [7] develops
a closed-loop approach for arbitrary control horizons
N . [8] modifies parameter uncertainties into structured

uncertainties and develops a robust MPC algorithm ac-
cordingly.

As is well known, time-delay often exists in many
industrial systems and limits the control performance
and robustness. For polytopic uncertainty, [1] sug-
gests to extend the algorithm for non-delayed systems to
time-delay systems. [9] presents an algorithm for poly-
topic uncertain systems with only one state delay. [10]
and [11] put the idea in [1] into detail and develop the
robust MPC approaches for time-delay systems with
polytopic uncertainty. And, [12] extends the feedback
MPC strategy to the time-delay systems with polytopic
uncertainty. But up to now, the problem of robust MPC
for time-delay systems with structured uncertainty has
been rarely addressed in the literatures.

Recently, [13] proposes robust MPC based on con-
trol invariant set and design the unique state feedback
control to deal with time-delay systems with structured
uncertainty. Although [13] could stabilize the robust
uncertain system and optimize the control performance,
it leads to conservativeness due to the limited degree of
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freedom caused by the unique state feedback approach.
As a result, the region of attraction is relatively small
and the control performance is somewhat poor. In order
to reduce the conservativeness of unique state feedback
control approach, the dual-mode control in [14] is intro-
duced into the control design in this paper, which would
introduce more freedom of design to enlarge the re-
gion of attraction and improve the control performance.
But just adding deterministic control moves before the
terminal invariant set would result in the loss of gu-
ranteed recursive feasibility and stability, as concluded
from [16]. Observing that, the closed-loop strategy, i.e.
adopting the perturbation items on a sequence of state
feedback control laws as control inputs, is adopted to
guarantee the recursive feasibility and closed-loop sta-
bility. Compared with [13], the proposed approach in-
troduces more freedom of design, enlarges the region of
attraction and achieves good control performance. The
feasibility and stability of the closed-loop system of the
proposed approach are proven.

This paper is organized as follows: Section 2 gives
the formulation of time-delay systems with structured
uncertainty and the conditions of control invariant set.
The closed-loop robust MPC approach with dual-mode
framework is developed in Section 3. An illustrative
numerical example is given in Section 4 to show the
merits of the proposed approach. Finally, conclusions
are drawn in Section 5.

Notation: R represents the set of real number, Rn

represents the n-dimensional space of real valued vec-
tors. Rm×n represents the set of real m × n matri-
ces, Sn×n represents the set of real n × n symmetric
matrices, I represents the identity matrix and O rep-
resents the block matrix of zeros with appropriate di-
mensions, respectively. Moreover, I(i) represents the
i-dimensional identity matrix and I(i, j) represents the
jth row of i-dimensional identity matrix. Note that the
symbol ∗ in a matrix denotes the transpose of its sym-
metric counterpart. x(k+ i|k) and u(k+ i|k) represent
the state and the future control move at time k + i pre-
dicted at k, respectively. The following notations are
also used:
x̂(k + i|k) ∆=
(xT(k + i− ds|k), xT(k + i− ds + 1|k), · · · ,

xT(k + i|k))T,

x̄(k+ i|k) ∆= (xT(k+ i−ds|k), xT(k+ i−ds−1|k),
· · · , xT(k+ i−d1|k), xT(k+ i|k))T.

2 Problem formulation and the conditions of
control invariant set

2.1 Problem formulation
Consider the following time-delay systems with

structured uncertainty:

x(k + 1) = Ax(k) +
s∑

j=1

Adj
x(k − dj) +

Bu(k) + Bpp(k), (1)

q(k) = Cqx(k) +
s∑

j=1

Aqj
x(k − dj) + Cquu(k), (2)

p(k) = ∆(k)q(k), (3)

where x(k) ∈ Rn is the state of the plant, u(k) ∈ Rm

is the control input, p(k) ∈ Rp, q(k) ∈ Rp are the
additional variables accounting for the uncertainty. A,
Adj

, Aqj
, B, Bp, Cq and Cqu are known constant real

matrices with proper dimensions. dj(j = 1, 2, · · · , s)
are integer state delays satisfying d1 < d2 < · · · < ds.
∆(k) describes the time-varying structured uncertainty
which belongs to:

∆
∆= {diag{δ1I(r1), · · · , δξI(rξ),∆1, · · · ,∆η} :

δi : ‖δi‖ 6 1, i = 1, 2, · · · , ξ;

∆j : l
θj

2 → l
θj

2 , ‖∆j‖ 6 1, j = 1, 2, · · · , η},
where the operator norm on δi and ∆j is the induced l2

norm and
ξ∑

i=1

ri +
η∑

j=1

θj = p. Obviously, the structured

uncertainty satisfies ∆T∆ 6 I .
In addition, systems (1)–(3) are subject to the fol-

lowing constraints on the control inputs:

|uj(k + i|k)| 6 uj,max, i > 0, j = 1, 2, · · · ,m. (4)

At each time, the control objective of the robust
MPC problem is to compute the control moves u(k +
i|k) by minimizing the following robust performance
index:

min
u(k+i|k),i>0

max
∆∈∆

J∞(k) =

∞∑
i=0

[‖x(k + i|k)‖2
L + ‖u(k + i|k)‖2

R]. (5)

Uncertainty in Eqs.(1)–(3), called structured uncer-
tainty, is a broad class of model uncertainty descrip-
tions, which includes affine uncertainty as a special case
and is often more appropriate for accurate modeling
of nonlinear systems. The uncertain systems (1)–(3),
which refers to the system described in [7] with consid-
eration of time-delays, describes the uncertainties with
time-delay in the feedback loop by the second term of
the right-hand side in Eq.(1). In essence, the above
uncertainty structure is a modified version of that de-
scribed in [1]. Obviously, the above uncertainty struc-
ture could utilize more information if it is available for
a practical application. As a result, more information is
helpful to improve the control design.

To deal with the uncertainty ∆ ∈ ∆, another scal-
ing set is defined as follows:

D ∆= {diag{D1, · · · , Dξ, ρ1I(θ1), · · · , ρηI(θη)} :
Di ∈ Sri×ri , Di > 0, i = 1, 2, · · · , ξ;
ρj ∈ R, ρj > 0, j = 1, 2, · · · , η}.

It is clear that for any ∆ ∈ ∆ and D ∈ D,
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∆D = D∆ holds.
Before proposing the main results, the following

lemma in [15] is introduced.
Lemma 1 [15] Let W , M and E be correspond-

ing matrices with appropriate dimensions. Moreover,
assume W is also symmetric. Thus, for any F with
FTF < I , the following inequality:

W + MFE + ETFTMT < 0

is satisfied if and only if there exists a parameter ε > 0
which guarantees

W + εMMT + ε−1ETE < 0.

2.2 Conditions of control invariant set and the
unique state feedback control

In [13], we study the conditions of control invari-
ant set and design the unique state feedback control for
systems (1)–(4), which will be introduced briefly below.

Following the procedure in [1], the following Lya-
punov-Krasovskii function is chosen on the augmented
state x̂(k).
V (x̂(k|k)) =

xT(k|k)P0x(k|k) +
d1∑

j=1

xT(k−j|k)P1x(k−j|k) +

d2∑
j=d1+1

xT(k − j|k)P2x(k − j|k) + · · ·+
ds∑

j=ds−1+1

xT(k − j|k)Psx(k − j|k).

Assume there exists a feedback u(k + i|k) =
Fx(k+i|k), i > 0 and impose the following robust sta-
ble conditions on the above Lyapunov-Krasovskii func-
tion:

V (x̂(k + i + 1|k))− V (x̂(k + i|k)) <

−[‖x(k + i|k)‖2
L + ‖u(k + i|k)‖2

R], i > 0, (6)

where
x(k + i + 1|k) =
(A + BF )x(k + i|k) +

s∑
j=1

Adj
x(k + i− dj|k) + Bpp(k + i|k). (7)

The following lemma gives us conditions for the
existence of the appropriate Pi > 0(i = 0, 1, · · · , s)
satisfying Eq.(6) and the corresponding state feedback
matrix F .

Lemma 2 For the uncertain systems (1)–(3)
without constraints on inputs, the state feedback matrix
F in the control law which guarantees Eq.(6) is given
by

F = Y Q−1
0 .

with Pi =γQ−1
i if there exist ε>0, γ >0, Y ∈Rm×n,

Qi ∈ Rn×n, i = 0, 1, · · · , s, satisfying the following
conditions:




Γ1 ∗ ∗
Γ2 Γ3 ∗
Γ4 O Γ5


 > 0, (8)

where

Γ1 =




Q0 ∗ ∗ ∗
O Q1 ∗ ∗
O O

. . . ∗
O O O Qs


 ,

Γ2 =




AQ0 + BY Ad1Q1 · · · Ads
Qs

CqQ0 + CquY Aq1Q1 · · · Aqs
Qs

R 1
2 Y O · · · O

L 1
2 Q0 O · · · O


 ,

Γ3 =




Q0−εBpB
T
p ∗ ∗ ∗

O εI ∗ ∗
O O γI ∗
O O O γI


 ,

Γ4 =




Q0 O O O O
O Q1 O O O

O O
. . . O O

O O O Qs−1 O


, Γ5 =




Q1 ∗ ∗ ∗
O Q2 ∗ ∗
O O

. . . ∗
O O O Qs


.

Proof See Appendix A.
Based on condition (8), the upper bound of perfor-

mance cost under the unique feedback control u(k +
i|k) = Fx(k + i|k) can be obtained. By summing
Eq.(6) from i = 0 to i = ∞, we can get
∞∑

i=0

[‖x(k + i|k)‖2
L+ ‖u(k + i|k)‖2

R] 6 V (x̂(k|k)).

Let V (x̂(k|k)) 6 γ with γ a nonnegative parame-
ter, which means γ is the upper bound of performance
cost. This can be guaranteed by[

1 ∗
x̂(k|k) Q

]
> 0, (9)

where Q = diag{Qs, · · · , Qs︸ ︷︷ ︸
ds−ds−1

, · · · , Q2, · · · , Q2︸ ︷︷ ︸
d2−d1

,

Q1, · · · , Q1︸ ︷︷ ︸
d1

, Q0}, Qi ∈ Rn×n, i = 0, 1, · · · , s.

In the following, input constraints are incorporated
into the robust MPC controller as sufficient LMI con-
straints.

Lemma 3 The input constraints Eq.(4) would be
satisfied if there exist ε > 0, γ > 0, X ∈ Rm×m,
Y ∈ Rm×n, Qi ∈ Rn×n, i = 0, 1, · · · , s, satisfying
conditions (8)–(9) as well as following conditions:[

X Y
Y T Q0

]
> 0, Xjj 6 u2

j,max, j = 1, 2, · · · ,m.

(10)

Proof It can be deduced in a similar way as in [1],
here it is omitted.

From the above analysis, Eqs.(8)–(10) are the con-
ditions of control invariant set and guarantee that γ is an
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upper bound of performance cost. Therefore, the min-
max optimization problem (5) can be converted into a
linear objective minimization problem, where the struc-
tured uncertainty can be addressed and the upper bound
γ can be minimized by utilizing LMI tools[13]. Based
on that, the following state feedback MPC approach is
proposed:

Controller C1 Solve the following linear objec-
tive minimization problem

min
ε,γ,Q0,Q1,··· ,Qs,X,Y

γ, s.t. Eqs.(8)–(10),

where ε > 0, γ > 0, X ∈ Rm×m, Y ∈ Rm×n and
Qi ∈ Rn×n, i = 0, 1, · · · , s are optimization variables.
The corresponding unique state feedback control law is
given by F = Y Q−1

0 .
Remark 1 Obviously, controller C1 is constructed

based on the design of a control invariant set, where an unique
state feedback control law is utilized as the future control strat-
egy of the MPC controller. As [7] pointed out, the unique state
feedback control strategy leads to the conservativeness due to
the limited degree of freedom. Hence, in the following, we will
adopt a sequence of control actions followed by a state feed-
back control law as the control strategy to the design of MPC,
which complies with the dual-mode control framework and the
invariant set corresponding to the state feedback control law is
used as the terminal set. Since more freedom is introduced, the
enlarged attractive region and improved control performance
can be expected.

3 The closed-loop robust MPC approach
with dual-mode framework
Based on the results in Section 2, to enlarge the re-

gion of attraction and improve the control performance,
this section develops the robust MPC approach with
dual-mode framework. As can be concluded from [16],
just adding N deterministic control moves before the
terminal invariant set would result in the loss of guaran-
teed recursive feasibility and stability. Here, we adopt
both the closed-loop strategy and the dual-mode frame-
work, which add N perturbation items on a sequence
of state feedback laws followed by the unique feedback
control law. That is



u(k+i|k) = F (k+i|k)x(k+i|k) + v(k+i|k),
0 6 i 6 N − 1,

u(k + i|k) = F (k + N |k)x(k + i|k),
i > N,

(11)

where v(k + i|k), 0 6 i 6 N − 1 and F (k + i|k),
0 6 i 6 N − 1 refer to the perturbation items and
the future feedback control laws at time k + i predicted
at time k respectively, F (k + N |k) refers to the linear
feedback control law of the target set at time k + N
predicted at time k, i.e. the feedback control law in
the control invariant set. The N perturbation items on
the state feedback sequence would steer an augmented

state sequence with respect to the time-delay systems
into a control invariant set and a unique state feedback
law would drive the terminal state to the equilibrium.

Aiming at designing the robust MPC with strategy
(11), we need to calculate the state sequence, the control
input sequence, the terminal state and the correspond-
ing performance. In the following, we will show how to
calculate these related variables and then formulate the
optimization problem of robust MPC.

To simplify the presentation, the augmented vari-
ables are defined:



X (k) ∆= [xT(k|k), · · · , xT(k + N − 1|k)]T,

F̂ (k) ∆= diag{F (k|k), · · · , F (k + N − 1|k},
V(k) ∆= [vT(k|k), · · · , vT(k + N − 1|k)]T,

U(k) ∆= [uT(k|k), · · · , uT(k + N − 1|k)]T,

P(k) ∆= [pT(k|k), · · · , pT(k + N − 1|k)]T,

G(k) ∆= [qT(k|k), · · · , qT(k + N − 1|k)]T.

(12)

Provided that F (k + i|k), 0 6 i 6 N − 1 have
been known at time k, F (k + N |k) and v(k + i|k)
can be obtained by solving optimization problem un-
der the dual-mode control (11). For the control strategy,
the following shifting method is used to get the known
F (k + i|k + 1) at time k + 1:{

F (i|0) = 0, 0 6 i 6 N − 1, k = 0,
F (k + i|k + 1) = F (k + i|k), 1 6 i 6 N, k > 0.

For example, the state feedback sequence is initi-
ated as F̂ (0) = (0, · · · , 0) at time k = 0, and the
unique feedback control law F (N |0) and perturbation
items sequence V(0) can be obtained by online solv-
ing an optimization problem under the dual-mode con-
trol (11). At next time k = 1, the shifting method
is used to generate F̂ (1) = (0, · · · , 0, F (N |0)), and
F (1 + N |1), V(1) will be optimized by online solving
the optimization problem. The above procedure repeats
to generate F̂ (k), F (k + N |k) and V(k) at all the fol-
lowing times k = 2, 3, · · · .

At first, we will calculate an augmented state se-
quence consisting of X (k) and x(k + N |k), which re-
fer to the state sequence before entering the terminal in-
variant set and the terminal state respectively. By using
x̂(k|k), V(k) and P(k), the augmented state sequence
can be formulated as follows:[ X (k)

x(k + N |k)

]
=

[Aout

AN

]
x̂(k|k)+

[Bout

BN

]
V(k)+

[Bpout

Bp,N

]
P(k), (13)

where the calculation of matrices Aout, Bout, Bpout,
AN , BN and Bp,N will be introduced below in detail.

Denote matrix =(i) = I(ds + 1, i) ⊗ I(n) where
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⊗ denotes the Kronecker product. Then, the following
augmented matrices are given:




A−ds

A1−ds

...
A−1




∆=




=(1)
=(2)

...
=(ds)


 ,




B−ds

B1−ds

...
B−1




∆=




O
O
...
O


 ,




Bp,−ds

Bp,1−ds

...
Bp,−1




∆=




O
O
...
O


 .

According to the system dynamics, matrices Aout,
Bout, Bpout, AN , BN and Bp,N can be described by the
following expressions:

[Aout

AN

]
=




A0

A1
...

AN−1

AN




=




=(ds + 1)
A0A0 + Ad1A−d1 + · · ·+ AdsA−ds

...
AN−2AN−2 + Ad1AN−2−d1 + · · ·+ AdsAN−2−ds

AN−1AN−1 + Ad1AN−1−d1 + · · ·+ AdsAN−1−ds




,

[Bout

BN

]
=




B0

B1
...

BN−1

BN




=




O
A0B0 + Ad1B−d1 + · · ·+ AdsB−ds + BI(N, 1)

...
AN−2BN−2 + Ad1BN−2−d1 + · · ·+ AdsBN−2−ds + BI(N, N − 1)

AN−1BN−1 + Ad1BN−1−d1 + · · ·+ AdsBN−1−ds + BI(N, N)




,

[Bpout

Bp,N

]
=




Bp,0

Bp,1
...

Bp,N−1

Bp,N




=




O
A0Bp,0 + Ad1Bp,−d1 + · · ·+ AdsBp,−ds + BpI(N, 1)

...
AN−2Bp,N−2 + Ad1Bp,N−2−d1 + · · ·+ AdsBp,N−2−ds + BpI(N, N − 1)

AN−1Bp,N−1 + Ad1Bp,N−1−d1 + · · ·+ AdsBp,N−1−ds + BpI(N, N)




,

where Ai = A+BF (k+i|k) denotes the closed-loop
system state matrices at time k + i.

Next, we will calculate the augmented terminal
states x̂(k + N |k) = [x(k + N − ds|k)T x(k + N −
ds + 1|k)T · · · x(k + N |k)T]T, which is required
to belong to the control invariant set. It can be formu-
lated as follows:

x̂(k + N |k) = Atermix̂(k) + BtermiV(k) +
BptermiP(k), (14)

where Atermi, Btermi and Bptermi need to be deter-
mined according to the comparison of the value of N
and that of ds.

Here, we discuss how to obtain matrices Atermi,
Btermi and Bptermi in detail.

If N > ds, then

Atermi = [AT
N−ds

AT
N−ds+1 · · · AT

N ]T,

Btermi = [BT
N−ds

BT
N−ds+1 · · · BT

N ]T,

Bptermi = [BT
p,N−ds

BT
p,N−ds+1 · · · BT

p,N ]T.

If N < ds, then

Atermi = [=(N + 1)T · · · =(ds)T AT
out AT

N ]T,

Btermi = [O BT
out BT

N ]T,

Bptermi = [O BT
pout BT

p,N ]T.

Subsequently, the input sequence before entering

the terminal invariant set will be calculated. It can be
formulated as follows:

U(k) = F̂ (k)X (k) + V(k) =
F̂ (k)Aoutx̂(k|k) + (I + F̂ (k)Bout)V(k) +
F̂ (k)BpoutP(k). (15)

Finally, synthesizing Eq.(2) and definitions of
G(k), X (k) and U(k), we will get the additional vari-
able sequence G(k) accounting for the uncertainty.

G(k)= ĈqX (k)+ĈquU(k)+Âq× [xT(k−
ds|k) · · · xT(k−1|k) XT(k)]T, (16)

where

Ĉq = diag(Cq, · · · , Cq︸ ︷︷ ︸
N

), Ĉqu =diag(Cqu, · · · , Cqu︸ ︷︷ ︸
N

),

Aq = [Aqs , O, Aqs−1 , O, · · · , Aq1 , O],

Âq = diag{Aq, · · · ,Aq︸ ︷︷ ︸
N

}.

Let

Ā = [=T(1) =T(2) · · · =T(ds) AT
out]

T,

B̄ = [O BT
out]

T, B̄p = [O BT
pout

]T.

Then, Eq.(16) can be rewritten as

G(k) = ĈqX (k) + ĈquU(k) + Âq(Āx̂(k|k) +
B̄V(k) + B̄pP(k)). (17)
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Combining Eqs.(13) (15)(17), it can be obtained

G(k) = S + (ĈqBpout + ĈquF̂ (k)Bpout +
ÂqB̄p)P(k), (18)

where

S ∆= (ĈqAout + ĈquF̂ (k)Aout + ÂqĀ)x̂(k) +
(ĈqBout + ĈquF̂ (k)Bout + Ĉqu + ÂqB̄)V(k).

(19)
Synthesizing Eq.(3) with definitions of P(k) and

G(k), it is obvious
P(k) = diag {∆(k),∆(k + 1|k), · · · ,

∆(k + N − 1|k)}G(k). (20)

According to definitions of ∆ and Eq.(20), it can
be concluded that for any D`∈D, `=0, 1, · · · , N−1,

PT(k)diag{D0,D1, · · · ,DN−1}−1P(k) 6
GT(k)diag{D0,D1, · · · ,DN−1}−1G(k). (21)

From the above derivation, the terminal state, the
state sequence and the control input sequence before
entering the terminal invariant set have been obtained.
Therefore, the whole control performance can be op-
timized and the dual-mode controller can be designed.
Before the controller is proposed, two lemmas and an
algorithm would be established for the time-delay un-
certain system.

Lemma 4 For the uncertain systems (1)–(3)
with initial state x̂(k|k), if there exist γ > 0, V(k),
Λ1, Qi ∈ Rn×n, i = 0, 1, · · · , s, satisfying the fol-
lowing inequality:




1 ∗ ∗ ∗ ∗ ∗
O Λ1 ∗ ∗ ∗ ∗

L̂ 1
2 (Aoutx̂(k|k) + BoutV(k)) L̂ 1

2BpoutΛ1 γI ∗ ∗ ∗
R̂ 1

2 [F̂ (k)Aoutx̂(k|k) + (I + F̂ (k)Bout)V(k)] R̂ 1
2 F̂ (k)BpoutΛ1 O γI ∗ ∗

Atermix̂(k|k) + BtermiV(k) BptermiΛ1 O O Q ∗
S (ĈqBpout +ĈquF̂ (k)Bpout +ÂqB̄p)Λ1 O O O Λ1




> 0, (22)

the following conditions can be guaranteed:
‖X (k)‖2

L̂ + ‖U(k)‖2
R̂ +

x̂T(k + N |k)Px̂(k + N |k) 6 γ,[
1 ∗

x̂(k + N |k) Q

]
> 0,

where
L̂ = diag{L, · · · ,L︸ ︷︷ ︸

N

}, R̂ = diag{R, · · · ,R︸ ︷︷ ︸
N

},

Λ1 = diag{D0,D1, · · · ,DN−1},

D` ∈ D, ` = 0, 1, · · · , N − 1, P = γQ−1 with Q as
proposed in Eq.(9) and S proposed in Eq.(19).

Proof See Appendix B.
In the following, we shall show that constraints

on the inputs can also be incorporated into our robust
MPC approach as sufficient LMI constraints.

Lemma 5 For the uncertain systems (1)–(4)
with initial state x̂(k|k), the input constraints before
the switching horizon N can be guaranteed if there
exist V(k) and Λ2 satisfying the following inequality




1
O

S
I(Nm, im + j)[F̂ (k)Aoutx̂(k|k)+(I+F̂ (k)Bout)V(k)]

∗ ∗ ∗
Λ2 ∗ ∗

(ĈqBpout+ĈquF̂ (k)Bpout+ÂqB̄p)Λ2 Λ2 ∗
I(Nm, im + j)× (F̂ (k)BpoutΛ2) O u2

j,max


 > 0, (23)

where j = 1, 2, · · · ,m, i = 0, 1, · · · , N − 1, Λ2 =
diag(D̃0, D̃1, · · · , D̃N−1), D̃` ∈ D, ` = 0, 1, · · · ,
N − 1.

Proof See Appendix C.
Thus, we derive the sufficient LMI constraints

which guarantee the satisfaction of input constraints.
From lemma 4, it follows that the index γ is the

upper bound of the performance cost for the uncertain
systems (1)–(3), which means minimizing the corre-
sponding index approximately optimizes the control
performance. Thus, the following algorithm can be
proposed:

Algorithm 1 Let x̂(k|k) be the initial state of
the uncertain systems (1)–(3), and constraints on the

input are described as in Eq.(4). Then the upper
bound on the robust performance objective function
can be obtained from the solution of the following lin-
ear objective minimization problem

min
ε,γ,Q0,··· ,Qs,X,Y,V(k),Λ1,Λ2

γ,

s.t. Eqs.(8)(10)(22)–(23), (24)

where ε > 0, γ > 0 , X ∈ Rm×m, Y ∈ Rm×n, Qi ∈
Rn×n, i = 0, 1, · · · , s, Λ1 = diag{D0,D1, · · · ,
DN−1}, Λ2 = diag{D̃0, D̃1, · · · , D̃N−1}, D` ∈ D,
D̃` ∈ D, ` = 0, 1, · · · , N − 1.

Base on all above developments, we propose the
following dual-mode control approach with N pertur-
bation items on a state feedback sequence followed by
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a unique state feedback law.

Controller C2 Initialization: Given N and k =
0, F (i|0) = 0, 0 6 i 6 N − 1.

Generic step:

Step 1 At each time k > 0, solve Eq.(24) to
obtain the optimal solution

[εopt, γopt, Q0,opt, Q1,opt · · · , Qs,opt, Xopt,

Yopt,Vopt(k), Λ1,opt, Λ2,opt].

Step 2 Act with u(k|k) = F (k|k)x(k|k) +
vopt(k|k).

Step 3 F (k + i|k + 1) = F (k + i|k), 1 6 i 6
N − 1; F (k + N |k + 1) = YoptQ

−1
0,opt.

Step 4 k ← k + 1 and go to Step 1.

Compared with the unique feedback controller
C1, the dual-mode controller C2 can introduce extra
degrees of freedom through the use of perturbations,
which would enlarge the region of attraction and im-
prove the control performance.

Remark 2 In general, for the design based on
dual-mode control framework, the closed-loop system would
achieve better control performance if F (k + i|k + 1) is de-
signed as optimization variables and obtained by online solv-
ing the optimization problem in next step k + 1. However, if
F (k + i|k + 1), 1 6 i 6 N is solved in next step k + 1,
the optimization problem would not be a convex optimiza-
tion problem and lead to very heavy on-line computational
burden. In order to avoid this problem, the shifting method
is used to generate the sequence of state feedback laws as
F (k + i|k + 1) = F (k + i|k), 1 6 i 6 N . And the unique
feedback control law F (k + 1 + N |k + 1) remains to be de-
termined by solving the optimization problem at sample time
k + 1. In this way, the optimization problem can be formulated
as a convex optimization and solved online by semi-definite
programming.

For the closed-loop system under controller C2,
the feasibility and stability property of the closed-
loop system can be asserted as follows:

Theorem 1 If there is a feasible solution for the
dual-mode controller C2 with initial state x̂(k|k) at
time k, there will also exist a feasible solution for all
times t > k, and the closed-loop system is asymptot-
ically stable.

Proof See Appendix D.
Remark 3 Note that controller C1 requires the cur-

rent state to be strictly in the control invariant set, which results
in somewhat conservativeness. For the proposed C2, the state
can be allowed to move from outside of the control invariant set
and finally into this invariant set. The conditions in controller
C1 can be recovered by imposing N = 0 in the proposed ap-
proach, and included as its special case. Therefore the proposed

C2 has more freedom and less conservativeness of design com-
pared with controller C1. Consequently, it would enlarge the
region of attraction and improve the control performance.

Remark 4 The proposed method is available for the
systems with fixed time-delays. If the time-delay is time-
varying, the original system is a switching system. Although
the idea of the proposed method can be used for this case after
some necessary modifications, the controller should be modi-
fied greatly and is not discussed by this paper.

4 Case studies
Considering the following time-delay system

with structured uncertainty
x(k + 1) =[
0.8 0.2
0.9 0.8

]
x(k) +

[−0.05 0.05
0.3 −0.05

]
x(k − 1) +

[−0.05 0.05
0.6 −0.05

]
x(k − 3) +

[
1
0

]
u(k) +

[
0
1

]
p(k),

q(k) = [0.1 0.1]x(k) + [0.01 0]x(k − 1) +
[0.06 0]x(k − 3) + 0.1u(k),

p(k) = ∆(k)q(k),

where structured uncertainty ∆(k) is a random vari-
able uniformly distributed in the interval [0 1] and
the input constraint |u| 6 1. The initial conditions
are given as x(0) = [1 1]T, x(−1) = x(−2) =
x(−3) = [2.5 − 5]T. The weighting matrices are
given as L = diag{1, 1}, R = 1.

In the following, the region of attraction and con-
trol performance will be compared between the pro-
posed approach and that in [13]. For the proposed
controller C2, it adopts N = 3 and N = 1 respec-
tively.

The control results under the three controllers are
shown in Fig.1 and Fig.2. Fig.1 shows C2 achieves
better control performance. It also can be seen that
with controller C2, the increase of N could improve
the control performance. Fig.2 demonstrates that over
the entire horizon the input constraints are satisfied.
The regions of attraction are plotted in Fig.3. From
Fig.3, we can conclude that controller C2 achieves a
much larger region of attraction, and the increase of
N could enlarge the region of attraction.
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Fig. 1 The closed-loop state responses: solid line for
controller C2 (N = 3), dotted line for
controller C2 (N = 1), dashed line for [13]

Fig. 2 The control signals: solid line for
controller C2 (N = 3), dotted line for
controller C2 (N = 1), dashed line for [13]

Fig. 3 The regions of attraction: solid line for
controller C2 (N = 3), dotted line for
controller C2 (N = 1), dashed line for [13]

5 Conclusions
This paper presents a closed-loop robust MPC ap-

proach for time-delay systems with structured uncer-
tainty. The dual-mode framework and the closed-loop
strategy are adopted to enlarge the region of attraction
and improve the control performance. With the pro-
posed control approach, the model uncertainty can be
addressed with guaranteed robust closed-loop stabil-
ity and good control performance.
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Appendix A
From the definition of quadratic function V (x̂(k + i|k)), it

follows

V (x̂(k + i + 1|k))− V (x̂(k + i|k)) =
»

x̄(k+i|k)

x(k+i+1|k)

–T
diag{−Ps, Ps−Ps−1, · · · , P1−P0, P0} ·

»
x̄(k + i|k)

x(k + i + 1|k)

–
. (A1)

Adopting u(k + i|k) = Fx(k + i|k) into system described by
Eqs.(1)–(3), it can be concluded

x(k + i + 1|k) =

[A + BF + Bp∆(Cq + CquF )]x(k + i|k) +
sP

j=1
(Adj

+ Bp∆Aqj )x(k + i− dj |k). (A2)

Synthesizing Eqs.(A1)−(A2), it leads to

x̄T(k + i|k)Ψx̄(k + i|k) =

V (x̂(k + i|k))− V (x̂(k + i + 1|k))−
‖x(k + i|k)‖2L − ‖u(k + i|k)‖2R . (A3)

where Ψ is given as follows:
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Ψ =

2
66666666664

Ξ ∗
−ĀT

ds−1
P0Āds

Ξ1

−ĀT
ds−2

P0Āds
−ĀT

ds−2
P0Āds−1

...
...

−ĀT
d1

P0Āds
−ĀT

d1
P0Āds−1

−ĀTP0Āds
−ĀTP0Āds−1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Ξ2 ∗ ∗ ∗
...

. . . ∗ ∗
−ĀT

d1
P0Āds−2 · · · Ξs−1 ∗

−ĀTP0Āds−2 · · · −ĀTP0Ād1 Ξs

3
77777775

,

with
Ā=A + BF + Bp∆(Cq + CquF ); Ādj

=Adj
+ Bp∆Aqj ;

Ξ = Ps − ĀT
ds

P0Āds
; Ξ1 = Ps−1 − Ps − ĀT

ds−1
P0Āds−1 ;

Ξ2 = Ps−2 − Ps−1 − ĀT
ds−2

P0Āds−2 ;

Ξs−1 = P1 − P2 − ĀT
d1

P0Ād1 ;

Ξs = P0 − P1 − ĀTP0Ā− FTRF − L.

Thus, it can be concluded that Eq.(6) can be guaranteed by
the following inequality:

Ψ > 0.

Substituting Pi = γQ−1
i , using Schur complement and af-

ter some straightforward transformations, it can be concluded
that the inequality above would hold true if there exist Qi,
i = 0, 1, · · · , s and Y = FQ0, such that2

4
Γ1 ∗ ∗
T Υ ∗
Γ4 O Γ5

3
5 > 0, (A4)

where

T =

2
64

ĀQ0 Ād1Q1 · · · Āds
Qs

R 1
2 Y O · · · O

L 1
2 Q0 O · · · O

3
75 , Υ =

2
4

Q0 ∗ ∗
O γI ∗
O O γI

3
5 .

It is obvious that Eq.(A4) is equivalent to2
4

Γ1 ∗ ∗
T Υ ∗
Γ4 O Γ5

3
5+

2
4

O

Bp

O

3
5∆ ·

[CqQ0+CquY Aq1Q1 · · · AqsQs O] +

ˆ
CqQ0 + CquY Aq1Q1 · · · AqsQs O

˜T
∆T

2
4

O

Bp

O

3
5

T

>0,

where

T =

2
64

AQ0 + BY Ad1Q1 · · · Ads
Qs

R1/2Y O · · · O

L1/2Q0 O · · · O

3
75 .

Moreover, the inequality above can be further rewritten as
2
4
−Γ1 ∗ ∗
−T −Υ ∗
−Γ4 O −Γ5

3
5+

2
4

O

−Bp

O

3
5∆ ·

ˆ
CqQ0+CquY Aq1Q1 · · · AqsQs O

˜
+

ˆ
CqQ0+CquY Aq1Q1 · · · AqsQs O

˜T
∆T

2
4

O

−Bp

O

3
5

T

<0.

(A5)
Choosing

W =

2
4
−Γ1 ∗ ∗
−T −Υ ∗
−Γ4 O −Γ5

3
5 , M =

2
4

O

−Bp

O

3
5 ,

E =
ˆ
CqQ0 + CquY Aq1Q1 · · · AqsQs O

˜
,

and using Lemma 1, it can be concluded from Eq.(A5) that
there exists a parameter ε > 0 which satisfies

2
4
−Γ1 ∗ ∗
−T −Υ ∗
−Γ4 O −Γ5

3
5+ ε

2
4

O

−Bp

O

3
5
2
4

O

−Bp

O

3
5

T

+

ε−1 ˆCqQ0 + CquY Aq1Q1 · · · AqsQs O
˜T ×ˆ

CqQ0 + CquY Aq1Q1 · · · AqsQs O
˜

< 0.

Immediately, we can get the following condition
2
4

Γ1 ∗ ∗
T Υ ∗
Γ4 O Γ5

3
5− ε

2
4

O

Bp

O

3
5
2
4

O

Bp

O

3
5

T

−

ε−1 ˆCqQ0 + CquY Aq1Q1 · · · AqsQs O
˜T ×ˆ

CqQ0 + CquY Aq1Q1 · · · AqsQs O
˜

> 0.

By Schur complement, satisfying the above inequality
leads to Eq.(8), which completes the proof.

Appendix B
Multiplying inequality (22) by diag{1, Λ−1

1 , I, I, I, Λ−1
1 }

to both the right side and the left side, we obtain that



1 ∗ ∗ ∗ ∗ ∗
O Λ−1

1 ∗ ∗ ∗ ∗
L̂ 1

2 (Aoutx̂(k|k) + BoutV(k)) L̂ 1
2Bpout γI ∗ ∗ ∗

R̂ 1
2 [F̂ (k)Aoutx̂(k|k) + (I + F̂ (k)Bout)V(k)] R̂ 1

2 F̂ (k)Bpout O γI ∗ ∗
Atermix̂(k|k) + BtermiV(k) Bptermi

O O Q ∗
Λ−1

1 S Λ−1
1 (ĈqBptermi + ĈquF̂ (k)Bptermi + ÂqB̄p) O O O Λ−1

1




> 0.

Using Schur complement and matrix transformation, the inequality above can be rewritten as
»

γ ∗
O γΛ−1

1

–
−
»Atermix̂(k|k) + BtermiV(k) Bptermi

S (ĈqBpout + ĈquF̂ (k)Bpout + ÂqB̄p)

–T »
γ−1 ∗
O γΛ−1

1

–
×

»Atermix̂(k|k) + BtermiV(k) Bptermi

S (ĈqBpout + ĈquF̂ (k)Bpout + ÂqB̄p)

–
−

"
L̂ 1

2 (Aoutx̂(k|k) + BoutV(k))

R̂ 1
2 [F̂ (k)Aoutx̂(k|k) + (I + F̂ (k)Bout)V(k)]

L̂ 1
2Bpout

R̂ 1
2 F̂ (k)Bpout

#T

×
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L̂ 1

2 (Aoutx̂(k|k) + BoutV(k)) L̂ 1
2Bpout

R̂ 1
2 [F̂ (k)Aoutx̂(k|k) + (I + F̂ (k)Bout)V(k)] R̂ 1

2 F̂ (k)Bpout

#
> 0.

Multiplying the inequality above by [1 PT(k)] to the left
side and its transpose to the right side, we can obtain (using
Eqs.(13)–(15)(18))

‖X (k)‖2L̂ + ‖U(k)‖2R̂ + x̂T(k + N |k)P x̂(k + N |k) 6

γ + PT(k)γΛ−1
1 P(k)− GT(k)γΛ−1

1 G(k).

Combining the inequality above with Eq.(21), it immedi-
ately gets

‖X (k)‖2L̂ + ‖U(k)‖2R̂ + x̂T(k + N |k)P x̂(k + N |k) 6 γ.

Moreover, we can conclude that x̂(k + N |k)TQ−1x̂(k +

N |k) 6 1, which completes the proof.

Appendix C
Eq.(15) leads to
8
>>>><
>>>>:

uj(k + i|k) = I(Nm, im + j)× U(k) =

I(Nm, im + j)× [F̂ (k)Aoutx̂(k|k)+

(I + F̂ (k)Bout)V(k) + F̂ (k)BpoutP(k)],

j = 1, 2, · · · , m, i = 0, 1, · · · , N − 1.

(A6)

Multiplying inequality (23) by diag{1, Λ−1
2 , Λ−1

2 , 1} to
both the right side and the left side, we obtain that

2
664

1 ∗ ∗ ∗
O Λ−1

2 ∗ ∗
Λ−1

2 S Λ−1
2 (ĈqBpout + ĈquF̂ (k)Bpout + ÂqB̄p) Λ−1

2 ∗
I(Nm, im + j)[F̂ (k)Aoutx̂(k|k) + (I + F̂ (k)Bout)V(k)] I(Nm, im + j)× (F̂ (k)Bpout) O u2

j,max

3
775 > 0.

By Schur complement, the inequality above can be rewritten as»
1 ∗
O Λ−1

2

–
−
"

S ĈqBpout + ĈquF̂ (k)Bpout + ÂqB̄p

I(Nm, im + j)× [F̂ (k)Aoutx̂(k|k) + (I + F̂ (k)Bout)V(k)] I(Nm, im + j)× (F̂ (k)Bpout)

#T

×
"

Λ−1
2 ∗
O u−2

j,max

#"
S ĈqBpout + ĈquF̂ (k)Bpout + ÂqB̄p

I(Nm, im + j)× [F̂ (k)Aoutx̂(k|k) + (I + F̂ (k)Bout)V(k)] I(Nm, im + j)× (F̂ (k)Bpout)

#
> 0.

Multiplying the inequality above by [1 PT(k)] to the left
side and its transpose to the right side, then we obtain that (us-
ing Eqs. (15) (18) (A6))

uj(k + i|k)Tu−2
j,maxuj(k + i|k) 6

1 + PT(k)Λ−1
2 P(k)− GT(k)Λ−1

2 G(k),

j = 1, 2, · · · , m, i = 0, 1, · · · , N − 1.

Combining the inequality above with condition (21), it im-
mediately results in

uT
j (k + i|k)u−2

j,maxuj(k + i|k) 6 1,

j = 1, 2, · · · , m, i = 0, 1, · · · , N − 1,

which in turn guarantees constraint (4).

Appendix D
Suppose there is a feasible solution for C2 with initial state

x̂(k|k) at time k, and γ∗(k) is the corresponding upper bound,
v∗(k|k), v∗(k + 1|k), · · · , v∗(k + N − 1|k) the correspond-
ing perturbation items on the feedback control sequence. The
LMIs in the problem depending explicitly on the current state
x̂(k) are inequalities (22)–(23). Thus, to prove the feasibility,
we only need proving that (22) and (23) are feasible for state
x̂(k + 1) at time k + 1.

To prove the feasibility at time k + 1, we construct a feasi-
ble solution γ(k + 1) = γ∗(k), v(k + i|k + 1) = v∗(k + i|k),
1 6 i 6 N − 1, v(k + N |k + 1) = 0. The feasibility of (23)
at time k implies u∗j (k + i|k) 6 uj,max, 0 6 i 6 N − 1.
Since v(k + i|k + 1) = v∗(k + i|k), 1 6 i 6 N − 1,
v(k+N |k+1) = 0, it is obvious that uj(k+i|k+1) 6 uj,max,
1 6 i 6 N , which means that the constructed solution sat-
isfies Eq.(23). We choose the terminal weighting function as
V (x̂(k + i|k)) = x̂T(k + i|k)P x̂(k + i|k) where P is defined
in Lemma 4. The feasibility of Eq.(22) at time k implies

γ∗(k) > ‖X ∗(k)‖2L̂ + ‖U∗(k)‖2R̂ + V (x̂∗(k + N |k)).

(A7)

Inequality (8) leads to inequality (6), which in turn guarantees
that

V (x̂(k + N + 1|k))− V (x̂(k + N |k)) <

−[‖x(k + N |k)‖2L̂ + ‖u(k + N |k)‖2R̂]. (A8)

Synthesizing Eqs.(A7)–(A8), it leads to

γ∗(k) > ‖X ∗(k)‖2L̂ + ‖U∗(k)‖2R̂ + V (x̂(k + N + 1|k)) +

‖x∗(k + N |k)‖2L̂ + ‖u∗(k + N |k)‖2R̂ >

‖X (k + 1)‖2L̂+‖U(k + 1)‖2R̂+V (x̂(k+N+1|k)).

Since γ(k + 1) = γ∗(k), it can be concluded

γ(k + 1) >
‖X (k + 1)‖2L̂ + ‖U(k + 1)‖2R̂ + V (x̂(k + N + 1|k)),

which means that the constructed solution satisfies Eq.(22).
Hence, the constructed solution is feasible for C2 with state
x̂(k + 1|k) at time k + 1.

At time k and time k + 1, the corresponding performance
cost can be described respectively as follows:

J∗(k) =
‚‚X ∗(k)

‚‚2L̂ +
‚‚U∗(k)

‚‚2R̂ + V (x̂∗(k + N |k)), (A9)

J̄(k + 1) = ‖X (k + 1)‖2L̂ + ‖U(k + 1)‖2R̂ +

V (x̂(k + N + 1|k)). (A10)

Synthesizing Eqs.(A8)–(A10), we obtain that J̄(k + 1) −
J∗(k) 6 −‖x∗(k|k)‖2L − ‖u∗(k|k)‖2R. Thus, it can be con-
cluded that J∗(k + 1) 6 J̄(k + 1) < J∗(k), which proves the
asymptotically stability for the closed-loop system.
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