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Abstract: This paper studies the asymptotic stability and strictly dissipative control problems for networked control sys-
tems (NCSs) with time-varying sampling periods and packet dropouts. The sampling period is time-varying and fluctuates
across the nominal period. The packet dropouts vary in a bounded interval. The NCSs are modeled as a class of discrete-
time system with parametrical uncertainties by the parameter uncertainty method. An improved Lyapunov-Krasovskii
function is constructed. On the basis of LMIs formulation and the discrete Jensen inequality, we derive some new suffi-
cient conditions for strict (Q), S, R)-dissipativity, and present the controller design methods. The numerical example shows
that the design method is less conservative and with reduced computational complexity in comparison with conventional
methods.
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1 Introduction

Networked control systems (NCSs) are feedback con-
trol systems whose feedback paths are implemented by
a real-time network. In many modern distributed con-
trol systems, remotely located sensors, actuators and con-
trollers are often connected over a shared communication
network. Compared with the control system by traditional
point to point direct link, there are several advantages for
NCSs, for example, less cost of installation, higher flex-
ibility and reliability, easy maintenance and so on!'~?).
However, communication networks are usually unreliable,
and may be subject to undesirable packet dropouts, time-
varying sampling periods and network-induced delays,
which may significantly degrade the system performance.
Therefore, the negative effects caused by communication
networks should be taken into account in designing NCSs
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to obtain desired control performance.

The interest in the stability of NCSs has grown in
recent years due to its theoretical and practical signifi-
cancel®7!. In most of the existing results concerning sta-
bility of NCSs, the sampling period is constant. In prac-
tical engineering, the actual sampling period often varies
due to dynamic bandwidth allocation and scheduling deci-
sions, this variation can degrade the control performance
and even make the systems unstable. In [8], the NCS is
modeled as a class of discrete time-delay system by the pa-
rameter uncertainty method and D-stability of the NCS is
studied. But repeated eigenvalues of the coefficient matrix
are not considered in [8].

Dissipativeness is an important concept in control the-
ory, and it has been widely applied in stability analysis for
linear systems and nonlinear systems. It extends from pas-
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sivity analysis and H, performance. The problem of dissi-
pative control has been attracting the attention of many re-
searchers!®~13!. The dissipativity analysis in discrete-time
systems is studied in [9-10]. The robust dissipative control
problem for time-delay systems is reported in [11-12]. Ro-
bust dissipative control for internet-based switching sys-
tems is studied in [13]. But there is virtually no results
on strict dissipativity for the NCSs with time-varying sam-
pling periods, which motivates the present dissipativity in-
vestigation of the NCSs.

In this paper, the asymptotical stability and strictly dis-
sipative control problems are investigated for the NCSs
with time-varying sampling periods and packet dropouts.
Sufficient conditions for strict dissipativity are derived via
the LMI formulation, and the design of strictly dissipative
controller is further given. The paper is organized as fol-
lows: In Section 2, the NCSs model with packet dropouts
and time-varying sampling periods is made, which is
equivalent to a class of discrete time-delay system with
parametrical uncertainties by mathematical transformation
and matrix theory. The strictly dissipative control problem
for the foregoing model is considered in Section 3, and
Section 4 is an illustrative example, and Section 5 gives
some conclusion remarks.

2 Problem formulation

The structure of the considered NCSs is shown in
Fig.1, where the plant is described by the following linear
system model:

{CB(t) = Alx(t) + Blu(t) + Clw(t)’ 1)

z(t) = Aqz(t) + Bau(t) + Caw(t),

where z(t) € R™ is the system state vector, u(t) € R™
is the control input vector, w(t) € RP is the disturbance
input, z(t) € R? is the controlled output, 4;, As, B,
B, C4, C5 are known constant matrices of appropriate di-
mensions, respectively. Suppose the sensor, the controller
and the actuator are clock-driven.

Actuator Plant Sensor

Controller

Fig. 1 Diagram of the NCSs with packet dropouts

Assume that T}, is the length of the kth sampling pe-
riod, tj is the latest sampling instant, T}, = tx41 — g =
T + ATy, (T is the nominal value of the sampling period),
and assume that the time-varying sampling interval is
bounded, and such that ATy, = T, —T € [ATmin, AT max)-

Suppose u(k— Ly )(Ly, > 1) is the available control in-
put at the instant ¢5, where Ly — 1 is the number of consec-
utive packet dropout, L. and L;, are the upper-bound
and lower-bound of Ly, respectively. So the discrete time
expression of the system (1) is as follows:

x(k+1) = &(Ty)x(k) + I (T )u(k — Li)+
Ly(Ti)w(k), @
2(k) = Asx(k) + Bou(k — Li) + Cow(k),

where
B(Ty) = e Tr,
T
Fl (Tk) = J;) eAltdtBl, (3)
Ty
FQ(Tk) = \[0 eAltdtCl.

Considering the matrix A; can be diagonalizable and
can be turned into Jordan standard, the NCSs (2) could be
modeled as a class of discrete time-delay system with para-
metrical uncertainties.

1) The matrix A; can be diagonalizable.

Let Ay, -+, A, be the n different eigenvalues of the
matrix A , there exists an invertible matrix A , where col-
umn vectors of A are eigenvectors corresponding to \; of
A1, such that

Ay = Adiag{\y, -, A JA7L 4)

Combining the formula (4), one gets
P(Ty) =

Adiag{eMT’“, .
n(T) =

,eM Tl A=t = Dy Fy (T} By,

T iy
Adiag{fo ' eMtde, - - ’jo * eMtdty A7 By =

D1 + D12 F5(Ty) Era,
Iy(Ty) =

T T
Adiag{jo feMitdy, .. ’jo * eMtdty A7y
Doy + Doo Fo(Ty) Eas.

(&)

Where scalars ag, - - - , a,, meet the following conditions:
@ A > 0, a; > AT ax: @ A < 0, a; < ATmina =
1,--- ,nand

Dl = Adiag{e>q (T+(ll), .. ’e)\yL(T-‘,—any)}’

Dy = Dy =
Adiag{%l@lmm% e Ainem(ﬂan)},
D10 = Adlag{—i, ety —i}A_lBl,
)\1 An
. 1 1 1
Doy = Adlag{—)\—l, e 7—/\*n}/1 Ch,

Fy(Tk) = F2(Tk) =
diag{eAl(ATk—Oél)7 e e>\n(ATk_an)}7
Ey =AY, Eio = A7'By, Ey = A71C4.
2) The matrix A; can be turned into Jordan standard.
Let \* be the 7 repeated eigenvalue of the matrix A
and the other eigenvalues be different, there exists an in-

vertible matrix A, where column vectors of A are eigen-
vectors corresponding to A; of Ay, such that

Ay = Adiag{.J;, Jo} A1, (6)
where

Jl = diag{)\17 e ;)\nfr}%
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Jo = : For = 1 ()T N T
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(T’ — 1)' -anr — e/\n,,,,(T+oc”,,.)7
_ An—r(ATy—pn—»r
Combining the formula (6), one gets Fop=e (BT )
D(Ty) = Definition 1 = The quadratic energy supply function
Adiag{e Ty o aTh } AL = Dy (T}) Ex FE associated with the system (2) is defined by
r(Ty) = E(w,2,T) = (z,Qz)r + 2(z, Sw)r + (w, Rw)r,

iy
AJO * diag{eM?, ... jer—rt 2\ qtA71B) =

D1 + D12 F5(Ty) Era,
I(Ty) =

Ty
: At
A jo diag{e™",
Do + Dao F5(Ty,) Eas.

et o2 qtAT10) =

@)
Where scalars oy, - -+, a, - and matrices My, M> meet
the following conditions: M A; > 0, o; > ATmax, i
<0, o < ATpin, @ = 1,---,n —1; @ My, My are
diagonal reversible matrices, ||M; 1Jo|| < 1, || M5 Ly
< 1, and

Dl _ Adiag{e)q(T—O—aﬂ’ . aDn—rv Ml}’
Dig = Doy =
1 = 1
/ldiag{—e)‘l(T‘Hj“)7 R Dy, Mo},
>\1 /\n—r
. 1 1 T
Dw:/ldlag{——,u- ,—7,(]2}/1 Bl,
)\1 )\nfr
Dy = Adiag{ ! LI ATC
= 1 —_—— e ———
20 g )\1 ) ) )\n_r 5 2 1,
F(T},) = diag{eM AT .. p 0 MLy,
Fy(Ty,) = diag{eMATe=e0) .. B My Y)Y,

Ey=A"" Eip=A"'By, Epp = A7'Cy,
r N T 0 0
Tke)\*Tk e)\*Tk e 0

1«
Jor e Ja je/\ B

®
where @, S, R are real matrices of appropriate dimensions
with @, R symmetric.
Definition 2['3-151  The system (2) with energy sup-
ply E is said to be (Q, S, R)—dissipative, if for any 7' > 0
and some real functionn(-) with n(0) = 0,

E(w,z,T) + n(z) = 0.

Furthermore, if for any scalar o > 0,
E(U},Z,T) +77($0) 2 Oé(U),w>T7 (9)

the system (2) is said to be strictly (Q, S, R)—dissipative.

Remark 1 The above performance of strict (@Q, S,
R)—dissipativity includes Hoo performance and passivity as
special cases:

1) When@Q = -1, S=0and R = 721, (9) reduces to a
Hoo norm constraint!'¢171,

2) When Q =0, S =1 and R = 0, (9) reduces to a strict

passive problem!'®1%!,

Without loss of generality, we make the following as-
sumption.
Assumption1 1) Q<0;2) R+CyS+STCy+
CFQC, > 0.
A static controller is considered here with the form
u(k) = Kx(k), (10)
where K is the controller gain to be determined. Substitut-
ing the formula (10) into (2) and combining (5)—(7), we
can obtain the following closed-loop system:
{x(k +1) = Ayz(k) + Bix(k — Ly,) + Crw(k),
2(k) = Asx(k) + Box(k — Lg) + Cow(k),
1D
where
Ay =Dy F\(T})Er,
By=(D1o+D12F(Ty) E12) K,
C1 = Dag + Doz Fo(Ty) Ez2, By = B3 K.

The following lemmas will be used in this paper.

Lemma 1% For any positive semi-definite sym-
metric matrix W € R™*"_ if the two positive integers r
and r satisfy > ro > 1, the following inequality holds:

T

(3 2()TW( Y (i) <

(r—ro+1) Y 2T (@) Wa(i)
i:To
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Lemma 22U Let ¥}, Xy, ¥, Y with X =XT> 0
be real constant matrices with appropriate dimensions and
A(k) be areal matrix function satisfying AT (k)A(k) < I,
then for any scalar p > 0, the following matrix inequality
holds:

(55 + 1 AK) 52) 57 (D5 + S1A(k) D)L <
pIDIET 4 pZs(E - pXy Xo) T E5

Lemma 3> For any matrices U € R™ " and
V € R™*"_if the matrix V satisfies V' > 0, then we have

viisu+UT-UTVU.

The purpose of this paper is to design a state-feedback sta-
bilizing controller (10) such that the resulting closed-loop
system (11) is asymptotically stable and strictly (Q, S, R)-
dissipative. Then, the strictly dissipative control problem
for the NCSs addressed in this paper is expressed as fol-
lows.

3 Main results

Theorem 1  For given scalars Loy > 0, Lyin >
0 and matrices @, S, R with @), R symmetric, the sys-
tem (11) is asymptotically stable and strictly (@, .S, R)—
dissipative, if there exist symmetric positive-definite matri-
ces P,W,Q1,Q2, Z1, Zs, Zs satistying the following ma-
trix inequality

Ay Ay
[A;F /13] <0, (12)
where
A =
A11 0 Zl Z2 —AQTS (Q%AQ)T
* Ayy Z3 Zs —BFS (Q2 By)T
* * /133 0 0 0
* *x ok A44 0 0 ’
x ox ox ox Ass (Q2C)T
I S S * -1

Ay =P+ (L+1D)W+ Q1+ Qy— Z1 — Zs,
Nog = —W — 273,

Agz = —Q1 — Zy — Z3,

Ay = —Qo — Zy — Z3,

z:Lmax_Lrninv
Ass = —CFS — STCy — (R — o),
AT =
A Bi 00 ¢ 0

Luin(A1 = 1) LininB1 0 0 LyinCy 0
L(A,-I) LB, 00 LG 0|’

Lmax(Al _I) LmaxBl 00 Lmaxcl 0

Az = diag{—P~ ', —Z;', ~Z;', —-Z; 1)

13)

Proof Construct the following Lyapunov-Krasovskii
function:

Vik) =
Vi(k) + Va(k) + V3(k) + Va(k) + Vs(k),
Vi(k) = 2" (k) Pa(k),

Bk = S TOWe(),
l=k—L;
k= S 0@+
l=k—Lmin
~ f,UT X
LS 00 e
— L min k—1
i = S St Gwa(),

l=—Lmax+1 j=k+l

—1 k—1
l=—Lmin Jj=k+I

Limax i kf y () Z2y(5)+

I="Lomax j=htl
_ —Lmin—1 k-1 T )

L > >y (1) 23y (),
I==Lmax j=k+l

where y(j) = z(j + 1) — z(j). So

AV, (k) =
(Ayz(k)+ Brz(k— L) +Crw(k)) " P(A x(k)+
Biz(k — Li) + Crw(k)) — 2T (k) Pz (k), (15)
AV (k) =
e (k)Wax(k) — 2 (k—Lp)Wa(k — L)+
S mowa- S STOWa)+
I=k4+1—Lmin I=k+1—Ly
k—Lmin
2 T(OWa(l), (16)
I=k+1—Lp41
AVs(k) =

T (k)Qux(k) — 2 (k — Liin)Q12(k — Linin) +
JZT(k‘)Q2aj(kj) - xT(k - Lmax)Q2x(k - Lmax)a
o))
AVy(k) =
. k—Lmin
La™ (B)YWxz(k) — 2T (OWa(l), (18)
l=k+1—Lmax
AVs(k) =
k—1
L2y (k) Z1y(k) — Linin l_k% yT (D) Zyy(l) +
k—1
L2 oy (k) Z2y(k) — Liax HEL y (1) Zay(l) +
N _k—Lmin—1 o
L*y" (k) Zsy(k) — L L y (1) Zsy(l). (19)

To notice that Ly, > Lyin, Lrg+1 < Lmax, SO

AV (k) <

et (kYWa(k) — 2" (k — Li)Wa(k — L) +
E T W), (20)

l=k+1—Lmax

Using Lemma 1, we have that



—(x(k — Li) = 2(k — Lmax))" Z3(a(k —

L) = (= L)) — 2k — Lunin) —(k —

L)Y Zs(x(k — Linin) — x(k — Ly)). (23)
Combining (15)—(23), we have that when w(k) = 0,
AV (k) <

2Tk + 1) Px(k+ 1) + 2T (k) (L + D)W +
Q1+Q2—P)a(k)—z" (k—Li)Wa(k—Ly)+
(2(k +1) = 2(k)" (LiinZ1 + Liax Z2 +
12Z3)(x(k + 1) — 2(k)) — 27 (k — Lynin) -
Q12 (k—Linin) — 2" (k— Linax) Q2 (k— Linay) —
(z(k)—2(k— Lmin )TZl(x(k) z(k—Lmin)) —
(@(k) =2 (k= Lmax)) " Zo(2(k) —x(k— Lmax))_
(z(k — L) — 2(k — Limax))" Zs(x(k — Lg) —
2(k — Liax)) = (@(k — Luin) — x(k — Lg)) " -
Z3(x(k — Lmin) — x(k — Ly)) = gT(k)qv)lg(k%

where

24)
z(k) 1 P Z1 2o
_| x(k— Ly) i | ox Dhy Z3 Z3
§(k)= x(k — Luin) |’ P = x  x Dby 0 |’
2(k — Linax) x ok kD,

Py = ATPA — P+ (L+ )W+ Q1+ Q2 —
Zy—Zy+ (A — )T (L2 21+ L2 2o+
L%Z3) (A, — 1),

Dy = (A = D (LinZ1 + LiaxZa +
L*Z3)B, + AT PBy,
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k-1 ! _ pT(r2 2 5
Lin Z yT(l)Zly(l) < gp22 - ‘? (Lman1 + LmaxZQ + L Z3)Bl +
{=k—Lmin Bl PBl - W — 2237
k=1 k—1 ;o ;o
(X w2 y() = Pz = —CQ1— 21— Z3, Puy = Q2 — 2o — Zs.
I=k—Lmin l=k—Lmin .
~(a(k) — 2k — Lmin))Tzl (x(k) — thatBy Schur complement and (24), if (12) holds, we have
z(k = Lmin)), 2D
K1 AV (k) < =Amin (—9)ET (k)€ (k) <
“lmax 2 y" (1) Z2y(l) < —aT(k)e(k) < —azT (k)z(k), (25)
k_l_ o k1 where o = inf{A\,in(—®’)}. This proves that the system
(> g2 X y() = (11) is asymptotically stable for Ly < Li < Lpax.
1=k Lmax l:;f_Lm""‘ Combining (12) and (24), one gets
~(@(k) = a(k = Linax)) " Za(a(k) - AV (k) — 2T (k)Qz(k) — 22" (k) Sw(k) —
x(k;fmax)l)v (22) ’LUT(k‘)(R—OéI)w(k‘) <
—il 2 vz = [€7(k) w (k)] &' [€7(k) w™(k)]" <0,
L kL=l (26)
_Ll k% y (1) Z3y(l) — where
k—Lpyin—1 Giyll 5112 Z1 Z2 é/15
L yT(l)Z3y(l) < * 43122 3 L3 43/25
I=k—Ly - -
P = % * s 00 |,
k—Lyi—1 T k=Lx—1 %
—(imk L v 23 2 () - ook ok Py 0
I=k—Lmax x ok % x DL
k—Lmin—1 k—Lumin—1 -, o -
(> y0)"Zs( y(l)) = Py = Ay PAL =P+ (L+1)W+ Q1+ Q2 —
I=k—L I=k—Lj

Zl - Z2 + (A’Zil - ) (ernlnzl + ernaxZ2 +
L?Z3)(A; — 1) — A3 QAs,
QSQ = (Al - ) (Lfmnzl + Li}ax
A;PPBI A Q327
43/15 = (Al - ) (Lfmnzl + L?nax
ATPCy — Ay QCy — A3'S,
5/22 = Bl (L?nmzl + LIZIlaXZ2 + IN’2Z3)Bl +

BYPB, - W —22; — BYQB,,

Zo+ L?Z3)By +

Zy + Zng)C’l +

43/25 = BT (L} 70 + L2 2o+ I[273)Cy +
BlTPC1 — BYQC, — BY S,
by =—Q1— Z1 — Z3, Dy = —Qo — Zo — Zs,
L. =CT(P+ Lfanl + L2, Zo+ L?Z3)Cy —

CIQCy, — CyS —STCy, — (R — al).

Taking (26) the sum from 0 to T', since V (z(T+1)) >
0, we have that

E(w,z,T) =
(z,Qz)1r + 2(z, Sw)r + (w, Rw)p >

alw, w)r + i:o[V(k +1)-V(k)] =

alw,wyr + V(T +1) =V (0) >
a{w,w)r — V(0).

Therefore, from the Definition 2, we can get the sys-
tem (11) is strictly (Q, .S, R)—dissipative. This completes
the proof.

Remark 2  In this paper, it is in contrast with [13] for
an improved Lyapunov-Krasovskii functional, the added term
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. —Lmin—1 k=1

L X Sy (j)Z3y(j) of the Lyapunov-Krasovskii
== Lunax j=k+

functional in this paper can reduce conservative. Another dif-

ferent method to deal with the cross term problem by using
the discrete Jensen inequality, neither system transformation
nor free-weighting matrix is required, which decreases calcula-
tional amount.

Theorem 2  For given scalars L. > 0, Ly >
0, p > 0 and matrices @, S, R with (), R symmetric,
the system (11) is asymptotically stable and strictly
(@, S, R)—dissipative, if there exist symmetric positive-
definite matrices X, W, Qh Qg, Zl, ZQ, 23 and matrixY
satisfying the following LMI:
Ay p X3 X1 0
*x A 0 pXy
* x —pl 0
* * * —pl

<0, (27)

An 0 Z1 Zy —(AsX)TS (Q2 Ay X)T
Aoy ?3 Zz —(BY)TS (Q2ZB.Y)T

*

* * A33 ~O 0 0

* * * /144 0 0 ’
- 1

x ok %k Ass (Q2Cy)T

*  x  x % * —I

Ay ==X+ (L+DW+Q1+Qs— 7y — Zs,
Ay = —W — 273, As3 = —Q1 — Z1 — Zs,
Asg = —Qo — Zy — Z3, L = Lynax — Linin,
Ass = —C3S — STCy — (R — al),
Ay = diag{—X, - X — X" 4+ Z,,

— X XY+ 2y, - X - X"+ Z3},

o [BX 0o 00 0o 0]
Si=| 0 Exy 00 0 of ,
0 0 00 Ex O
D1T LrninDlT [N/DlT LInaxD;F

E;F: DYy LuminDiy éD?Q LinaxDis |
D;FQ LminD;rQ LD2TQ LmaxD;rQ

Ly =
0 DY 00 D3 0
—Luin X Lmin(D10Y) 0 0 Lyyin Dao 0
—LX  L(DyY) 00 LDy 0

_LmaxX Lmax(Dloy) 00 Lmax-D20 0

(28)
Furthermore, the desired controller gain is given by K =
yx-1.

Proof Replacing A;, C; and B, in (12) with
D\Fy(Ty)E1, (D10 + Di1oFs(Ty)E12)K, Doy + Do
F5(Ty)E9e and By K, respectively, we find that (12) is
equivalent to the following inequality:

(Z3+ 21 A(Tr) Z2) (= A3) (D3 + 21 A(Ty) Z2) T+
A <0, (29)

where T
_El 0 00 0 O
=|0 E,KO00 0 0f ,
(0 0 00 Ex 0
0 — Lyin —LI  —Lpaxl
(D1oK)T Xy P Y3
0 0 0 0
>3 = 0 0 0 0 ’
D3y LuminD3 LD3y LiaxDag
0 0 0 0

31 = Limin(D10K)", Z32 = L(D1K)",

233 - Lrnax(DloK)T7

A(Ty) = diag{F\' (Ty.), F5 (Ti), Fy (Tx)}-

Since FI(T})Fy(Ty) < I, FY(TW)Fa(Ty) < I, we
have AT(Ty)A(Ty) < I. For any scalar p > 0, using

Lemma 2 and Schur complement, if the following inequal-
ity is feasible, (29) is also feasible.

A+ p ' 2 T 4 pEs(—Ag — pE3 55) 12T < 0.
(30)

Using Schur complement again, if the following in-
equality holds, the inequality (30) holds.
/11 \/ﬁ 23 21 0

x A 0 X3l _y 31)

Let

T = dia’g{T17T27T37T2}7

T, = diag{X7X7XaX7[7[}a

Ty = diag{l,I,1,I}, T3 = diag{I,I,1,I,1,I}.
Pre- and post- multiply (31) by 7T and T, and define

Pl=X, X"WX =W, XTQ1X = @1,

XTQoX = Qo, X' 21X = 21, X" 22X = I,

XT7Z:X =75, KX =,

we can obtain

/Il \/Z) ~3 21 OT

* /13 0 pZQ

. N ol 0 <0. (32)
* * * —pl

By Lemma 3, we can get
~Z7P <X - X"+ X2 X,
—Z7' < X - X"+ XTZ,X, (33)
~Z7P < X - X"+ XTZ,X.
According to the inequalities (33), if (27) is feasible,
(32) is also feasible. The proof is completed.
In order to illustrate the generality of our analysis and
synthesis approach, we offer the following results.
Corollary 1  For given scalars Lo >0, Ly >
0, p > 0, the system (11) is asymptotically stable with
disturbance attenuation, if there exist symmetric positive-

definite matrices X, W, Q1, Q2, Z1, Z2, Z3 and matrix sat-
isfying the following LMI:
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A pEy 5 0 B [ 29.7498 —0.2673
*x  As 0 pZ3| _ g 34) Dio=Da2=1 104183 —0.2726 "
* ox —pl 0 , ’ Fi(Ty,) = Fo(Ty,) = diag{eM (ATk=01) | gra(ATi—az)y
* * * —p
where where Ay = 0.0322, Ay = —1.5022, a; = 0.08, ap =
N _ —0.03, then Fy(T}), Fo(T}) satisfy FL(Tp)Fy(T}) <
T 1
An 020 2, 00 (AX) I, FY(Ty)Fs(Ty) < 1.
* Az ?3 Z3 0 (B2Y) For simplicity, suppose Lyax = 3, Lymin = 1. Ap-
A= * * Azz 0 0 0 plying Theorem 2, we obtain the stabilizing networked
ook ox Ay 0 0 controller gain K = [—0.0309 —0.0059]. To simulate,
x x % * —~2I CF -y T
2 we take the initial state as x(0) = [1 — 1]7, the system
* ok Xk * -1

(35)
Furthermore, the desired controller gain is given by K =
YyX—L
Corollary 2  For given scalars Lyax > 0, Lpin >
0, p > 0, the system (11) is asymptotically stable and
strictly positive, if there exist symmetric positive-definite
matrices X, W, Q1,Q2, Z1, Z2, Z3 and matrix Y satisfy-
ing the following LMI:
A vifs 5 0
* As 0 pxF

36
* * —pl 0 <0, (36)
* * * —pl
where
A 0 72y Zy —(AX)T 0
* /122 ~Z3 Z3 - (BQY)T 0
A= * * Azz 0 0 0
1 = ~
* * *x A 0 0
x x x x —CF—-Cy 0
* * * * * -1
(37)

Furthermore, the desired controller gain is given by K =
Yyx-—t.

Remark 3  According to Theorem 2, Corollary 1 can
be deduced by setting Q = —I, S = 0, (R — al) = 7?1
Corollary 2 can be deduced by setting @ = 0, S = I, (R —
al)=0.
4 Numerical example

Considering an unstable system as follows

. ~0.36 —1.12
&(t) = [—0.40 1.11%(”+

0.41 1.31
[—1.22] u() + [0.62} w®), G
z(t) = [-0.31 —0.02]z(t)—
0.68u(t) 4 0.32w(t).
Suppose T = 0.4s, ATpa = 0.06s, ATpin =
—0.02 s, we discretize the system (38) and can obtain

0.7887 —0.7734] . [ 1.2669
0.3651 1.0425|> 727 | —1.1222]"

0.5537] [ 0.9585 0.4016}
’ Dl = )

|

1.1246 —0.3357 0.4096

~37.6343]  _ [-15.6963
12.4628 | " 720 6.2149 |’

E22={

DloZ{

state response and controlled output with above parame-
ters can be seen in Fig.2.

xl’ xz: <

-1.0 1

1 1 1 1
0 50 100 150 200 250 300

t/s

Fig. 2 State response and controlled output of the NCSs

5 Conclusions

The asymptotic stability and strictly dissipative con-
trol problems for the NCSs with packet dropouts and time-
varying sampling periods have been discussed in this pa-
per. The time-varying sampling period fluctuates across
the nominal period. The number of packet dropouts is as-
sumed to have both an upper-bound and a lower-bound. An
improved Lyapunov-Krasovskii functional has been con-
structed. The discrete Jensen inequality is used to deal with
the cross term. Based on the LMIs formulation, some new
sufficient conditions for strict (Q, S, R)-dissipativity have
been derived, and the controller design methods have been
presented. A numerical example has illustrated the effec-
tiveness of the proposed approach.
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