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Optimal aggregation of switched linear systems

ZHU Geng', SUN Zhen-dong

(College of Automation Science and Technology, South China University of Technology, Guangzhou Guangdong 510640, China)

Abstract: This paper investigates the stability and optimization problems for switched linear systems. An optimal
conjugate gradient algorithm with Armijo steps is presented to search the optimal time instants under proper cost functions.
To ensure that the optimal switching paths are contractive, a constrained expression of those cost functions is established.
Some optimal pathwise state-feedback switching laws are designed to search the optimal switching paths of aggregated
systems. The switching paths are sub-optimal switching paths of the original switched linear systems. Finally, an example
is provided to demonstrate the switching strategies and optimal costs under different switching laws.
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1 Introduction

A switched linear system has some subsystems and a
rule that orchestrates the switching between them. Design-
ing a switching law to make the switched linear system
asymptotically stable is an important problem!!!. Some
necessary and sufficient conditions for asymptotic stabil-
ity of switched linear systems were described in [2-4]. A
computation method of Lyapunov function can be found
in [5]. A converse Lyapunov theorem was presented in [6].

Optimal switching is another direction. An optimal
switching law not only stabilizes the switched linear sys-
tem but also minimizes the cost functions. Some discrete-
time switched linear systems have been studied, such as
the discrete-time linear quadratic regulation problem for
switched linear systems based on dynamic programming
approach!”-%!. For the continuous-time switched linear sys-
tem, an optimal method based on the differentiation of
the cost function has been surveyed in [10-11]. However,
the method encounters computational difficulties when the
number of switches grows.

The maximum principle and Hamiltonian condition
were often used for optimization of hybrid systems and
switched systems!'?l. A feedback switching law was de-
signed to optimize the rate of convergence of switched
systems!'?]. We have designed a pathwise state-feedback
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switching law to stabilize the switched linear system with-
out optimization!!'*!. When the switching sequence is pre-
assigned or has a finite length, corresponding methods of
minimizing a performance index over an infinite time hori-
zon were mentioned in [15-16]. However, the number of
switches is still large, so the computation is a heavy bur-
den.

In this work, optimal switching time instants of con-
tractive switching path and cost gradient expression are
analyzed. An optimal conjugate gradient searching algo-
rithm with Armijo steps is presented over finite time in-
tervals. Some optimal pathwise state-feedback switching
laws based on the switched Lyapunov function derived
from Riccati mapping approach are designed to minimize
the cost of the aggregated system, and they are sub-optiaml
paths of the original switched linear system. Finally, an ex-
ample demonstrates a non-optimal and some sub-optimal
switching processes.

2 Pathwise state-feedback switching and ag-
gregation
An expression of the continuous-time switched linear

system is given by:

#(t) = Asryz(t), z(to) = o, (D
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where z(t) is the continuous state, x¢ is the initial state,
o(t) € M = {1,--- ,m} is the switching law and A,
--, A,, are real constant matrices.

When switched linear system (1) is not consistently
stabilizable, there is not a single switching path that can
make the total state space R™ contractive. However, it is
still possible that a switching path makes a subset of state
space contractive.

Definition 1 A switching path 6 : [0,5) — M is
contractive on a subset of state space (2 if it is well-defined
and ||¢(s;0,z,0)|| < ||z||, Yz € 2, where ¢(¢; 0, z,0) is
the state of linear switched system (1) under switching law
6 with initial state z, and || - || is a given norm.

There exist a natural number k£ and a real number
€ (0, 1), such that

6 (si30,2,0:)[] < pllz|,

k

EQZ':R”, VJTEQ“ fori:ly"' akv
=1

then the following switching law asymptotically stabilizes
switched linear system (1).

i; = arg{z; € 12},
tiv1 =1j + sij,

aw(t):@j(t—tj), YVt € [tj,tj_H),
iCjJrl = ¢(8ij;07$j,9i].), ] = 0,1727 ey

ie{l,2,--- ,k},
@

where 6; : [0,s;) — M is well-defined and contractive
on {2;. Switching law o, (t) in (2) is called a pathwise

k
state-feedback switching law, denoted by A 9-9’5, which
=1

is the concatenation of switching paths {6;}%_, through
state-space partitions {{2; }¥_,. Note also that each switch-
ing path 6; corresponds to a state transition matrix G; with
the property that

QZS(S“ Oa x, 61)

The switching mechanism in (2) is mixed time-driven
and state-feedback, and the above pathwise state-feedback
switching law is universal and well-defined.

= Gz, for Vx € §2;.

Lemma 1'% Switching law /\ 65 asymptotically

stabilizes switched linear system (1) if and only if the
discrete-time linear system

z(t+1) = Giz(t), z(t) € 2, i=1,2,--- k. (3)
is asymptotically stable.

For clarity, we term discrete-time switched linear sys-
tem (3) as the aggregated system of switched linear system
(1) w.r.t. {Gi, Qz}le

Lemma 24 Suppose that V is a continuous and
positive definite function defined on R, and 6, are switch-
ing paths defined over [0,s;) for ¢« = 1,---,k. Then,
switched linear system (1) is asymptotically stabilizable if

k

Hl_l{l V(é(s4;0,2,60;)) <V(z), Ve e R*,z #0. (4)

Condition (4) implies that aggregated system (3) is

asymptotically stable, so switched linear system (1) is also
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asymptotically stabilizable. In this case, Let
Oy ={a : V(@(s1:%) =minV (6(s:: )},
0=z V(ols; ) =minV (6(si)}—  (5)
jL_Jllfzz, j=2 .k,

where V(é(s;;%) = V(é(s4;0,2,6;)). Using Lemma 2,
we design switching paths 6; firstly, and then obtain state-
space partitions §2; by (5), instead of designing both of
them at the same time.
3 Optimal contractive paths over finite time

intervals

For simplicity, let the switching time instants series of
01‘ be

m1(0:;) = {to =0,t1,- -

and fixed switching index series be

S tier = 85}

7T2( ) - {QO7QI,"'aQI}7fOTQi € M.

Define a cost function over [0, s;) with x € {2; by
J(2,0;) = glw(s) + [ 2" (OQu(0)AL, (6)

where g(z(s;)) = 2T (s;)Kx(s;), Q; and K are positive
definite matrices.
If there exists a path 65, or 67 in short and

J(x,07) = eeg[lof‘.)J(x’e)’ x € (2, @)

where m5(69) = m2(0) = m2(6;) and S is an admissible
switching path set, then 69 is an optimal path over [0, s;)
on {2; and depends on initial state x.

To minimize J, the gradient method is used. For this,
we define some auxiliary functions by p;(t) : [t;, ti+1) as

dpét(t) = —2Qqx(t) — AqT;pi(t)’ pi(tis1) =0, (8)

p(t) = pi(t) + B (tir, t)p(tisa), p(si) =0, ()
where @; is the transition matrix of subsystem & = Ay x
over [t;, tiy1).

Theorem 1 If 6; is a contractive switching path
through (2; with 71 (0;) = {0,¢1, -+ ,t;,ti41 = s;} and
m2(6;) = {qo,q1, - ,q}, then the gradient of J(x0, 0;) is

WO _ 410 O )
dt dty dt; dt;
1= ]-a o ala
where t = [t; --- #;]7, initial state 2y € §2; and
dJ(t)
d¢; = xT(t’i)(qul - qu)x(tl) + (pT(ti) +

2xT(si)K@l(si, t) -
(Aq-i—l

Proof We decompose the expression of J in (6) as

+ L Li(z)dt

Let x(t) + Ax(t) be the trajectory at switching time
t; + At; and t = [tl, sty t + Ati,ti+17tl]. When

Pi(tig1,ti)) -
_ A)a(t). (10)

J(t) = g(x(s:)) + jot Lo(z)dt + - - -
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t < t;, x(t) is independent of ¢; and Ax(t) = 0. The

gradient of J at ¢; is

WD x| odals) |
dt, =2z (s5;)K dt, + 2 (4:)(Qg_y — Q) X
tiv1  OL;(z) dx
x(t¢)+J;+N o dTidH'”Jr
si OLy(z) da
I T an
When ¢ € [t;,t;4+1) andi € {1,--- 1}, we have
dz(t
0 1) Ay~ Ayt ()
Let
dJ;  (tirr OLs(x(t))
dt, —Li Tél(t’tl)(AQi—l —Ag,)x(t;)dt.
(13)

We define some auxiliary functions by

o, (e OLi(x(t)) o L
b; (tl) L1 Ti)z(tvtl)dtv pz(terl) = 0.

Its derivative at t; is

pi(ti)= _w_ﬁmw@(t’ t;)dt=
—2z7 ( )Qz Di ( Z)Aqr (14)

From the expression of equations (8) and (14), we know

pi(t;) = pi(t;). Rearranging equation (13), we have
dJ;
d+: = p;'r(ti)(A(hfl - Aql)x(tl) 15)
Using the differential chain rule and (12), we get
dx(s;
d(tv ) =By(si,tr) -+ Di(tigr, ti) (Ag,_, —Ag, )a(ti),
(16)
A, _ v OL(a(t) 02(0) | On(lin) y _
dti B t; Ox 81’(t]) 8.%(@) N
p; ()P 1(tj,tj-1) -+ Bi(tira, ti) X
(Afh—l - Afh)z(ti)7 (17)
where j = i+1,--- ,[. Putting (13), (16) and (17) into (11)

and using (9), we obtain (10). This proof is completed.

To search the optimal switching time instants of 67, we
present an optimal conjugate gradient algorithm based on
Armijo steps as follows:

Step1  Set

j=L )=t - u]t =t )"

and error € > 0. The initial state is xo and p(s;) = 0.
Step 2 Compute zJ (-) and p?(-) fori = 0,--- 1.
Using Theorem 1, we can get gradient VJ(7(j)). If

[[VJ(7(5))|| < € then 7(j) is an optimal time instants
vector and stop, otherwise go to the next step.

Step3 Setr(j+1)=7(j) + a;d;, where
_VJ(T(j))v ) ) Ji=1
L S 2/ ) LR

IVJ(r(G = D)IIP
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and 1, j are positive integers, then o = v'. Let (5 +
1) = [T -~ 7T and j = j + 1, then go back to

Step 2. When j = L and ||VJ(7(L))|| < e, the optimal
switching time instants vector is t° = 7(L), then stop.

A question is that above optimal path 69 might not be
contractive. To ensure that ¢ is contractive, we need to
find out the relationship between K and Q;.

Theorem 2  If 6; through (2; is a contractive path,

then optimal path 67 derived from (7) is also contractive on
(2; when

AHQ)(IAIT — 1)

(o) + A=) <
_ AT(Q)(1 — eI =)
AT (K) + , (18)
2|| A+
where AT (K) and A~ (K) are maximal and minimal eigen-

values of K, A*(Q) and A\~ (Q) are maximal and minimal
eigenvalues of {Q1,- -+, Qx}, and

AN = max{[|Ao[l, -~ , [ Am][}.

Proof ForVt € [0, s;), the state z(¢) under arbitrary
switching path 67 with w2 (0) = m3(6;) satisfies

<z <
2" (si)ll, (19)
We get the

e AT (=0 1% (5,)]|

(g —
NIAIF (si—t)

where x*(s;) is the terminal state under 6.
following equations from (19) as

Jy Ot < 2@ [ el <
A*(Q)IIx*(si)||2L‘” Q2IAIF (5:-0) gy —

Q) — 1)
2] AT+

j " 2T () Qo () dt

ll2* (s3)]]?, (20)

>A7(Q) [ lle(]at >

Q)l|z* (s:)]]2 f e 2MAIT (si=t) g4 —
A= (O)(1 — e=2lIAl*s,

From initial state z, the optimal path 6 has terminal state
x°(s;) and the relationship expression is

a®(si) T Ka®( +f Qoo (t)dt <
o (si) K (s; +j (£)Qe,x(t)dt (22)
Using (20) and (21), we have
x°(s;) TKx +I 901 t)dt >

(@)1 - e—QHA"*‘ )

(A7 (K) + 2||A|\+ 2 (s)ll%, 23)
(s Ka(ss) + [T (O)Qu(t)at
+(O) (214l s _
o)+ D ”mx(s»n? <
+(O) (2l si _
o) + 2 DE =R e
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Putting (23) and (24) into (22), we obtain (eAm—1li1. .. gAaht)T joh? eAqT,thl edatdt x
A~ 1 — 24l o o
(A + (Q)(2|Ae||+ Dlae(solP < (et e, 28)
)\Jr(Q)(e?IIAHJrSi ) where h§ =15, — 1t forj =0,---,l. Then
2N (E) + )zl =
8 2AAT* ' ey =
When condition (18) holds, ||z°(s;)|| < ||z|| and 65 is a QE}gnf {az" (si)z(s; +f (t)Qo, x(t)dt}.
contractive path. This proof is completed. 10e2) ) ]
Corollary 1 Suppose that K = al. Then all cor- The optimal cost function of (27) is defined by
responding optimal paths 07 of §; for i = 1,--- ,k are J(, 0% 10, 1) =
contractive if
inf Z L(¢(t;0,2,0),0). (29)
o AT 1) A (Q)(1—e 21T 7€S{0.%) i=0
2(1 = p)l|All* To approach the optimal cost in (29), we define a k-
(25) step cost function by

where s = max{sy, -, Sk}

4 Optimization of the aggregated system

If z,y € {2 and x # y, then 67, = 07 might not
be true. But for any € > 0, there exist § > 0 and a neigh-
borhood of x denoted by N (x, d) such that

1 (2, 07,) — T, 03.)|] < €, Vy € N(z, ).

)
Under an admissible error € of .J, using 65, as an optimal
path is reasonable for any y € N(z, d). It follows from the
Finite Covering Theorem that there exist a natural number
k; and state x1,--- , 2k, on §2; with unit norm such that

ki
U N(xjv 5)

j=

We define 27 by AN (z;,6) with A 7 0. There exists
optimal paths 90 on (2p C 2 forj = 1,--- k. Jis
radially invariant in the sense 07, = 07\, with property
J()\x 02) = N2J(z,609), \ # 0 Then we have k° =

Zk‘ knumbersof@?onR”forj:1,-~-7k°.

= H; N §2;, where H; is the unit sphere.

Using all those optimal paths 6, we have an aggre-
gated system given by

z(t+1) = Ga(t), Va(t) € 27, (26)
where j € M = {1,--+ ,k°}, Ji € {1, Kk}, 29 C
and Gg? is the state transition matrix of 03?.

Since all optimal switching paths ¢7 are contractive,
aggregated system (26) is asymptotically stable under a

k
pathwise state-feedback switching law A\ (9;’)91‘ defined

j=1
by (2).
For aggregated system (26), we define an infinite hori-
zon cost function by

) = [T (OQu(dt + X T, @D)
j=1

J($,07T1,"' 0

where
T
Ty = ax” (7;)x(7;),
O=71 <71 <+ <Tp="Tpy1 = +00,
and x is the initial state.
To design a switching law to achieve the minimal cost
of (27), we set the ith running cost L(z,i) = 2TQ¢x and

hO
Q2 = a(G9)T GO + fo ? el Qg edntdt + - +

Vi(z)=__inf ZL( (t;0,2,0),0(t)),

0ES|g h_1) t=

where £ is a natural number. We define a mapping

Zi(P) = Q3 + (G9)T PGy,
where ()¢ is given by (28) and P is a positive definite ma-
trix. The switched Riccati mapping is defined by

Z(Y):{Z’L(P])a Z:17 akoaj:17"' ,T},

where Y = {Py,---, P, }. Let a sequence of matrices be
Zo ={0nxn}, 21 ={Q7}, Z; = Z(Z;j-),
where j = 2,--- and 7 € M.
Then we have
Vfc(x):min{xTPz :PeZ}, k=1,2,---.  (30)

There exists a natural number K such that Vi (x) shown
in (30) is a switched Lyapunov function of aggregated sys-

tem (26) when k& > KB, In this case, let Vi 1(z) be a

switched Lyapunov function, we let the state-space parti-
tions defined by (5) be

020 ={x: min T@Qs +

o\T o) _
e (G?) PGY)x =

i—1
min xT(Qg +(G9)TPGY)x} — 3 12,
JEM,PEZ; =0

i=1,---,k° (31)
where Qg =d.
We des1gn a pathw1se state-feedback switching law

called by /\ (90) 7 as

ij = arg{z; € 20}, j=0,1,---,
Tj+1 = Tj + Si;s
oy(t) =07 (t -

Lj+1 = d’(slﬂo xj’ i )

i), Vt € [15, Tjt1), (32)

o
G? ;.

It is clear that switching law ¢ (¢) is an optimal switching
path of aggregated system (26) under cost function (27)
with initial state x.

Theorem 3  State-feedback switching law o(t)
given by (32) can asymptotically stabilize switched lin-
ear system (1) with initial state z, and it is a sub-optimal
switching path of switched linear system (1).
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Proof For Vt € [7j,7;41), we have

(80,2, o3, (D] < 7°[|x(5)]],

where s = IlIéEJiv)[({Sl} and n = IZIé%}({HALH}

IK, Vi(z) shown in (30) is a switched Lyapunov
function of aggregated system (26) when k > K. State-
feedback switching law ¢ (¢) can asymptotically stabilize
aggregated system (26) and then lim ||z(j)|] = 0. We
have ’

Jim 16(t:0, 2, 07(1))]| = 0,
so o (t) can asymptotically stabilize switched linear sys-
tem (1). As o(t) is an optimal switching path of aggre-
gated system (26), it is a sub-optimal switching path of
switched linear system (1). This proof is completed.

Note that k£° is bigger and the running time is longer if
€ is smaller. To quickly compute a sub-optimal switching
path of the switched system (1), we design a switching law
based on switching law (2) by

ij = arg{z; € Qi}, i1el, -k,
Tj+1 = Tj + Sij, 7=0,1,---,
05 (t) = 07, (¢ = 75), Vit € [1,7j11),
Tjp1 = ¢(s4;30,25,607),

where (2; shown in (30) is an optimal partition of aggre-
gated system (3), éfj is an optimal path of ;, under cost
function (7) and computed by above optimal conjugate gra-
dient algorithm directly at each step.

As 90 is contractive when a is denoted by (25),
switching Taw (33) asymptotically stabilizes switched lin-
ear system (1) and the switching cost is smaller than that
cost under non-optimal contractive path.

5 Example

Consider a continuous-time switched linear system
z(t) = A;x(t), i = 1,2 with two subsystems. Its coef-
ficient matrices are respectively:

(33)

[—0.8077 0.5385  2.2692 ]
Ay = | —3.0000 —2.1923 —0.0769 | ,

| 02308 2.1538 0.6154 |

[ 0.3846 —0.1923 —1.0769]
Ay = | 1.8462 —1.9231 0.4231

| —0.3846 —2.5385 —0.8077 |

Suppose that the sampling period is 7 = 0.2s, contractive
ratio is 1 = 0.94, initial state is * = [-4 2 — 3]T, and
switching cost matrix is (); = Is.

Computing [|A||" = 4.0543 and s = 0.6, we set
a = 120 which makes (25) hold. We use above switch-
ing laws to stabilize the switched system of this example
respectively under cost function

x(s; +f

Firstly, we get (2; and ; fori = 1,--- ,5 and corre-
sponding aggregated system (3), compute 2 by switched
Laypunov function V5 and use switching law (2) ({2; is
substituted by 12;) to stabilize the switched system. The
switching trajectory without optimal paths is shown in
Fig.1 and the cost is 1.4696e4 over [0, 12] s.

12027 yx(t)dt.

State

t/s

Fig. 1 Switching trajectory under A (91)91 and V5
i=1
Secondly, we set k° = 30 and get an aggregated sys-
tem as (26). Let V5 be a switched Laypunov function. We
use an optimal switching law as (32) to asymptotically sta-
bilize the switched linear system. The switching trajectory
is shown in Fig.2. The total cost is 1.0879¢4 over [0, 12]s.

4 T T T T T

3r -——— 2
_ ...... X, |

2F o

1

0

% \\,;;'\kk'&'u»-a-’-—-

n 1N

wn -1 ,\'\ -

1
-2 , u
_3 1 -
-4 L\\‘,/I 4
-5 1 1 1 1 1
0 2 4 6 8 10 12

t/s
Fig. 2 Sub-optimal switching trajectory under o (¢) and Vo
Finally, to get a smaller cost, we use switching law

(33). The switching trajectory is shown in Fig.3 and the
total cost is 6.2163¢3 over [0, 12] s.

3 T T T T T
2F -—- )
...... xz
1k —
()‘ NN R A ST TR
[N 3
2 N
= -1 W
Il
-2
_3 ,/
-4 ns
,5 1 1 1 1 1
0 2 4 6 8 10 12
t/s
Fig. 3 Switching trajectory under 5 (¢) and Va with

optimal path

From the above cost values under different switching
laws, it can be seen that the cost over the infinite time hori-
zon becomes smaller when we use the optimal paths in the
switching laws.
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6 Conclusion
The well-defined pathwise state-feedback switching

k
law A (6;)*% provides a way to stabilize the switched lin-
i=1

ear system, but the running cost can not be optimized. On
finite time intervals, a conjugate gradient algorithm with
Armijo steps was presented to find the optimal path 69 of
normal path 6;. To make the optimal path contractive, a re-
lationship expression between K and (); was found in this
work. The switched Riccati mapping can find a minimum
quadratic switched Lyapunov function of the aggregated
system under the cost function. The corresponding switch-
ing law based on this switched Lyapunov function made
the discrete-time aggregated system minimal over infinite
time. As the aggregated system is a sampled system of
the original switched linear system, the latter has a sub-
optimal cost under the switching path.

It is a hard task to search an optimal switching path
over infinite time horizon for switched linear systems.
In this work, some sub-optimal switching laws were de-
signed and have smaller running cost than those of the non-
optimal switching path. It should be noted that the optimal
cost is smaller if k£° is bigger and error € is samller, but the
running time of computer programs will be higher. How-
ever, a proper sampling period might make the error be-
tween cost of optimal path and that of optimal pathwise
feedback switching path very small.
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