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Optimal aggregation of switched linear systems

ZHU Geng†, SUN Zhen-dong
(College of Automation Science and Technology, South China University of Technology, Guangzhou Guangdong 510640, China)

Abstract: This paper investigates the stability and optimization problems for switched linear systems. An optimal
conjugate gradient algorithm with Armijo steps is presented to search the optimal time instants under proper cost functions.
To ensure that the optimal switching paths are contractive, a constrained expression of those cost functions is established.
Some optimal pathwise state-feedback switching laws are designed to search the optimal switching paths of aggregated
systems. The switching paths are sub-optimal switching paths of the original switched linear systems. Finally, an example
is provided to demonstrate the switching strategies and optimal costs under different switching laws.
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1 Introduction
A switched linear system has some subsystems and a

rule that orchestrates the switching between them. Design-
ing a switching law to make the switched linear system
asymptotically stable is an important problem[1]. Some
necessary and sufficient conditions for asymptotic stabil-
ity of switched linear systems were described in [2–4]. A
computation method of Lyapunov function can be found
in [5]. A converse Lyapunov theorem was presented in [6].

Optimal switching is another direction. An optimal
switching law not only stabilizes the switched linear sys-
tem but also minimizes the cost functions. Some discrete-
time switched linear systems have been studied, such as
the discrete-time linear quadratic regulation problem for
switched linear systems based on dynamic programming
approach[7–9]. For the continuous-time switched linear sys-
tem, an optimal method based on the differentiation of
the cost function has been surveyed in [10–11]. However,
the method encounters computational difficulties when the
number of switches grows.

The maximum principle and Hamiltonian condition
were often used for optimization of hybrid systems and
switched systems[12]. A feedback switching law was de-
signed to optimize the rate of convergence of switched
systems[13]. We have designed a pathwise state-feedback

switching law to stabilize the switched linear system with-
out optimization[14]. When the switching sequence is pre-
assigned or has a finite length, corresponding methods of
minimizing a performance index over an infinite time hori-
zon were mentioned in [15–16]. However, the number of
switches is still large, so the computation is a heavy bur-
den.

In this work, optimal switching time instants of con-
tractive switching path and cost gradient expression are
analyzed. An optimal conjugate gradient searching algo-
rithm with Armijo steps is presented over finite time in-
tervals. Some optimal pathwise state-feedback switching
laws based on the switched Lyapunov function derived
from Riccati mapping approach are designed to minimize
the cost of the aggregated system, and they are sub-optiaml
paths of the original switched linear system. Finally, an ex-
ample demonstrates a non-optimal and some sub-optimal
switching processes.

2 Pathwise state-feedback switching and ag-
gregation
An expression of the continuous-time switched linear

system is given by:

ẋ(t) = Aσ(t)x(t), x(t0) = x0, (1)
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where x(t) is the continuous state, x0 is the initial state,
σ(t) ∈ M = {1, · · · ,m} is the switching law and A1,
· · · , Am are real constant matrices.

When switched linear system (1) is not consistently
stabilizable, there is not a single switching path that can
make the total state space Rn contractive. However, it is
still possible that a switching path makes a subset of state
space contractive.

Definition 1 A switching path θ : [0, s) → M is
contractive on a subset of state space Ω if it is well-defined
and ||φ(s; 0, x, θ)|| < ||x||, ∀x ∈ Ω, where φ(t; 0, x, θ) is
the state of linear switched system (1) under switching law
θ with initial state x, and || · || is a given norm.

There exist a natural number k and a real number
µ ∈ (0, 1), such that

||φ(si; 0, x, θi)|| 6 µ||x||,
k∑

i=1

Ωi = Rn, ∀x ∈ Ωi, for i = 1, · · · , k,

then the following switching law asymptotically stabilizes
switched linear system (1).





ij = arg{xj ∈ Ωi}, i ∈ {1, 2, · · · , k},
tj+1 = tj + sij

,
σx(t) = θij (t− tj), ∀t ∈ [tj , tj+1),
xj+1 = φ(sij

; 0, xj , θij
), j = 0, 1, 2, · · · ,

(2)

where θi : [0, si) 7→ M is well-defined and contractive
on Ωi. Switching law σx(t) in (2) is called a pathwise

state-feedback switching law, denoted by
k∧

i=1

θΩi
i , which

is the concatenation of switching paths {θi}k
i=1 through

state-space partitions {Ωi}k
i=1. Note also that each switch-

ing path θi corresponds to a state transition matrix Gi with
the property that

φ(si; 0, x, θi) = Gix, for ∀x ∈ Ωi.

The switching mechanism in (2) is mixed time-driven
and state-feedback, and the above pathwise state-feedback
switching law is universal and well-defined.

Lemma 1 [14] Switching law
k∧

i=1

θΩi
i asymptotically

stabilizes switched linear system (1) if and only if the
discrete-time linear system

z(t + 1) = Giz(t), z(t) ∈ Ωi, i = 1, 2, · · · , k (3)

is asymptotically stable.

For clarity, we term discrete-time switched linear sys-
tem (3) as the aggregated system of switched linear system
(1) w.r.t. {θi, Ωi}k

i=1.

Lemma 2 [14] Suppose that V is a continuous and
positive definite function defined on Rn, and θi are switch-
ing paths defined over [0, si) for i = 1, · · · , k. Then,
switched linear system (1) is asymptotically stabilizable if

k
min
i=1

V (φ(si; 0, x, θi)) < V (x), ∀x ∈ Rn, x 6= 0. (4)

Condition (4) implies that aggregated system (3) is
asymptotically stable, so switched linear system (1) is also

asymptotically stabilizable. In this case, Let




Ω̂1 ={x : V (φ(s1; ?))=
k

min
i=1

V (φ(si; ?))},

Ω̂j ={x : V (φ(sj ; ?))=
k

min
i=1

V (φ(si; ?))}−
j−1⋃
l=1

Ω̂l, j = 2, · · · , k,

(5)

where V (φ(si; ?) = V (φ(si; 0, x, θi)). Using Lemma 2,
we design switching paths θi firstly, and then obtain state-
space partitions Ω̂i by (5), instead of designing both of
them at the same time.

3 Optimal contractive paths over finite time
intervals
For simplicity, let the switching time instants series of

θi be

π1(θi) = {t0 = 0, t1, · · · , tl, tl+1 = si}
and fixed switching index series be

π2(θi) = {q0, q1, · · ·, ql}, for qi ∈ M.

Define a cost function over [0, si) with x∈Ωi by

J(x, θi) = g(x(si)) +
w si

0
xT(t)Qθi

x(t)dt, (6)

where g(x(si)) = xT(si)Kx(si), Qi and K are positive
definite matrices.

If there exists a path θo
ix or θo

i in short and

J(x, θo
i ) = inf

θ∈S[0,si)

J(x, θ), x ∈ Ωi, (7)

where π2(θo
i ) = π2(θ) = π2(θi) and S is an admissible

switching path set, then θo
i is an optimal path over [0, si)

on Ωi and depends on initial state x.
To minimize J , the gradient method is used. For this,

we define some auxiliary functions by pi(t) : [ti, ti+1) as

dpi(t)
dt

= −2Qqi
x(t)−AT

qi
pi(t), pi(ti+1) = 0, (8)

p(t) = pi(t) + ΦT
i (ti+1, ti)p(ti+1), p(si) = 0, (9)

where Φi is the transition matrix of subsystem ẋ = Aqix
over [ti, ti+1).

Theorem 1 If θi is a contractive switching path
through Ωi with π1(θi) = {0, t1, · · · , tl, tl+1 = si} and
π2(θi) = {q0, q1, · · · , ql}, then the gradient of J(x0, θi) is

dJ(t̄)
dt̄

= [
dJ(t̄)
dt1

· · · dJ(t̄)
dti

· · · dJ(t̄)
dtl

]T,

i = 1, · · · , l,

where t̄ = [t1 · · · tl]T, initial state x0 ∈ Ωi and

dJ(t̄)
dti

= xT(ti)(Qqi−1 −Qqi
)x(ti) + (pT(ti) +

2xT(si)KΦl(si, tl) · · ·Φi(ti+1, ti)) ·
(Aqi−1 −Aqi

)x(ti). (10)

Proof We decompose the expression of J in (6) as

J(t̄ ) = g(x(si)) +
w t1

0
L0(x)dt + · · ·+

w si

tl

Ll(x)dt.

Let x(t) + 4x(t) be the trajectory at switching time
ti + 4ti and t̂ = [t1, · · · , ti−1, ti + 4ti, ti+1, tl]. When
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t 6 ti, x(t) is independent of ti and 4x(t) = 0. The
gradient of J at ti is

dJ(t̄)
dti

= 2xT(si)K
dx(si)

dti
+ xT(ti)(Qqi−1 −Qqi

)×

x(ti) +
w ti+1

ti+4ti

∂Li(x)
∂x

dx

dti
dt + · · ·+

w si

tl

∂Ll(x)
∂x

dx

dti
dt. (11)

When t ∈ [ti, ti+1) and i ∈ {1, · · · , l}, we have

dx(t)
dti

= Φi(t, ti)(Aqi−1 −Aqi
)x(ti). (12)

Let
dJi

dti
=
w ti+1

ti

∂Li(x(t))
∂x

Φi(t, ti)(Aqi−1−Aqi
)x(ti)dt.

(13)

We define some auxiliary functions by

p̂T
i (ti) =

w ti+1

ti

∂Li(x(t))
∂x

Φi(t, ti)dt, p̂i(ti+1) = 0.

Its derivative at ti is

˙̂pT
i (ti)=−∂Li(x(ti))

∂x
−
w ti+1

ti

∂Li(x(t))
∂x

Φi(t, ti)dt=

−2xT(ti)Qi − p̂T
i (ti)Aqi

. (14)

From the expression of equations (8) and (14), we know
p̂i(ti) = pi(ti). Rearranging equation (13), we have

dJi

dti
= pT

i (ti)(Aqi−1 −Aqi
)x(ti). (15)

Using the differential chain rule and (12), we get

dx(si)
dti

=Φl(si, tl) · · ·Φi(ti+1, ti)(Aqi−1−Aqi)x(ti),

(16)
dJj

dti
=
w tj+1

tj

∂Lj(x(t))
∂x

∂x(t)
∂x(tj)

· · · ∂x(ti+1)
∂x(ti)

dt =

pT
j (tj)Φj−1(tj , tj−1) · · ·Φi(ti+1, ti)×

(Aqi−1 −Aqi
)x(ti), (17)

where j = i+1, · · · , l. Putting (13), (16) and (17) into (11)
and using (9), we obtain (10). This proof is completed.

To search the optimal switching time instants of θo
i , we

present an optimal conjugate gradient algorithm based on
Armijo steps as follows:

Step 1 Set

j = 1, τ(1) = [t11 · · · t1l ]
T = [t1 · · · tl]T

and error ε > 0. The initial state is x0 and p(si) = 0.

Step 2 Compute xj
qi

(·) and pj(·) for i = 0, · · · , l.
Using Theorem 1, we can get gradient ∇J(τ(j)). If
||∇J(τ(j))|| < ε, then τ(j) is an optimal time instants
vector and stop, otherwise go to the next step.

Step 3 Set τ(j + 1) = τ(j) + αjdj , where

dj =




−∇J(τ(j)), j =1,

−∇J(τ(j))+
||∇J(τ(j))||2

||∇J(τ(j − 1))||2 dj−1, j >2,

and î, ĵ are positive integers, then αj = vî. Let τ(j +
1) = [tj+1

1 · · · tj+1
l ]T and j = j + 1, then go back to

Step 2. When j = L and ||∇J(τ(L))|| < ε, the optimal
switching time instants vector is t̄o = τ(L), then stop.

A question is that above optimal path θo
i might not be

contractive. To ensure that θo
i is contractive, we need to

find out the relationship between K and Qi.

Theorem 2 If θi through Ωi is a contractive path,
then optimal path θo

i derived from (7) is also contractive on
Ωi when

µ2(λ+(K) +
λ+(Q)(e2||A||+si − 1)

2||A||+ ) <

λ−(K) +
λ−(Q)(1− e−2||A||+si)

2||A||+ , (18)

where λ+(K) and λ−(K) are maximal and minimal eigen-
values of K, λ+(Q) and λ−(Q) are maximal and minimal
eigenvalues of {Q1, · · · , Qk}, and

||A||+ = max{||A0||, · · · , ||Am||}.
Proof For ∀t ∈ [0, si), the state x(t) under arbitrary

switching path θ∗i with π2(θ∗i ) = π2(θi) satisfies

e−||A||
+(si−t)||x∗(si)|| 6 ||x(t)|| 6

e||A||
+(si−t)||x∗(si)||, (19)

where x∗(si) is the terminal state under θ∗i . We get the
following equations from (19) as

w si

0
xT(t)Qθ∗i x(t)dt 6 λ+(Q)

w si

0
||x(t)||2dt 6

λ+(Q)||x∗(si)||2
w si

0
e2||A||+(si−t)dt =

λ+(Q)(e2||A||+si − 1)
2||A||+ ||x∗(si)||2, (20)

w si

0
xT(t)Qθ∗i x(t)dt > λ−(Q)

w si

0
||x(t)||2dt >

λ−(Q)||x∗(si)||2
w si

0
e−2||A||+(si−t)dt =

λ−(Q)(1− e−2||A||+si)
2||A||+ ||x∗(si)||2. (21)

From initial state x, the optimal path θo
i has terminal state

xo(si) and the relationship expression is

xo(si)TKxo(si) +
w si

0
xT(t)Qθo

i
x(t)dt 6

xT(si)Kx(si) +
w si

0
xT(t)Qθi

x(t)dt. (22)

Using (20) and (21), we have

xo(si)TKxo(si) +
w si

0
xT(t)Qθo

i
x(t)dt >

(λ−(K) +
λ−(Q)(1− e−2||A||+si)

2||A||+ )||xo(si)||2, (23)

xT(si)Kx(si) +
w si

0
xT(t)Qθi

x(t)dt 6

(λ+(K) +
λ+(Q)(e2||A||+si − 1)

2||A||+ )||x(si)||2 6

µ2(λ+(K) +
λ+(Q)(e2||A||+si − 1)

2||A||+ )||x||2. (24)
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Putting (23) and (24) into (22), we obtain

(λ−(K) +
λ−(Q)(1− e−2||A||+si)

2||A||+ )||xo(si)||2 6

µ2(λ+(K) +
λ+(Q)(e2||A||+si − 1)

2||A||+ )||x||2.

When condition (18) holds, ||xo(si)|| < ||x|| and θo
i is a

contractive path. This proof is completed.

Corollary 1 Suppose that K = aI . Then all cor-
responding optimal paths θo

i of θi for i = 1, · · · , k are
contractive if

a>
µ2λ+(Q)(e2||A||+s−1)−λ−(Q)(1−e−2||A||+s)

2(1− µ2)||A||+ ,

(25)

where s = max{s1, · · · , sk}.

4 Optimization of the aggregated system
If x, y ∈ Ωi and x 6= y, then θo

ix = θo
iy might not

be true. But for any ε > 0, there exist δ > 0 and a neigh-
borhood of x denoted by N(x, δ) such that

||J(x, θo
ix)− J(y, θo

ix)|| < ε, ∀y ∈ N(x, δ).

Under an admissible error ε of J , using θo
ix as an optimal

path is reasonable for any y ∈ N(x, δ). It follows from the
Finite Covering Theorem that there exist a natural number
ki and state x1, · · · , xki

on Ωi with unit norm such that
ki⋃

j=1

N(xj , δ) = H1 ∩Ωi, where H1 is the unit sphere.

We define Ωo
ij

by λN(xj , δ) with λ 6= 0. There exists
optimal paths θo

ij
on Ωo

ij
⊆ Ωi for j = 1, · · · , ki. J is

radially invariant in the sense θo
ix = θo

iλx with property
J(λx, θo

i ) = λ2J(x, θo
i ), λ 6= 0. Then we have ko =

k∑
i=1

ki > k numbers of θo
j on Rn for j = 1, · · · , ko.

Using all those optimal paths θo
j , we have an aggre-

gated system given by

x(t + 1) = Go
jx(t), ∀x(t) ∈ Ωo

j , (26)

where j ∈ M̂ = {1, · · · , ko}, ∃i ∈ {1, · · · , k}, Ωo
j ⊆ Ωi

and Go
j is the state transition matrix of θo

j .
Since all optimal switching paths θo

j are contractive,
aggregated system (26) is asymptotically stable under a

pathwise state-feedback switching law
ko∧

j=1

(θo
j )Ωo

j defined

by (2).
For aggregated system (26), we define an infinite hori-

zon cost function by

J(x, σ, τ1, · · · , τn) =
w∞

0
xT(t)Qσx(t)dt +

n∑
j=1

Tj , (27)

where

Tj = axT(τj)x(τj),
0 = τ0 < τ1 < · · · < τn = τn+1 = +∞,

and x is the initial state.
To design a switching law to achieve the minimal cost

of (27), we set the ith running cost L(x, i) = xTQo
i x and

Qo
i = a(Go

i )
TGo

i +
w ho

0

0
eAT

q0
tQq0e

Aq0 tdt + · · ·+

(eAql−1ho
l−1 · · · eAq0ho

0)T
w ho

l

0
eAT

ql
tQql

eAql
tdt×

(eAql−1ho
l−1 · · · eAq0ho

0), (28)

where ho
j = toj+1 − toj for j = 0, · · · , l. Then

L(x, i) =

inf
θ∈S[0,si)

{axT(si)x(si) +
w si

0
xT(t)Qθix(t)dt}.

The optimal cost function of (27) is defined by

J(x, σo, τo
1 , · · · , τo

n) =

inf
σ∈S[0,∞)

∞∑
t=0

L(φ(t; 0, x, σ), σ). (29)

To approach the optimal cost in (29), we define a k̂-
step cost function by

Vk̂(x)= inf
σ∈S[0,k̂−1]

k̂−1∑
t=0

L(φ(t; 0, x, σ), σ(t)),

where k̂ is a natural number. We define a mapping

Zi(P ) = Qo
i + (Go

i )
TPGo

i ,

where Qo
i is given by (28) and P is a positive definite ma-

trix. The switched Riccati mapping is defined by

Z(Y ) = {Zi(Pj), i = 1, · · · , ko, j = 1, · · · , r},
where Y = {P1, · · · , Pr}. Let a sequence of matrices be

Z0 = {0n×n}, Z1 = {Qo
i }, Zj = Z(Zj−1),

where j = 2, · · · and i ∈ M̂ .
Then we have

Vk̂(x)=min{xTPx : P ∈ Zk̂}, k̂=1, 2, · · ·. (30)

There exists a natural number K̂ such that Vk̂(x) shown
in (30) is a switched Lyapunov function of aggregated sys-
tem (26) when k̂ > K̂ [8]. In this case, let Vk̂+1(x) be a
switched Lyapunov function, we let the state-space parti-
tions defined by (5) be

Ω̂o
i = {x : min

P∈Zk̂

xT(Qo
i + (Go

i )
TPGo

i )x =

min
j∈M̂,P∈Zk̂

xT(Qo
j + (Go

j )
TPGo

j )x} −
i−1∑
l=0

Ω̂o
l ,

i = 1, · · · , ko, (31)

where Ω̂o
0 = ∅.

We design a pathwise state-feedback switching law

called by
ko∧

j=1

(θo
j )Ω̂o

j as





ij = arg{xj ∈ Ω̂o
i }, j = 0, 1, · · · ,

τj+1 = τj + sij
,

σ∗x(t) = θo
ij

(t− τj), ∀t ∈ [τj , τj+1),
xj+1 = φ(sij

; 0, xj , θ
o
ij

) = Go
ij

xj .

(32)

It is clear that switching law σ∗x(t) is an optimal switching
path of aggregated system (26) under cost function (27)
with initial state x.

Theorem 3 State-feedback switching law σ∗x(t)
given by (32) can asymptotically stabilize switched lin-
ear system (1) with initial state x, and it is a sub-optimal
switching path of switched linear system (1).
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Proof For ∀t ∈ [τj , τj+1), we have

||φ(t; 0, x, σ∗x(t)|| 6 ηs||x(j)||,
where s = max

i∈M
{si} and η = max

i∈M
{||Ai||}.

∃K̂, Vk̂(x) shown in (30) is a switched Lyapunov
function of aggregated system (26) when k̂ > K̂. State-
feedback switching law σ∗x(t) can asymptotically stabilize
aggregated system (26) and then lim

j→∞
||x(j)|| = 0. We

have
lim

t→∞
||φ(t; 0, x, σ∗x(t))|| = 0,

so σ∗x(t) can asymptotically stabilize switched linear sys-
tem (1). As σ∗x(t) is an optimal switching path of aggre-
gated system (26), it is a sub-optimal switching path of
switched linear system (1). This proof is completed.

Note that ko is bigger and the running time is longer if
ε is smaller. To quickly compute a sub-optimal switching
path of the switched system (1), we design a switching law
based on switching law (2) by




ij = arg{xj ∈ Ω̂i}, i ∈ 1, · · · , k,
τj+1 = τj + sij , j = 0, 1, · · · ,

σ̄∗x(t) = θ̄o
ij

(t− τj), ∀t ∈ [τj , τj+1),
xj+1 = φ(sij

; 0, xj , θ̄
o
ij

),

(33)

where Ω̂i shown in (30) is an optimal partition of aggre-
gated system (3), θ̄o

ij
is an optimal path of θij

under cost
function (7) and computed by above optimal conjugate gra-
dient algorithm directly at each step.

As θ̄o
ij

is contractive when a is denoted by (25),
switching law (33) asymptotically stabilizes switched lin-
ear system (1) and the switching cost is smaller than that
cost under non-optimal contractive path.

5 Example
Consider a continuous-time switched linear system

ẋ(t) = Aix(t), i = 1, 2 with two subsystems. Its coef-
ficient matrices are respectively:

A1 =



−0.8077 0.5385 2.2692
−3.0000 −2.1923 −0.0769
0.2308 2.1538 0.6154


 ,

A2 =




0.3846 −0.1923 −1.0769
1.8462 −1.9231 0.4231
−0.3846 −2.5385 −0.8077


 .

Suppose that the sampling period is τ = 0.2 s, contractive
ratio is µ = 0.94, initial state is x = [−4 2 − 3]T, and
switching cost matrix is Qi = I3.

Computing ||A||+ = 4.0543 and s = 0.6, we set
a = 120 which makes (25) hold. We use above switch-
ing laws to stabilize the switched system of this example
respectively under cost function

120xT(si)x(si) +
w si

0
xT(t)Qσ(t)x(t)dt.

Firstly, we get Ωi and θi for i = 1, · · · , 5 and corre-
sponding aggregated system (3), compute Ω̂i by switched
Laypunov function V2 and use switching law (2) (Ωi is
substituted by Ω̂i) to stabilize the switched system. The
switching trajectory without optimal paths is shown in
Fig.1 and the cost is 1.4696e4 over [0, 12] s.

Fig. 1 Switching trajectory under
5V

i=1
(θi)

Ω̂i and V2

Secondly, we set ko = 30 and get an aggregated sys-
tem as (26). Let V2 be a switched Laypunov function. We
use an optimal switching law as (32) to asymptotically sta-
bilize the switched linear system. The switching trajectory
is shown in Fig.2. The total cost is 1.0879e4 over [0, 12] s.

Fig. 2 Sub-optimal switching trajectory under σ∗x(t) and V2

Finally, to get a smaller cost, we use switching law
(33). The switching trajectory is shown in Fig.3 and the
total cost is 6.2163e3 over [0, 12] s.

Fig. 3 Switching trajectory under σ̄∗x(t) and V2 with
optimal path

From the above cost values under different switching
laws, it can be seen that the cost over the infinite time hori-
zon becomes smaller when we use the optimal paths in the
switching laws.
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6 Conclusion
The well-defined pathwise state-feedback switching

law
k∧

i=1

(θi)Ωi provides a way to stabilize the switched lin-

ear system, but the running cost can not be optimized. On
finite time intervals, a conjugate gradient algorithm with
Armijo steps was presented to find the optimal path θo

i of
normal path θi. To make the optimal path contractive, a re-
lationship expression between K and Qi was found in this
work. The switched Riccati mapping can find a minimum
quadratic switched Lyapunov function of the aggregated
system under the cost function. The corresponding switch-
ing law based on this switched Lyapunov function made
the discrete-time aggregated system minimal over infinite
time. As the aggregated system is a sampled system of
the original switched linear system, the latter has a sub-
optimal cost under the switching path.

It is a hard task to search an optimal switching path
over infinite time horizon for switched linear systems.
In this work, some sub-optimal switching laws were de-
signed and have smaller running cost than those of the non-
optimal switching path. It should be noted that the optimal
cost is smaller if ko is bigger and error ε is samller, but the
running time of computer programs will be higher. How-
ever, a proper sampling period might make the error be-
tween cost of optimal path and that of optimal pathwise
feedback switching path very small.
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