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Abstract: The charge plan plays an important role in compiling the production plan for steelmaking, and an optimized
charge plan will have a far-reaching effect on the stability and efficiency of a steelmaking workshop. According to the
characteristics of billet continuous casting process, a new charge plan model is developed by taking into account three
constraints: steel grades, dimensions, and due dates. By using this model, we reduce the production cost by optimizing
the sequencing of the contracts. The problem is combinatorial in nature; the complete enumeration of all its possibilities is
computationally prohibitive. Therefore, a modified partheno-genetic algorithm (PGA) is employed to search optimum/near-
optimum solutions. During the solving process, reasonable algorithm parameters are acquired through the analysis and
comparison of different relative parameters. Furthermore, a comparative analysis of the results obtained by implementing
the genetic algorithm (GA), PGA and modified PGA on the proposed model reveals that modified PGA outperforms GA or

PGA in solving the charge planning problem.

Key words: steelmaking; optimal charge plan model; modified PGA; simulation

1 Introduction

The steel industry is one of the basic industries for
the national economy. High ore reserves, low produc-
tion costs, extensive use and recycling utilization allow
the steel industry to provide raw materials for numerous
other important industries. The manufacturing process
is a multi-stage process that can roughly be divided into
three phases.

1) TIronmaking: the production of molten iron,
mainly from iron ore and reductants such as coke.

Received 5 June 2012; revised 29 October 2012.
fCorresponding author: E-mail: qliu@ustb.edu.cn.

2) Steelmaking-continuous casting: processing the
hot metal into steel with a well-defined chemical com-
position and solidifying the liquid steel into billets.

3) Rolling: the production of finished products.

At present, most of the production in the steel plant
is limited to market ability, and multiple grades, small
lots and high quality characterize customers’ demands
for steel products. However, mass production is neces-
sary in the organizing process in a steel workshop. So
only through making and carrying out the rolling plan,
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the charge plan, the cast plan and the scheduling plan,
and then fulfilling production, can the contract prod-
ucts be finally transferred to the final products. Thus, it
can be seen that the charge plan plays an important role
in the production. So contract products with the same
steel grade and small differences in due dates should
be grouped into charges in the production process!!!. A
reasonable charge plan is able to reduce the production
costs, decrease the amount of open orders (redundant
products belonging to none of the contracts), raise the
production efficiency and ensure on-time deliveries. So
in order to provide high level of charge plans for the
steelmaking workshop, the charge planning problem is
studied in this paper.

The rest of this paper is organized as follows. Sec-
tion 2 presents a literature review. In Section 3, the op-
timal charge plan model is established. The solution
algorithm is discussed in Section 4. Section 5 presents
simulation results, and a conclusion is outlined in Sec-
tion 6.

2 Literature review

In recent years, with the goal of helping planners
improve efficiency, precision and reliability, a large
quantity of research has been done on the production
planning problem in the steel industry. In view of the
charge planning problem, Tang et al established a mixed
integer programming model of furnace charge plan and
adopted a genetic algorithm (GA) to solve this model'*!.
Chen et al also described the use of GA for the dy-
namic advanced planning and scheduling problem and
demonstrated that the production idle time and tardi-
ness/earliness penalties for both original orders and new
orders could be minimized at each rescheduling point[!.
Based on the connections between different parts in
the production process, Huang et al developed some
mathematic models to optimize the charge design!*,
and then a dynamic programming algorithm was pro-
posed to solve these models. In addition, a decomposi-
tion strategy for solving large scheduling problems us-
ing mathematical programming methods was presented
by Harjunkoski and Grossmann®!. To solve the steel-
making charge planning problem, an improved particle
swarm algorithm was proposed by Xue et al'®’. And
to optimize the order planning, a component-based ap-
proach was adopted by Azevedo and Sousa!”!. Tonshoft
et al developed a mediator-based approach for decen-
tralized production planning, scheduling and monitor-
ing!®!. In order to adequately tackle the customer-order
planning problem, Azevedo et al proposed a multi-agent
system architecture for real-time planning in distributed
manufacturing enterprises!®. To meet the requirements
for the mid- to long-term planning of a steel producer,
Witt and Voss used a simple mathematical model, and
some standard software products, namely, the ‘ILOG
OPL-Studio’ from IBM and the ‘Advanced Planner and

Optimizer’ (APO) from systems applications and prod-
ucts in data processing (SAP), were applied to solve
this model!'!. Liu et al presented a heuristic algorithm
based on rules to solve the scheduling problems for the
casting-rolling process in basic oxygen furnace (BOF)
special steel plants!!!,

From above, it’s known that the researchers have
solved the planning problem with different methods, but
the solutions are difficult to obtain and the processes
have turned out to be inefficient. The charge planning
problem is a quite complicated combinatorial optimiza-
tion problem. If the scale of the problem is larger, it’s
difficult to obtain the optimal solution in shorter time.
So it’s necessary to find an intelligent algorithm to ob-
tain the near-optimum solution. The GA, which is a
non-numerical computing method based on the biolog-
ical principle of natural selection and population ge-
netics, is able to make an individual (each candidate
solution) move to the optimal solution by means of a
‘the survival of the fittest’ mechanism. GA is an it-
erative search procedure, which has been successfully
used for a variety of combinatorial optimization prob-
lems, e.g. the job-shop scheduling problem!?!31. The
main operations of GA involve changing the solutions
from iteration to iteration by applying a crossover oper-
ator, which combines two chromosomes to obtain off-
spring, and a mutation operator, which modifies a single
chromosome. However, based on several experiments
in the research, GA is quite complicated to use for solv-
ing the actual charge planning problem due to multiple
constraints.

Although partheno-genetic algorithm (PGA) is a
kind of GA, in the operation of PGA, the crossover op-
erator in the traditional GA is removed, and all of the
operations are carried out using an individual. Thus,
the operations of PGA can simplify the genetic opera-
tions and improve the computing efficiency. In particu-
lar, no initial population diversity is required in PGA,
and the problem of immature convergence does not
exist. Moreover, PGA has been successfully used to
solve combinatorial optimization problems. Lil'®! de-
scribed PGA in detail. Bai et al'”! proposed an im-
mune partheno-genetic algorithm (IPGA) for solving
the winner determination problem in combinatorial auc-
tions, and the simulation results showed that the IPGA
achieved good performance in large size problems and
the immune operator could improve the searching abil-
ity and greatly increase the converging speed. Zhu and
Duan!!®! developed an intelligent dynamic restoration
algorithm for multiple services in WDM (wavelength
division multiplexed) networks based on PGA. Their
simulation showed that the algorithm was able to im-
prove the restoration efficiency under high loads and re-
duce the service disruption ratio on the basis of fully
utilizing the resources of the network. Kang et al!”!
proposed a virus coevolutionary partheno-genetic algo-
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rithm (VEPGA) to determine the optimal placement of
sensors on a large space structure for the purpose of
modal identification, and the simulation results showed
that the VEPGA outperformed the sequential reduction
procedure (SRP) and PGA. Moreover, considering that
the GA may lose solutions and substructures as a re-
sult of the disruptive effects of the genetic operators and
it is not easy to regulate the convergence, Wang and
Tang!?"! presented an improved adaptive genetic algo-
rithm (IAGA) and adopted partheno-genetic operation
(PGO) to ensure a feasible solution.

PGA can simplify the process of solving a combi-
natorial optimization problem, and the charge planning
problem in steelmaking is a typical combinatorial opti-
mization problem. Thus, a modified PGA (MPGA) is
developed to solve the charge plan model in this study.

3 Optimal charge plan model in steelmaking

process
3.1 Problem description

Generally speaking, the charge (or heat) is the ba-
sic unit for the steelmaking process, and a charge repre-
sents the whole process, which starts with smelting in an
electric arc furnace (EAF) or BOF and ends in casting
or ingot casting. The plan-making of the charge plan is
the process of resolving and grouping the contract prod-
ucts into semi-finished steel products, and then group-
ing these semi-finished steel products into charges. The
constraints of steel grades, dimensions and due dates
are all considered in the planning process. Therefore,
the charge planning problem is a complicated combi-
natorial optimization problem subjected to several con-
straints.

The notation used in this paper is as follows:

m is number of charges (unknown beforehand);

n is number of contract products;

1, j is serial number of contract products, 7,; =
1,2,---,n;

k is serial number of charges, k = 1,2, -+ ,m;

t is ton;

d is day;

Vinax(Vinin) is maximum (minimum) furnace ca-
pacity, t;

G, is steel grade of contract product i;

w; 1s weight of contract product ¢, t;

W; is width of contract product ¢, mm;

c, is penalty coefficient for differences in contract
products’ steel grades, ¥ /t;

co is penalty coefficient for differences in contract
products’ widths, ¥ /t;

c3 is penalty coefficient for contract products unse-
lected into any of the charges, ¥ /t;

¢4 is penalty coefficient for open order, ¥ /t;

cs is penalty coefficient for differences in contracts’
due dates, ¥ /(day - t);

P, is penalties for differences in contract products’
steel grades, ¥;

Pfj is penalties for differences in contract products’
widths, ¥ ;

P} is penalties for contract products unselected into
any of the charges, ¥ ;

P} is penalties for open order in charge k, ¥ ;

P}, is penalties for differences in contract products’
due dates in charge k, ¥;

d;, is due date of contract product ¢ in charge k;

dep is earliest due date of contract products in
charge k.

3.2 Grouping requirements and modelling hy-
pothesis

In the billet continuous casting process, the require-
ments for grouping contract products into charges are
listed as follows:

1) The steel grades of the contract products in a
charge should be in the same steel grade class.

2) The dimensions of the billets’ sections in a
charge should be the same.

3) The total weight of the contract products in a
charge should not surpass the maximum furnace capac-
ity.

4) The due dates of the contract products in a
charge should be similar.

According to the actual production, the following
modelling hypothesis can be obtained:

1) The final number of grouped charges is unknown
beforehand.

2) The contract products are allowed to remain un-
selected in any of the charges.

3) The total weight of the contract products in a
charge is allowed to vary between 95% and 100% of
the furnace capacity.

4) The steel grades and dimensions of the contract
products are determined beforehand.

3.3 Model of problem
Based on the above grouping requirements and

modelling hypothesis, the following model is devel-
oped:

k=1i=1j=1
(BB + X Y Phaw, (D
k=1 k=1:1=1

subject to

rgp<1l,i=1,2,--,n, 2)
k=1
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0, contract product 7 exists in charge k, in a charge. The widths of the adjacent contract prod-
zie = { 1, else, (3) ucts in the same charge should be in a range [W, W],

1=12,--- n, k=12--- m,
¢1(G; — Gj), contract product i, j
belongs to the same
steel grade class,
(| + 00, else,
c2(W; — W;), the width of contract
product 7, 5 belongs

P? = 5
Y to [W, W], ©)
(| + o0, else,
C3 ), WikTik, Wi, < Vinin,
pr={" 2 e 2 i ©6)
0, else,

C4(95%Vmax - Z wikxik)a
i=1

n
‘/;nin < Z Wik Tk < 95%Vmax;
i=1

Pi= . (7)
0, 95%Vmax < Zwikfvik < Vmax;

=1

n
+ 00, Vinax < D WikTix,
=1

Zwik,gvmaxv k:172a , M, (8)
=1
Py, = cs(dig — dey)w. )

In the above equations, equation (1) is the objec-
tive function of the optimal charge plan model based on
the lowest penalties, including three parts. The first part
contains the penalties for the differences in the contract
products’ steel grades and the widths of adjacent con-
tract products in a charge. The second part contains the
penalties for open orders or ungrouped contract prod-
ucts, and the last one contains the penalties for the dif-
ferences in the due dates of the contract products in a
charge. The corresponding constraint conditions of the
objective function are listed in equation (2) to equation
(9). Equation (2) indicates that a contract product can
only be grouped into a charge. Equation (3) is a function
to judge the contract products and charges, if a contract
product belongs to a charge, the function equals 1; oth-
erwise, it equals 0. Equation (4) is the method of com-
puting the penalties of the steel grades of the adjacent
contract products in charge k. In the actual production
process, the steel grade of the adjacent contract products
in the same charge should be in the same steel grade
class, and the value of equation (4) equals ¢; multiplied
by the difference of steel grades. Or else the contract
products can’t be grouped in a charge, and the value of
equation (4) is +o00. Equation (5) calculates the penal-
ties for differences in the widths of the contract products

and the value of equation (5) equals ¢, multiplied by the
difference of widths. Or else the contract products can’t
be grouped in a charge, and the value of equation (5) is
+00. Equation (6) indicates the penalties for a charge
where the total weight of the contract products is less
than V,;,. Equation (7) is a function for computing the
penalties for an open order in a charge. Equation (8) in-
dicates that the total weight of the contract products in a
charge must be less than V... Finally, equation (9) cal-
culates the penalties for contract products with different
due dates.

For the billet continuous casting process, the steel
grades and dimensions of the contract products are
generally classified before grouping them into charges.
Thus, the penalties for the contract products’ widths and
steel grades can be removed from the model, and a sim-
plified model can be easily deduced as below.

m

min 2’ = > (PP + P+ Y. > Phaw. (10)
k=1 k=11i=1
4 Solution algorithm

In this section, the algorithm parameters and eval-
uating indicators are discussed, and then the solution
steps are described. Especially, the modification of
PGA is introduced in Section 4.2.

4.1 Discussion of algorithm parameters

The study object in this paper is a 75-ton (practical
tapping amount) BOF in the steelmaking workshop of
Fangda Special Steel Technology Co., Ltd. The evolu-
tionary generation, searching method, population size
and penalty coefficient should be set in the solving pro-
cess of MPGA.

Usually, the optimal solution is unknown in the
solving process of the optimization problem, making it
is necessary to set the stopping criteria of the algorithm
beforehand. Liu et al’®!! proposed the stopping criteria
used in GA. The algorithm terminates if one or more of
the criteria are met: a) the evolutionary generation ex-
ceeds a predefined number; b) the difference between
the fitness functions in the preceding generations is less
than a very small number; c) the population diversity
is less than a very small number; and d) the best fit-
ness function difference between two consecutive gen-
erations is less than a very small number. The stopping
criteria of GA are also suitable for MPGA. In this paper,
a near-optimum solution is obtained by setting the evo-
lutionary generation (the first criterion). Through nu-
merous tests, it was found that the simulation results
could almost meet the accuracy requirements when the
evolutionary generation reached the 100th generation.
After the 100th generation, the results improved little;
however, the calculating time increased greatly. Thus,
the evolutionary generation is set to 100, and the other
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parameters are analyzed in the following research.

1) Searching method.

The searching method (the gene-exchanging
method) of PGA is classified as a one-point searching
method and multi-point searching method. The former
is used to exchange the position of two genes, while the
latter is used to exchange m(m > 2) pairs of genes.
According to a related study!'!, the searching methods
for PGA may be different for different problems. As to
the charge planning problem, the convergence curves
under different searching methods are shown in Fig.1.
From Fig.1, it is easy to see that the one-point searching
method is the optimal searching method by comparing
the convergences of the different searching methods.
Therefore, the one-point searching method is adopted
to solve the problem discussed.

18000 [
16000
14000
12000
10000 5,
8000
6000 [y
4000
2000

Penalty / ¥

Ll

|n

0 20 40 60 80 100
Evolution generation

——One-point searching method
——Two-point searching method
——Three-point searching method
——Four-point searching method

Fig. 1 Comparison of different searching methods

2) Population size.

The population size is an important parameter that
will profoundly influence the computational efficiency.
If the size is too small, the searching efficiency will be
low and the algorithm will run into a locally optimal

solution; otherwise, if the size is too large, the amount
of calculation will be big, and the computation will be
ineffective. A few tests are carried out to acquire a near-
optimum population size. The convergence curves un-
der different population sizes are shown in Fig.2, from
which we can see that the evolution performs best with
a size of 40.

25000k ——10 |
20000
15000

10000

Penalty / ¥

5000

Evolution generation

Fig. 2 Comparison of different population sizes

3) Penalty coefficient.

The goal of the optimal charge plan model is to min-
imize the penalties under the premise of the fewest num-
ber of charges and the least open order amount. There-
fore, the weights of ¢, and c3 should be larger than cs.
Through numerous tests, it was found that when c5 is
equal to 2 ¥/(day - t) or 1 ¥/(day - t), the results are
able to reach the goal of the model.

When ¢; = 100 ¥/t and ¢5 = 2 ¥/(day - t) or
1 ¥/(day - t), the open order amount and number of
charges under different c3 are as shown in Table 1 and
Table 2. We found that the number of charges and open
order amount varied between tests for different param-
eters. Comparing the above data, it is not difficult to
recognize that the open order amount is the lowest and
the number of grouped charges is the fewest when c3 =
130 ¥/t and ¢5 = 1 ¥/(day - t). Hence, we chose ¢3 =
130¥/t and c5 =1 ¥/(day - t).

Table 1 Number of charges and open order amount while c¢5 =2 ¥ /(day - t)

esl (¥ xt™1) 50 60 70 80 90 100 110 120 130
Open order amount/t  8.118 4259  4.403 0.876 1.558 2.370 3.608 7.497 0.810
Number of charges ~ 18.095 18.045 18.045 18.000 18.000 18.023 18.045 18.091 18.000

Sample size 21 22 22 22 22 44 22 22 19

Table 2 Number of charges and open order amount while c5 = 1 ¥ /(day - t)

esl (¥ xt™1) 50 60 70 80 90 100 110 120 130
Open order amount/t  0.740 0.932 0.907 3.748 3.889 3.745 0.678 0.842 0.650
Number of charges ~ 18.000 18.000 18.000 18.045 18.045 18.045 18.000 18.000 18.000

Sample size 21 22 22 22 22 22 22 23 22
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4) Final optimized algorithm parameters.
The final optimized algorithm parameters were

obtained through the above analysis and comparison
of different parameters, as shown in Table 3.

Table 3 Parameters of MPGA

Parameter Searching method

Population size

esl (¥ xt™Y) ey I(¥xt™Y)  es/(¥-(day - t) 1)

Value One-point searching method 40

130 100 1

4.2 Fitness function of individual

As in GA, the fitness function is adopted to eval-
uate the individuals in PGA. The value of the fitness
function represents the environmental adaptability of
the individual. An individual with a bigger fitness has
more chance to pass on an inheritance to the next gen-
eration. The fitness function can be converted from
the objective function.

In the fitness function of PGA, the fitness of all
the individuals in each generation is calculated, and
then the offspring generation is obtained through the
crossover or mutation of the individuals in the par-
ent generation. Because the amount of calculation is
great, the efficiency will be decreased. It is not nec-
essary to use some individuals with high penalties.
Therefore, in this study, only some optimal individ-
uals with low penalties are selected to calculate the
fitness. However, if the number selected is too small,
a locally optimal solution may be obtained because of
the lack of diversity in the population. For a popula-
tion with 40 individuals, the five optimal individuals
in each generation are selected to ensure the diversity.
The fitness function is shown as follows:

1
fla:) = 2(5”1) (1)
=1 2(x)
subject to
5
;f(fvi) =1, (12)

where, z; represents individual ¢ in the population
of a generation and z(x;) is the penalty of individ-
ual ¢. The individuals with higher penalty indicates
that the grouping result of the contract products in the
charges are less optimized, so they will be inherited
to the offspring in a lower probability, i.e. they have
lower fitness. Through equation (11), the individuals
with higher fitness in each generation can be calcu-
lated easily and rapidly, and then the optimized indi-
viduals are evolved to the next generation.
4.3 Solution procedure

On the basis of the above analysis, the solving
steps of MPGA are designed as follows.

Step 1 Encoding. The real encoding method
and ordinal encoding method are two familiar meth-

ods. The former is generally used in solving a com-
binatorial optimization problem, while the latter is
used to solve a complicated engineering optimization
problem. In this study, the steel grades and contracts
are encoded to sequential number strings (chromo-
somes). The encoding method is shown as follows.

Steel grade No. —@000001 Contract No.

Step 2 Define the individual evaluation method,
which is the fitness function (equation (11)). The fit-
ness function is employed to evaluate the individuals
of each generation.

Step3 Set the algorithm parameters, population
size, evolutionary generation and penalty coefficients.

Step 4 Generate the original population, and
then compute the individuals’ penalties in the popu-
lation.

Step 5 Select the five optimal individuals with
the lowest penalties, calculate these individuals’ fit-
nesses, reproduce until the number of individuals is
equal to the population size and carry out the one-
point cross operation. Then, these new individuals
are used to make up the next population.

A sort of one-point genes exchanging operation
of MPGA is shown as follows:

Parent generation: x1, 2, T3, T4, Ts5, T6.

Offspring generation: x1, T2, Tg, T4, L5, 3.

The offspring generation exchanges the positions
of gene =3 and gene x4 on the basis of the parent gen-
eration.

Step 6 Loop, until the end of the evolution.

At the end of the calculation, if there are solutions
not meet the constraints, we put the unselected con-
tract products together with the new ones for the next
planning.

To reduce the destruction of the optimal individu-
als, the elites of each generation are kept and passed
on to the next generation in the algorithm. The opti-
mal individuals are reproduced and the genes are ex-
changed to make the model quickly converge to the
optimal solution.

The flow chart of MPGA is shown in Fig.3.
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Fig. 3 Flow chart of MPGA

Output the optimal

5 Simulation results

On the basis of the above analysis, an actual
charge planning case with 240 contracts in Fangda
Special Steel Technology Co., Ltd is used to ver-
ify the model and algorithm. Microsoft Visual C' #
is adopted to solve the problem. The experimental
environment is a Pentium (R) Dual-Core CPU/
3.20HZ/2.00GB/Windows 7. To acquire better solu-
tions, the evolution generation is set to 200 in this ex-
periment. As shown in Table 4, the penalty reaches
the lowest value when the algorithm evolves to the
198th generation. The results show that all of the con-
tract products are grouped into 18 charges, the open
order amount is 0.063 t, and the penalty is ¥ 4302.35.

By comparing GA and PGA with MPGA in Fig.4,
the superiority of MPGA is not difficult to recognize.
As can be seen from the curve, with an increase in
the evolutionary generation, the penalty tends to de-
crease. The simulation results are able to meet the re-
quirements of minimizing the number of charges and
open order amount.

Table 4 Grouped results by using MPGA

Charge Contract products’ Real Open order

No. weight/ t weight/t amount/t Penalty/
1 71.868 71.875 0.007 672.410
2 71.868 71.875 0.007 338.360
3 71.868 71.875 0.007 306.915
4 71.868 71.875 0.007 647.605
5 71.868 71.875 0.007 275.480
6 71.868 71.875 0.007 312.970
7 72.493 72.493 0.000 0.000
8 72.493 72.493 0.000 156.235
9 74.366 74.366 0.000 0.000
10 73.117 73.117 0.000 0.000
11 74.367 74.367 0.000 0.000
12 71.868 71.875 0.007 516.275
13 72.492 72.492 0.000 0.000
14 74.368 74.368 0.000 0.000
15 71.868 71.875 0.007 410.035
16 71.868 71.875 0.007 406.715
17 73.117 73.117 0.000 259.350
18 73.742 73.742 0.000 0.000

20000 T T
18000 B
16000‘”
pH 14000
2 12000
£ 10000
= 8000
6000
4000 |- . . . 4

0 50 100 150 200

Evolution generation

Fig. 4 Comparison of GA, PGA and MPGA

To test the generality of the proposed method,
a 100-ton BOF at another steelmaking workshop is
used in another experiment. As presented in Fig.5,
during the first 23 generations, the penalty curve con-
verges at high speed, and then the curve becomes
smooth. These results certify the generality of the al-
gorithm.

18000 T T

16000

14000

12000

Penalty / ¥

10000

8000

6000 . X
0 50 100 150 200

Evolution generation

Fig. 5 Relation between penalty and evolutionary generation
for 100-ton BOF
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Obviously, the major benefits of MPGA are its
simplicity and feasibility. Therefore, it is convenient
to apply to the charge planning problem in an actual
production environment. In addition to shortening the
programming period for the charge plan, the use of
the proposed algorithm can also minimize the num-
ber of charges and the open order amount. Therefore,
the production and inventory costs can be decreased.

6 Conclusions

In this paper, the charge planning problem that ex-
ists in a steelmaking workshop was described. Aim-
ing at this problem, an optimal charge plan model
was developed, in which the final number of grouped
charges was unknown beforehand. Then, this model
was simplified based on the characteristics of the bil-
let from the continuous casting process. To solve
the model, MPGA was applied. Meanwhile, the op-
timized algorithm parameters were obtained through
analysis and comparisons. The research showed that
the penalty decreased gradually with an increase in
the evolutionary generation. Finally, the optimal
solution was developed, which achieved the fewest
charges and the smallest open order amount. The
results showed the efficiency and simplicity of the
model and algorithm, and the proposed methodology
will have a great influence on the charge plan organi-
zation in a steelmaking workshop.
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