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摘要:利用矩阵的半张量积,布尔控制网络被转化为离散时间系统.本文从离散时间系统的结构矩阵出发,讨论
了逻辑控制系统的能控能观性条件,得到了一个新的能控性条件.新的条件简化了原有能控性矩阵的计算复杂性,
矩阵的最高阶数由原来的2m+n 降到了2n. 另外,还得到了检验布尔控制网络能观性的条件.与原有条件相比,新的
条件更容易计算检验. 最后,给出一个实例,检验给出的能控能观性判断条件的正确性.
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Controllability and observability of Boolean control networks

LI Zhi-qiang†, SONG Jin-li
(Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou Henan 450002, China)

Abstract: Using the semi-tensor product, we convert the Boolean control network to its algebraic form. From the struc-
ture matrix of Boolean control network, the controllability and observability of the Boolean control network are discussed.
A novel necessary and sufficient condition for controllability, which improves the recent results, is given. The new control-
lability condition eliminates the redundant computation of controllability matrix. The highest power of matrix is reduced
from 2m+n to 2n. Also, a sufficient condition for observability is obtained, which can be computed easily. A numerical
example is presented to show the applicability of our controllability and observability condition. condition.
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1 Introduction
In order to investigate the gene expression, Kauff-

man firstly introduced Boolean networks[1]. The study
of Boolean networks has attracted a great attention from
biologists, physicists, and social scientists, because it
provides a simple and proper model to describe artificial
intelligent systems, neuronal networks, and genomic
regulatory networks[2–4]. The most important problem
about Boolean networks is to find its topological struc-
ture, including fixed points, cycles, basin of attractors,
and the transient time[5–7]. The control problems of
Boolean networks has received much attention[8–9]. Al-
most all the results of Boolean networks are about ran-
dom (probabilistic) Boolean network, because the study
of probabilistic Boolean networks can be converted to a
markovian chain. While classical markovian chain the-
ories provide many analytical results to study the vari-
ous problems about probabilistic Boolean networks[9].

Recently, using semi-tensor product, algebraic
state space representation of Boolean control networks
(BCNs) is introduced by Cheng and Qi[5]. This rep-
resentation is proved to be quite useful for studying
BCNs. By investigating the corresponding discrete

time systems, some interesting results have been ob-
tained, including the controllability and observability of
Boolean networks[10–11], the realization of Boolean net-
works[12], and the stability and stabilization design of
Boolean networks[13], the decoupling of Boolean con-
trol networks[14], the optimal control problems[15–16].
Meanwhile, the Boolean networks with time delay is
studied in [17]. In [18], the controllability of probabilis-
tic Boolean control networks is discussed. The mono-
graph about semi-tensor product method to Boolean
network is published by Springer[19]. For more details
we refer the reader to a tutorial survey[19–20] and refer-
ences therein.

In [10], a systematic method of controllability and
observability of Boolean control networks has been de-
veloped. The problems of both controllability and ob-
servability are solved by giving necessary and sufficient
conditions. In [20–21], the conditions for controllabil-
ity and observability are improved. But the computation
is still redundant. The purpose of this paper is:

1) To eliminate the redundant computation of con-
trollability matrix. The highest power of matrix used
in [10, 20–21] is 2m+n, while in Theorems 5 and 6, the
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highest power of the same matrix is reduced to 2n;
2) To give a sufficient condition for observability

of BCNs. In Theorem 8, a sufficient condition is given
to test the observability, which can be easily obtained.

The remainder of the paper is organized as follows.
In Section 2, some necessary preliminaries are given.
In Section 3, an improved controllability matrix is con-
structed, and also an easily computable matrix is given
to test the observability. Section 4 gives a numerical ex-
ample to illustrate the effectiveness of our conditions.
Finally, a brief summary is given in Section 5.
2 Preliminaries

In this section, we first list the notations used in this
paper, and review the related results about how to con-
vert the Boolean control network to its algebraic form.

Notations:
· Let δi

n be the i-th column of the identity matrix
In, and ∆n := {δ1

n, δ2
n, · · · , δn

n}. When n = 2 we
simply use ∆ := ∆2.

· The set of logical values: True (T ∼ 1) and
False (F ∼ 0), is denoted by D = {0, 1}. We identify
each with a vector as T ∼ δ1

2 and F ∼ δ2
2 . So in vector

form the set of logical values becomes ∆. In this sense
we have the equivalence as D ∼ ∆.

· Assume a matrix M = [δi1
n δi2

n · · · δis
n ] ∈

Mn×s, i.e., its columns, Col(M) ⊂ ∆n. We call M a
logical matrix, and simply denote it as

M = δn[i1 i2 · · · is].

· The set of n × s logical matrices is denoted by
Ln×s.

· A matrix B ∈ Mn×s is called a Boolean matrix,
if its entries bij ∈ D, ∀ i, j.

· The set of n× s Boolean matrices is denoted by
Bn×s.

· A matrix B = (bij) À 0 means bij > 0.
· A vector α = (ai) À 0 means ai > 0.
In vector form, the logical function can be ex-

pressed as an algebraic function.
Theorem 1[22] Let x1, · · · , xn ∈ D be n logical

variables, and f(x1, · · · , xn) a logical function. Then
there exists a unique matrix Mf ∈ L2×2n , called the
structure matrix of f , such that in vector form we have

f(x1, · · · , xn) = Mf nn
i=1 xi, xi ∈ ∆.

In [10], the Boolean network with additional inputs
and outputs is discussed. Its dynamics can be expressed
as follows:



x1(t + 1) =
f1(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

...
xn(t + 1) =
fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),
yj(t) = hj(x1(t), · · · , xn(t)), j = 1, · · · , q.

(1)

where xi(t) ∈ ∆ are logical variables, fi, i =
1, · · · , n, and hj, j = 1, · · · , q are logical functions,
ui(t) ∈ ∆, i = 1, · · · ,m are controls.

Set x = nn
i=1xi, u = nm

i=1ui, y = nq
i=1yi. Then

x ∈ ∆2n , u ∈ ∆2m , y ∈ ∆2q . Using vector form, the
algebraic form of (1) is denoted as

x(t + 1) = Lu(t)x(t), (2)
y(t) = Hx(t), (3)

where L ∈ L2n×2n+m , and H ∈ B2q×2n .
3 Main results

In this section, the conditions for observability
and controllability are given by the structure matrix of
Eq.(2). The structure matrix of BCN (2) is equally split
as

L = [Blk1(L) Blk1(L) · · · Blk2m(L)] =
[B1 B2 · · · B2m ], (4)

where Blki(L) is the i-th block of matrix L, and Bi =
Blki(L) ∈ L2n×2n , i = 1, · · · , 2m.

Define
M = Ln 12m ∈ L2n×2n . (5)

3.1 Controllability of BCNs
Definition 1[20] BCN (2) is controllable from x0

to xd, if there exist a T > 0, and a sequence of controls
{u(0), u(1), · · · , u(T −1)}, such that the trajectory of
Eq.(2) starting from x0 can be driven by the controls to
x(T ) = xd. System (2) is controllable at x0, if it is con-
trollable to any xd ∈ ∆2n . System (2) is controllable,
if it is controllable at any x0.

Define
C =

2m+n∑
k=1

Mk. (6)

The matrix C is called the controllability matrix in
[20–21]. Using input-state incidence matrix, the fol-
lowing result about controllability of system (2) is given
in [11, 20].

Theorem 2[11, 20] Consider BCN (2).
i) Starting from x0 = δj

2n , xd = δi
2n is reachable,

if and only if, cij > 0;
ii) System (2) is controllable from x0 = δj

2n , if and
only if, Colj(C) À 0;

iii) System (2) is controllable, if and only if, CÀ0.
In Theorem 2, to verify the controllability of Eq.(2),

the matrix C should be obtained. In fact, the computa-
tion matrix C in Eq.(6) is redundant. Define

MC =
2n∑

k=1

Mk. (7)

We will prove that the matrix MC given in Eq.(7) is
enough to test the controllability. In [11], the physical
meaning of nonzero entries in matrix Mk is explained.
When k = 1, from Eq.(5), we know that Mij means
whether there exist a control sequence steering state δj

2n

to δi
2n in one step by judging if Mij = 1 or not. In this

paper, we will give an alternative proof to the following
theorem, which will be useful for our result.
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Theorem 3 For BCN (2), the matrix M is ob-
tained from structure matrix L by Eq. (5). Suppose
(M s)i,j = c. Then there are c different paths from state
δj
2n to δi

2n at s-th step with proper control sequence.
Proof We prove it by mathematical induction.

When s = 1 the conclusion follows from the construc-
tion of matrix M given in Eq.(5). Now assume (M s)ij

is the number of the paths from δj
2n to δi

2n at s-th step.
Since a path from δj

2n to δi
2n at (s + 1)-th step can al-

ways be considered as a path from δj
2n to δk

2n at s-th step
and then from δk

2n to δi
2n at one step. The different ways

from δj
2n to δi

2n at (s + 1)-th step can be calculated by

Ns+1(j, i) =
2n∑

k=1

Ns(j, k)×N1(k, i), (8)

where Ns(j, k) denotes the number of different ways
from δj

2n to δk
2n at s-th step, and N1(k, i) denotes the

number of different ways from δk
2n to δi

2n at one step.
It is obvious that

Ns(j, k) = (M s)kj. (9)
Next, we consider N1(k, i). Suppose (Blkp(L))ik =
1, then we can choose control δp

2m , such that δi
2n =

Lδp
2mδk

2n . Hence, N1(k, i) is the number of p, which
satisfies (Blkp(L))ik = 1. It is said that

N1(k, i) = (
2m∑

α=1

Blkα(L))ik = Mik. (10)

Substitute Eq.(8) with Eqs.(9) and (10), then

Ns+1(j, i) =
2n∑

k=1

(M s)kj ×Mik. (11)

The right hand Eq.(11) can be considered as prod-
uct of the i-th row of M and the j-th column of M s.
From Eqs.(9)−(11), (M s+1)i,j is the number of the
paths from δj

2n to δi
2n at (s + 1)-th step. The conclu-

sion is proved.
Theorem 4 Consider BCN (2). For any two dif-

ferent states α, β ∈ ∆2n , if β = δi
2n can be reached

from α = δj
2n within at most s-steps, then β can be

reached from α within 2n-steps by proper control se-
quence.

Proof If 1 6 s 6 2n, then we are done. Other-
wise, suppose α = δj

2n is reached from β = δi
2n at s-th

(s > 2n) step with the following trajectory:



δi1
2n = Lδγ0

2mβ,

δi2
2n = Lδγ1

2mδi1
2n ,

...

δ
ip

2n = Lδ
γp−1
2m δ

ip−1
2n ,

δ
ip+1
2n = Lδ

γp

2mδ
ip

2n ,

...

δ
iq

2n = Lδ
γq−1
2m δ

iq−1
2n ,

δ
iq+1
2n = Lδ

γq

2mδ
iq

2n ,

...

δis

2n = Lδ
γs−1
2m δ

is−1
2n = α.

(12)

In sequence δi1
2n , · · · , δis

2n , if there exist two states
δ

ip

2n = δ
iq

2n . Choosing control u(p) = δ
γq

2m at p-th step,
yields

δ
iq+1
2n = Lδ

γq

2mδ
ip

2n .

Then the trajectory from β = δj
2n to α = δi

2n becomes

β → δi1
2n → · · · → δ

ip

2n → δ
iq+1
2n → · · · → δi

2n =α.

Using the above process, we can exclude all the re-
peated states in sequence δi1

2n , · · · , δis

2n . Without loss
of generality, suppose there doesnot exist any repeated
state in sequence

δj
2n = β → δi1

2n → · · · → δis

2n = α = δi
2n . (13)

In BCN (2), there are 2n different states. Hence, the
length of sequence (13) is no larger than 2n. It is said
that from β = δj

2n to α = δi
2n , there exists at least one

trajectory sequence with length no larger than 2n. The
conclusion is proved.

In matrix MC , we can obtain all the reachability in-
formation of any two states within 2n steps. To test the
controllability of Eq.(2), the matrix MC is enough. It
may be the real simplest controllability matrix. From
Theorem 4, Theorem 2 can be improved as

Theorem 5 Consider BCN (2).
i) Starting from x0 = δj

2n , xd = δi
2n is reachable,

if and only if, (MC)ij > 0;
ii) System (2) is controllable from x0 = δj

2n , if and
only if, Colj(MC) À 0;

iii) System (2) is controllable, if and only if, MC

À 0.

In fact, we do not need to consider the true num-
ber of matrix MC . What we really need is: whether
it is positive or zero. Borrowing from characteristic
function, construct matrix M̄ = (m̄ij) from matrix
M = (mij), where

M̄ij =
{

0, mij = 0,
1, mij > 0.

For Boolean matrix, the Boolean product is defined as
follows.

Definition 2[11, 23] 1) If a, b ∈ D, we can define
the Boolean addition and the Boolean product respec-
tively as

a +B b = a ∨ b, a×B b = a ∧ b.

2) Let A∈Bm×n and B∈Bn×p. Then A×BB :=
C ∈ Bm×p as

cij = ai1 ×B b1j +B · · ·+B ain ×B bnj.

Partially, let A ∈ Bn×n. Then

A(2) := A×B A.

Using Boolean product, construct characteristic
matrices of M̄C as

M̄C =
2n∑

i=1 B
M (i). (14)

Now we restate Theorem 5 as following.
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Theorem 6 BCN (2) is globally controllable, if
and only if, M̄C À 0.

3.2 Observability of BCNs
The observability of BCNs is considered in [10].

Definition 3 [10] BCN (2) is said to be observable
if for any initial state x0 there exists at least a Boolean
sequence of control, such that the initial state can be
determined by the output sequence.

The observability matrix is constructed and the nec-
essary and sufficient condition is given in [10, 19].

In [20–21], the necessary and sufficient condition is
given by an alternative one. Denote

Γ1 =




HB1

HB2

...
HB2m


 , Γ2 =




HB1B1

HB1B2

...
HB2mB2m


 , · · · . (15)

Using them, the observability matrix is constructed as

O1 = [ΓT
0 ΓT

1 ΓT
2 · · · ΓT

s∗ ]
T, (16)

where Γ0 = H , and s∗ is the smallest positive integer

such that Γs∗+1 ⊂
s∗⋃

k=1

Γk. For more details we refer the

reader to [21]

Theorem 7 [21] Assume BCN (2) is globally
controllable, then Eq.(2) is observable, if and only if
rankO1 = 2n.

To verify the observability of Eq.(2) with output
(3), we have to obtain the observability matrix O1 in
Eq.(16). The computation of O1 is complicated. In the
following, we give an easily computable matrix used to
test the observability. The times of matrix product is at
most 1 + 2 + · · ·+ 2n − 1. Define

O2 = [HT (HM)T (HM 2)T · · · (HM 2n−1)T]T.

(17)

Theorem 8 Assume BCN (2) is globally con-
trollable. If rank(O2) = 2n, then (2) is observable.

Proof Based on matrix theory, it is easy to note

rank




H
HB1

HB2

...
HB2m

...




=

rank




H
HB1 + · · ·+ HB2m

HB2

...
HB2m

...




. (18)

In fact M =
2m∑
i=1

Bi, the power of M can be ex-

pressed as
M2 = (B1 + · · ·+ B2m)(B1 + · · ·+ B2m) =

B1B1 + B1B2 + · · ·+ B2mB2m =
2m∑
i=1

2m∑
j=1

BiBj,

...
M s = (B1 + · · ·+ B2m)s =

2m∑
i1=1

· · ·
2m∑

is=1

Bis
· · ·Bis

,

...

From right hand side of Eq.(18), yields

rank(O1) > rank




H
HM
HM 2

...
HM 2n−1




= rank(O2).

(19)

There are 2n columns in matrices O1 and O2.
Hence,

rank(O2) 6 rank(O1) 6 2n.

When rank(O2) = 2n, yields rank(O1) = 2n. If
BCN (2) is controllable, from Theorem 7, we can con-
clude that (2) is observable.
4 An illustrative example

Reconsider the Example 29 given in [10]. Consider
the following system:




A(t + 1) = B(t) ↔ C(t),
B(t + 1) = C(t) ∨ u1(t),
C(t + 1) = A(t) ∧ u2(t),

(20)

with the outputs

y1(t) = A(t),
y2(t) = B(t) ∨ C(t). (21)

Set

x(t) = AnB(t)n C(t),
y(t) = y1(t)n y2(t)

and u(t) = u1(t) n u2(t). The algebraic form of Eqs.
(20) and (21) is

x(t + 1) = Lu(t)x(t),
y(t) = Hx(t), (22)

where L ∈ L8×32, which is

L = δ8[1 5 5 1 2 6 6 2 2 6 6 2 2 6 6 2
1 7 5 3 2 8 6 4 2 8 6 4 2 8 6 4],

and H ∈M4×8 is

H = δ4[1 1 1 2 3 3 3 4].

We can obtain
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M = Ln 14 =




2 0 0 1 0 0 0 0
2 0 0 1 4 0 0 2
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 2
0 1 2 0 0 0 0 0
0 1 2 0 0 2 4 0
0 1 0 0 0 0 0 0
0 1 0 0 0 2 0 0




.

The characteristic matrix about M is obtained as

M̄ =




1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 1
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1
0 1 1 0 0 0 0 0
0 1 1 0 0 1 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0




.

The controllability matrix is computed as

M̄C =
2n∑

i=1 B
M̄ (i) = (aij),

where ∀i, j, aij = 1.
From Theorem 6, the BCN (22) is controllable.

To verify the observability of (22), we compute
HMk, k = 1, · · · , 2n − 1. The observability matrix
Ō is obtained as

O =




H
HM 1

HM 2

...
HM 2n−1




=




1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 1
4 0 0 3 4 0 0 2
0 0 0 1 0 0 0 2
0 3 4 0 0 2 4 0
0 1 0 0 0 2 0 0
8 6 8 7 0 4 0 6
0 2 0 1 0 4 0 2
6 6 4 7 12 4 8 6
2 2 4 1 4 4 8 2
...

...
...

...
...

...
...

...




.

From the first 12 rows of O, we can obtain rank(O) =
8. From Theorem 8, we can conclude that BCN (20)
with outputs (21) is observable.

5 Conclusion
In this paper, we eliminated the redundant compu-

tation of controllability matrix and obtained an easily
computable matrix to test observability of BCNs. For
controllability of BCNs (2), the necessary and sufficient
condition given in [10] is improved. Also a new ob-
servability matrix is obtained for testing observability
of BCNs (2). We should point out that the condition for
observability in this paper is not necessary, while it is
easily computable.
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