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Controllability and observability of Boolean control networks

LI Zhi-giang’, SONG Jin-li
(Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou Henan 450002, China)
Abstract: Using the semi-tensor product, we convert the Boolean control network to its algebraic form. From the struc-
ture matrix of Boolean control network, the controllability and observability of the Boolean control network are discussed.
A novel necessary and sufficient condition for controllability, which improves the recent results, is given. The new control-
lability condition eliminates the redundant computation of controllability matrix. The highest power of matrix is reduced
from 2" to 2". Also, a sufficient condition for observability is obtained, which can be computed easily. A numerical

example is presented to show the applicability of our controllability and observability condition. condition.
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1 Introduction

In order to investigate the gene expression, Kauff-
man firstly introduced Boolean networks!!!. The study
of Boolean networks has attracted a great attention from
biologists, physicists, and social scientists, because it
provides a simple and proper model to describe artificial
intelligent systems, neuronal networks, and genomic
regulatory networks>*. The most important problem
about Boolean networks is to find its topological struc-
ture, including fixed points, cycles, basin of attractors,
and the transient time®>"). The control problems of
Boolean networks has received much attention®!. Al-
most all the results of Boolean networks are about ran-
dom (probabilistic) Boolean network, because the study
of probabilistic Boolean networks can be converted to a
markovian chain. While classical markovian chain the-
ories provide many analytical results to study the vari-
ous problems about probabilistic Boolean networks!®!.

Recently, using semi-tensor product, algebraic
state space representation of Boolean control networks
(BCNs) is introduced by Cheng and Qi™. This rep-
resentation is proved to be quite useful for studying
BCNs. By investigating the corresponding discrete
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time systems, some interesting results have been ob-
tained, including the controllability and observability of
Boolean networks! %11l the realization of Boolean net-
works!!?!, and the stability and stabilization design of
Boolean networks!'?!, the decoupling of Boolean con-
trol networks!!'*), the optimal control problems!!>~1¢1,
Meanwhile, the Boolean networks with time delay is
studied in [17]. In [18], the controllability of probabilis-
tic Boolean control networks is discussed. The mono-
graph about semi-tensor product method to Boolean
network is published by Springer'®!. For more details
we refer the reader to a tutorial survey!!*2% and refer-
ences therein.

In [10], a systematic method of controllability and
observability of Boolean control networks has been de-
veloped. The problems of both controllability and ob-
servability are solved by giving necessary and sufficient
conditions. In [20-21], the conditions for controllabil-
ity and observability are improved. But the computation
is still redundant. The purpose of this paper is:

1) To eliminate the redundant computation of con-
trollability matrix. The highest power of matrix used
in [10,20-21] is 2™*", while in Theorems 5 and 6, the
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highest power of the same matrix is reduced to 2";

2) To give a sufficient condition for observability
of BCNs. In Theorem 8, a sufficient condition is given
to test the observability, which can be easily obtained.

The remainder of the paper is organized as follows.
In Section 2, some necessary preliminaries are given.
In Section 3, an improved controllability matrix is con-
structed, and also an easily computable matrix is given
to test the observability. Section 4 gives a numerical ex-
ample to illustrate the effectiveness of our conditions.
Finally, a brief summary is given in Section 5.

2 Preliminaries

In this section, we first list the notations used in this
paper, and review the related results about how to con-
vert the Boolean control network to its algebraic form.

Notations:

Let 6! be the i-th column of the identity matrix
I,,and A, = {6},0%2,--- ,0"}. Whenn = 2 we
simply use A := A,.

The set of logical values: True (1" ~ 1) and
False (' ~ 0), is denoted by D = {0, 1}. We identify
each with a vector as T' ~ §3 and F' ~ 2. So in vector
form the set of logical values becomes A. In this sense
we have the equivalence as D ~ A.

Assume a matrix M = [0 62 ... k] €
M, «s, i.e., its columns, Col(M) C A,,. We call M a
logical matrix, and simply denote it as

M =6,y iy -+ i

The set of n x s logical matrices is denoted by
Lpxs.

+ A matrix B € M,,,, is called a Boolean matrix,
if its entries b;; € D, Vi, j.

+ The set of n X s Boolean matrices is denoted by
Bixs-

* A matrix B = (b;;) > 0 means b;; > 0.

* A vector a = (a;) > 0 means a; > 0.

In vector form, the logical function can be ex-

pressed as an algebraic function.

Theorem 1*2!  Letxy, - ,z, € D ben logical

variables, and f(xzy,--- ,x,) a logical function. Then
there exists a unique matrix My € Lyyon, called the
structure matrix of f, such that in vector form we have

f(xh...

In [10], the Boolean network with additional inputs
and outputs is discussed. Its dynamics can be expressed
as follows:
fl(l'l(t), e 7$n(t)a ul(t>v T um(t))7

X)) = My X2z, x; € A

' ey
z(t+1) =

fn($1(t>, cee ,.xn(t), Ul(t), ..
y](t) = hj(xl(t), e

aum(t))7
7wn(t))7 j=1-,q

\

where z;(t) € A are logical variables, f;, i =
1,---,n,and hj, j = 1,---,q are logical functions,
u;(t) € A, i =1,---,m are controls.
Setx = X' z;, u= X" u;, y = X;_,y;. Then
T € Agn, u € Agm, y € Agqe. Using vector form, the
algebraic form of (1) is denoted as
2(t+ 1) = Lu(t)a(t), @)
y(t) = Ha(t), 3)
where L € Lonyontm, and H € Bagyon.
3 Main results
In this section, the conditions for observability
and controllability are given by the structure matrix of
Eq.(2). The structure matrix of BCN (2) is equally split
as
L = [Blk,(L) Blk,(L) Blkyn (L)] =
[By By --- Baml], “)

where Blk; (L) is the i-th block of matrix L, and B; =
Blk;(L) € Lonxgn, i =1,--+,2™.
Define
M == L X 12m E £2'n><2'n. (5)

3.1 Controllability of BCNs

Definition 1?°!  BCN (2) is controllable from
to x4, if there exist a T' > 0, and a sequence of controls
{u(0),u(1),--- ,u(T —1)}, such that the trajectory of
Eq.(2) starting from xy can be driven by the controls to
x(T) = x4. System (2) is controllable at x, if it is con-
trollable to any xq € Asn. System (2) is controllable,
if it is controllable at any x.

Define gm-n
C= > M~ (6)
k=1
The matrix C' is called the controllability matrix in
[20-21]. Using input-state incidence matrix, the fol-
lowing result about controllability of system (2) is given
in [11,20].
Theorem 2!'1  Consider BCN (2).
i) Starting from zq = 3., xq = 0%, is reachable,
if and only if, ¢;; > 0;
ii) System (2) is controllable from zy = 5§n if and
only if, Col;(C) > 0;
iii) System (2) is controllable, if and only if, C'>>0.

In Theorem 2, to verify the controllability of Eq.(2),
the matrix C' should be obtained. In fact, the computa-
tion matrix C' in Eq.(6) is redundant. Define

2’71/
Mg =3 M*, @)
k=1

We will prove that the matrix My given in Eq.(7) is
enough to test the controllability. In [11], the physical
meaning of nonzero entries in matrix M* is explained.
When k£ = 1, from Eq.(5), we know that );; means
whether there exist a control sequence steering state 5%;
to &3, in one step by judging if M;; = 1 or not. In this
paper, we will give an alternative proof to the following
theorem, which will be useful for our result.
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Theorem 3 For BCN (2), the matrix M is ob-
tained from structure matrix L by Eq.(5). Suppose
(M?#); ; = c. Then there are c different paths from state
5gn to 8%, at s-th step with proper control sequence.

Proof We prove it by mathematical induction.
When s = 1 the conclusion follows from the construc-
tion of matrix M given in Eq.(5). Now assume (M*),;
is the number of the paths from (5§n to 04, at s-th step.
Since a path from 83, to d5, at (s + 1)-th step can al-
ways be considered as a path from &3, to 8%, at s-th step
and then from 65, to 03, at one step. The different ways
from 43, to 04, at (s + 1)-th step can be calculated by

Ns+1(]> ) Z N (]7 ) X Nl(k Z) (8)

where N, (j, k) denotes the number of different ways
from &3, to 6%, at s-th step, and Ny (k, i) denotes the
number of different ways from &5, to 3. at one step.
It is obvious that

N5, k) = (M) (€))
Next, we consider N;(k, 7). Suppose (Blk,(L));, =
1, then we can choose control d5,., such that 83, =
L6&5,.6%,. Hence, Ny(k,i) is the number of p, which
satisfies (Blk, (L)), = 1. Itis said that

M) = (5 Blka(D) = Ma. (10

Substitute Eq.(8) w1th Eqs (9) and (10), then

Nerl(]a ) - I;l(M )kj X Mzk- (11)

The right hand Eq.(11) can be considered as prod-
uct of the ¢-th row of M and the j-th column of M?®.
From Eqs.(9)—(11), (M**'),; is the number of the
paths from 63, to 0%, at (s + 1)-th step. The conclu-
sion is proved.

Theorem 4 Consider BCN (2). For any two dif-
ferent states o, 8 € Agn, if 3 = 8%, can be reached
from @ = 55 within at most s-steps, then § can be
reached from « within 2"-steps by proper control se-
quence.

Proof If1 < s < 2", then we are done. Other-
wise, suppose o = 83, is reached from 3 = §%, at s-th
(s > 2™) step with the following trajectory:
= L0 3,

2 = L6JL00,

ip—
271:.[/6;7;;11 1:7,17

62‘7’1%1 = L52m 271,
(12)

iq Yq—1 glg—1
Lq+1 Ya S'q
Sl — g1 5l

05 = Loy '00n ' = av.

In sequence Sah, -+, 04, if there exist two states

o o%. Choosing control u(p) = d,4 at p-th step,

ylelds
6“’“ = (52m5 n.

Then the trajectory from 3 = &}, to o = &%, becomes

B = O — o= S = Gt — s b, =a
Using the above process, we can exclude all the re-
peated states in sequence Ogn, - -+, 05%. Without loss

of generality, suppose there doesnot exist any repeated
state in sequence

8 =B— 0k — - =8 =a=25,. (13)

In BCN (2), there are 2" different states. Hence, the
length of sequence (13) is no larger than 2". It is said
that from 3 = 3. to o = 44, there exists at least one
trajectory sequence with length no larger than 2". The
conclusion is proved.

In matrix M, we can obtain all the reachability in-
formation of any two states within 2" steps. To test the
controllability of Eq.(2), the matrix M is enough. It
may be the real simplest controllability matrix. From
Theorem 4, Theorem 2 can be improved as

Theorem 5 Consider BCN (2).

i) Starting from xy = (55, Tq = 5; is reachable,
if and only if, (Mc);; > 0;

ii) System (2) is controllable from zy = 55,” if and
only if, Col;(M¢) > 0;

iii) System (2) is controllable, if and only if, M
> 0.

In fact, we do not need to consider the true num-
ber of matrix Mo. What we really need is: whether
it is positive or zero. Borrowing from characteristic

function, construct matrix M = (m;;) from matrix
M = (m;;), where
- 0, my; =0
M" — ) 1] 5
4 {1, mi; > 0.
For Boolean matrix, the Boolean product is defined as
follows.

Definition 2!':23! 1) If a,b € D, we can define
the Boolean addition and the Boolean product respec-
tively as

a+gb=aVb axgb=aAb.

2) Let A€ B,,x, and B€ B,,x,. Then AxgB:=
C € Byuxp as

Cij =an Xpbij+p---
Partially, let A € B,,+,,. Then
A® = A xgA.

Using Boolean product,
matrices of M as

+B Qin XB bnj'

construct characteristic

B 2” )
Me= > MO, (14)
=18

Now we restate Theorem 5 as following.
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Theorem 6  BCN (2) is globally controllable, if
and only if, Mc > 0.
3.2 Observability of BCNs

The observability of BCNs is considered in [10].

Definition 3! BCN (2) is said to be observable
if for any initial state x there exists at least a Boolean

sequence of control, such that the initial state can be
determined by the output sequence.

The observability matrix is constructed and the nec-
essary and sufficient condition is given in [10, 19].

In [20-21], the necessary and sufficient condition is
given by an alternative one. Denote

HBl HBlBl
HBQ HBlBQ

n=l | n=| e (15)
HBan HBZT‘VL Bzm

Using them, the observability matrix is constructed as
O\=Iy " 1, - I, (16)

where Iy = H, and*s* is the smallest positive integer

such that [« C D I';,. For more details we refer the

k=1
reader to [21]

Theorem 7' Assume BCN (2) is globally
controllable, then Eq.(2) is observable, if and only if
rank O; = 2".

To verify the observability of Eq.(2) with output
(3), we have to obtain the observability matrix O; in
Eq.(16). The computation of O is complicated. In the
following, we give an easily computable matrix used to
test the observability. The times of matrix product is at
most 1 + 2+ .- 4 2" — 1. Define

O, =[H" (HM)" (HM*)" - (HM*" ™",
(17)

Theorem 8 Assume BCN (2) is globally con-
trollable. If rank(O3) = 2™, then (2) is observable.

Proof Based on matrix theory, it is easy to note

H
HB,;
HB,
rank . =
HBym
H
HB,+ -+ HByn
HB,
rank . . (18)
HBym

2'7”
In fact M = ) B;, the power of M can be ex-
t

7

pressed as
M? = (By+ -+ Bon)(By + -+ + Byn) =
BB, + BBy + -+ + Bym By =

om gm

> > BiBj,

i=1j=1

MS:(B1+...+BQm>S:
2m 2m
S .. B, --- B,

=1  d.=1

From right hand side of Eq.(18), yields

H
HM
rank(O;) > rank HM? = rank(Os).
HM:271_1
(19)
There are 2" columns in matrices O; and O,.

Hence,
rank(O;) < rank(0,) < 2™

When rank(O,) = 2", yields rank(O,) = 2". If
BCN (2) is controllable, from Theorem 7, we can con-
clude that (2) is observable.

4 An illustrative example

Reconsider the Example 29 given in [10]. Consider

the following system:

A(t+1) = B(t) < C(1),
B(t+1)=C(t) Vuy(t), (20)
C(t+1) = A(t) ANua(t),

with the outputs

_ B(t) v C(1). @

Set

z(t) = A x B(t) x C(t),

y(t) = i (t) X ya(t)
and u(t) = u1(t) X uy(t). The algebraic form of Egs.
(20) and (21) is

x(t+1) = Lu(t)x(t),
y(t) = Ha(t)
where L € Lgy39, which is
L=6&[1551266226622662
175328642864286 4],
and H € M5 is
H=6J11123334].

(22)

‘We can obtain
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20010000
20014002
00010O0O0O0
00010002
M=Lxli=|41900000
01200240
01 0000O0O0
01000200
The characteristic matrix about M is obtained as
10010000
10011001
000100O00O0
— 00010O0O0T1
M=101100000
01100110
01 0000O0CO0
01000100

The controllability matrix is computed as
on
Mo = 3 MY = (a;),
i=1 8B

where Vi, j, a;; = 1.

From Theorem 6, the BCN (22) is controllable.
To verify the observability of (22), we compute
HM*,k = 1,---,2" — 1. The observability matrix
O is obtained as

11100000
00010 000
0000 1 110
00000 001

H 40034002

HM* 00010 00?2

o—| HM2 | Z]0340 0 240
: 01000200
o 8687 0 406
0201 0 402
664712486
2241 4 482

From the first 12 rows of O, we can obtain rank(Q) =
8. From Theorem 8, we can conclude that BCN (20)
with outputs (21) is observable.

5 Conclusion

In this paper, we eliminated the redundant compu-
tation of controllability matrix and obtained an easily
computable matrix to test observability of BCNs. For
controllability of BCNs (2), the necessary and sufficient
condition given in [10] is improved. Also a new ob-
servability matrix is obtained for testing observability
of BCNs (2). We should point out that the condition for
observability in this paper is not necessary, while it is
easily computable.
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