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摘要:提出一种用于虹膜定位的差分进化算法(modified differential evolution, MDE). MDE和原始差分进化算法
(differential evolution, DE)主要有3点不同:第一, MDE采用了基于混沌序列的尺度因子和基于均匀分布的交叉率,
这有助于提高候选解的多样性;第二, MDE使用中心解来修正最差解的变异操作,这有助于提高候选解的质量;第
三, MDE使用最好解来帮助受困解摆脱局部最优点. 在搜索边缘前,两种有效的去噪方法被用来减少虹膜图像中噪
声的影响.去噪后,再使用MDE和其他4种方法来进行虹膜定位. 在中科院(Chinese Academy of Sciences Institute of
Automation, CASIA)眼图数据库中选择200幅来自不同个体的虹膜图像来验证和比较MDE及其他4种方法的效率.
实验结果表明,与其他4种方法相比, MDE使用更少的执行时间来定位瞳孔边缘和虹膜边缘.
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Iris location algorithm based on modified differential
evolution algorithm
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Abstract: A modified differential evolution (MDE) algorithm is proposed for iris location. The MDE and the origi-
nal differential evolution algorithm are different from three aspects: First, MDE adopts the scale factor based on chaotic
sequences and the crossover rate based on uniform distribution, which is helpful to improve the diversity of candidate solu-
tions. Second, MDE utilizes the center solution to modify the mutation operation of the worst solution, which is beneficial
in improving the quality of candidate solutions. Third, MDE uses the best solution to help the trapped solutions to escape
from local optima. Before searching boundaries, we use two kinds of efficient denoising methods to reduce the effects of
noises on iris edge images. After denoising, the proposed MDE and the other four methods are applied to iris location.
Some 200 iris images of different individuals are chosen from the Chinese Academy of Sciences Institute of Automation
(CASIA) eye image database in investigating and comparing the efficiency of MDE with the other four methods. Exper-
imental results show that MDE consumes less execution time to locate pupil and iris boundaries in comparison with the
other four methods.

Key words: modified differential evolution; iris location; chaotic sequence; mutation operation; center solution; denois-
ing

1 Introduction
Iris recognition plays a very important role in bio-

logical recognition, and this technology is helpful to pre-
serve personal privacy, business information and state se-
crets etc. Iris location is one of the most difficult parts in
iris recognition, because iris images are easily affected by
noises including eyelashes, eyelids and reflection etc.

In recent decades, a variety of approaches have been
used for iris location, and they have achieved good results.
These iris location approaches include integrodifferential
operator[1], Hough transform[2], active contours[3], novel
integrodifferential constellation[4], cubic smoothing spline
fitting[5], and so on.

In order to increase the efficiency of iris location, we
proposed a modified differential evolution (MDE) algo-

rithm. Our contributions are summarized as follows. In
Section 3, MDE is introduced in detail, and it makes three
improvements on the original differential evolution (DE)
algorithm[6]. In Section 4, the working principle of pupil
boundary detection by MDE is adequately explained. In
Section 5, the working principle of iris boundary detection
by MDE is briefly presented. In Section 6, 200 iris images
from different individuals are chosen to investigate the ef-
ficiency of MDE for iris location. We end this paper with
some conclusions in Section 7.

2 The original differential evolution algo-
rithm (DE)
As is well known, Hough transform is virtually an

enumeration method, but it is time-consuming, which will
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strongly influence the efficiency of iris location. On the
other hand, the differential evolution algorithm (DE)[6] is
an efficient optimization technique, and it has a simple al-
gorithm structure which is easy to study and master. More-
over, many improved versions of DE have been applied to
a variety of complicated engineering problems including
economic load dispatch optimization of power systems[7],
pixel classification in remote sensing imagery[8], system
identification[9], positioning of prototypes[10] and so on.
Due to its excellent performance, DE can be considered for
iris location. Generally speaking, DE works as follows:

Step 1 Initialization.
DE parameters are initialized in this step, and these

parameters include scale factor F , crossover rate CR,
population size M and the maximal iteration number K.
Additionally, all candidate solutions are initialized ran-
domly from a uniform distribution in the ranges [xj , x̄j ]
(j = 1, 2, · · · , N), where, xj and x̄j are the upper bound
and lower bound of the jth (j = 1, 2, · · · , N ) variable,
respectively, and N is the number of variables.

Step 2 Mutation.
For any trial vector vk+1

i , it is generated by mutating
a target vector. Usually, trial vector vk+1

i is generated in
terms of the following equation:

vk+1
i = xk

i3 + F (xk
i1 − xk

i2). (1)

Here, F is scale factor. i1, i2 and i3 are different integers
which are randomly selected from the set {1, 2, · · · ,M}.

Step 3 Crossover.
The variables of offspring vector uk+1

i are the combi-
nation of parent vector xk

i and trial vector vk
i , thus they are

calculated as follows.

uk+1
i,j =

{
vk+1

i,j , if rand(·) < CR or j = r1∼N ,
xk

i,j , otherwise,
(2)

where, rand(·) is a randomly generated number in the
range [0, 1], r1∼N denotes a random integer in the range
[1, N ], and CR(CR ∈ [0, 1]) represents crossover rate.

Step 4 Selection.
If f(uk+1

i ) is smaller (or better) than f(xk
i ), offspring

vector uk+1
i is assigned to xk+1

i , otherwise, parent vector
xk

i is assigned to xk+1
i . Thus, the selection step can be

given by the following expression:

xk+1
i =

{
uk+1

i , if f(uk+1
i ) < f(xk

i ),
xk

i , otherwise.
(3)

Step 5 Judge stopping condition.
If the maximal iteration number (K) is reached, com-

putation is stopped. Otherwise, Steps 3−4 are repeated.

3 A modified differential evolution algo-
rithm
The performance of DE mainly depends on its control

parameters including the mutation factor and the crossover
probability[11–13], and there is no confirmable parameters
which are suitable for all optimization problems. To suit
DE to the problem of iris location, chaotic sequences[14–15]

are adopted to adjust the mutation factor. In addition, sev-
eral other improvements are also included in the modifi-
cation of DE. In detail, our proposed modified differential

evolution (MDE) algorithm are different from DE in three
aspects as follows:

1) Setting algorithm parameters.
Tuning suitable parameters is really a difficult and

problem-dependent work. Regarding the tuning of these
parameters, some trials are usually made during several op-
timization runs, which is known as trial-and-error method.
However, multiple attempts bring inconvenience, and de-
crease the efficiency of DE.

For the original DE, its scale factor F and crossover
rate CR are set as constants, that is to say, all solutions
adopt these two constants in the evolution process. Unlike
DE, MDE adjusts scale factor F and crossover rate CR by
using chaotic sequences[14–15] and uniform distribution, re-
spectively, because both distributions are beneficial to in-
creasing the diversity of candidate solutions and the ran-
domness of searching. More specifically, F and CR are
stated as follows:

F k
i = µ× F k−1

i × (1− F k−1
i ). (4)

Where µ is control parameter, (0 6 µ 6 4), and k de-
notes the iteration number. In this paper, µ is set to 4.
In addition, the initial values F 0

i (i = 1, 2, · · · ,M) are
randomly generated in the range [0, 1], and the values of
F k

i (i = 1, 2, · · · ,M ; k = 1, 2, · · · ,K) are generated in
terms of Eq.(4). Chaotic sequences has many advantages
such as ergodicity, stochastic properties, irregularity, and
so on. Therefore, they enable MDE to escape easily from
the local optimums.

CRk ∼ Ud(CRmin, CRmax). (5)

Where Ud(CRmin, CRmax) represents uniform distri-
bution in the range of [CRmin, CRmax] with mean
(CRmin + CRmax)/2 and standard deviation (CRmax −
CRmin)/2

√
3.

The utilization of suitable randomness is harmless to
the convergence of MDE. Furthermore, The randomness
existing in scale factors and crossover rates is very neces-
sary[13, 16], because it can not only improve the diversity of
the population, but also enhance the exploitation capacity
of MDE.

2) Modifying the mutation operation of the worst so-
lution.

For the original DE, all M solutions adopt the same
mutation and crossover operations (As Eqs. (1) and (2)).
On the other hand, Liu et al.[17] proposed a center particle
swarm optimization (CPSO) algorithm, which generates a
center position for the last particle by averaging the posi-
tions of the other particles. The position of center particle
is a potential and promising alternative, and it often guides
the search direction of the population which is beneficial to
producing solutions of high quality. Inspired by this char-
acteristic, MDE also adopts a central solution xk

center at
generation k(k = 1, 2, · · · ,K), but it is a little different
from that of CPSO. In detail, it is obtained by averaging all
the other solutions except the worst solution xk

iworst
. After

generating xk
center, it is assigned to the trial vector vk+1

iworst

corresponding to xk
iworst

. Additionally, parameter ‘step’ is
used to carry out small-scale searching near xk

center. Thus
we have
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xk
center =

1
M − 1

∑
i 6=iworst

xk
i , (6)

vk+1
iworst,j

= xk
center,j − step + 2× step× rand, (7)

where ‘rand’ denotes a random number in [0, 1], and iworst

represents the index of the worst solution xk
iworst

. Although
MDE excludes the mutation operation in the updating of
trail vector vk+1

iworst
, but it still uses crossover operation in

the updating of the offspring solution uk+1
iworst

(As Eq.(2)).
3) Updating the trapped solutions according to the

best solution.
In the early evolution process of MDE, many solu-

tions have fast convergence rate. However, they may slow
down or stagnate in the late evolution process. In this situ-
ation, they are likely to be trapped into the local optimums.
To overcome this disadvantage, the best solution xk

ibest
is

used, and it can help the trapped solutions to get rid of the
local optimums. In short, the updating formulas is given
by

xk+1
i,j =

{
xk+1

i,j +rand(·) · (xk
ibest,j

−xk+1
i,j ), if count(i)=SP,

xk+1
i,j , otherwise.

(8)
Where ibest denotes the index of the best solution xk

ibest,j
.

In addition, count(i) is used to count the number of con-
tinuous stagnation for the ith solution. If it reaches the
stagnation period SP, xk+1

i,j will be replaced with a random
number between xk+1

i,j and xk
ibest,j

.
According to the above specific explanations, the com-

plete MDE procedure can be illustrated in Algorithm 1.
Algorithm 1 Procedure of MDE.
Begin

Set population size M ; the maximal iteration number K;
x = (x1, · · · , xN ); x̄ = (x̄1, · · · , x̄N );
Set CRmin = 0.5;CRmax = 1;P = 20; control parame-
ter µ = 4; count(i) = 0(i = 1, 2, · · · ,M).
Generate a series of random numbers in [0,1] for F 0

i (i =
1, 2, · · · ,M).
Initialize a random population P .
For k = 1 to K

Find the worst solution xk
iworst

and the best solution
xk

ibest
inP .

Calculate central solution
xk

center = 1
M−1

∑
i 6=iworst

xk
i .

CRk ∼ Ud(CRmin, CRmax).
For i = 1 to M

If i 6= iworst

F k
i = µ× F k−1

i × (1− F k−1
i ).

Randomly generate three integers i1, i2 and i3
in the range [1,M ], and i1 6= i2 6= i3 6= i.
vk+1

i = xk
i1

+ F k
i × (xk

i1
− xk

i2
).

Else
For j = 1 to N

vk+1
iworst,j

= xk
center,j − step + 2× step× rand.

End For
End If
Randomly generate a integer jrand in [1, N ].
For j = 1 to N

If rand < CRi or j = jrand

uk+1
i,j = vk+1

i,j .
Else if

uk+1
i,j = xk

i,j .
End If

End For
If f(uk+1

i ) < f(xk
i )

xk+1
i = uk+1

i ; count(i) = 0.
Else

xk+1
i = xk

i ; count(i) = count(i) + 1.
End If
If count(i)=SP

For j = 1 to N
xk+1

i,j + rand(·)× (xk
ibest,j

− xk+1
i,j ).

End For
count(i) = 0.

End If
End For

End For
End
4 Detecting pupil boundary by MDE

Iris location is composed of pupil boundary detection
and iris boundary detection, and MDE is used to find both
boundaries in this paper. However, the image preprocess-
ing approaches of both detections are different before using
MDE. More specifically, the procedure of pupil boundary
detection is illustrated as follows:

4.1 Finding a pixel in pupil
All iris images used are from the Chinese Academy

of Sciences Institute of Automation (CASIA) eye image
database[18]. According to the distribution characteristics
of human eyes (As Fig.1), the gray level intensities of pupil
are obviously lower than those of iris and scleral. There-
fore, we can separate pupil from iris and scleral by bina-
rizing iris image, and the binary image is shown in Fig.2.

Fig. 1 Original iris image

Fig. 2 The binary iris image

Unfortunately, the eyelash remains in the binary im-
age, because the gray level intensities of eyelash are com-
parable to those of pupil. By observing the shape of eye-
lash and pupil, we can find that the size of pupil is larger
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than that of eyelash vertically. Therefore, we can find a
pixel in pupil by detecting the longest line segment verti-
cally in the binary image. The detailed steps can be stated
in Algorithm 2.

Algorithm 2 Procedure of detecting the line seg-
ment.

Begin
Initialize the maximal length lmax = 0
Set xstart = 3 × rows/20 + 1; xend = rows− rows/20;
ystart = cols/8 + 1; yend = cols− cols/8.
For j = ystart to yend

count = 0.
For i = xstart to xend

If Ibin(i, j) = 0
count = count + 1, iend = i.

Else
If count > lmax

lmax = count; bend = bstart = j;
aend = iend; astart = iend − count + 1.

End If
count = 0.

End If
End For

End For
End

Where ‘rows’ and ‘cols’ are the numbers of rows and
columns of an iris image, respectively; lmax denotes the
length of the longest black line segment vertically. Ibin de-
notes a binary iris image, and Ibin(i, j) denotes its pixel
located in the ith row and the jth column. (astart, bstart)
and (aend, bend) are the coordinates of the top pixel and
the bottom pixel of the detected line segment. The hu-
man eyes are usually captured in or near the center of
a image, thus, we cut the binary image so as to reduce
the searching region of the longest black line segment
vertically. Specifically, the searching region is given by
{(i, j)|xstart 6 i 6 xend, ystart 6 j 6 yend}. By using
the method in Algorithm 2, we can detect the required line
segment l which is shown in Fig.3.

Fig. 3 The detected line segment in pupil

After detecting the line segment in pupil, we can de-
termine the midpoint Pmid of line segment l. More specifi-
cally, suppose the coordinate of Pmid is (xmid, ymid), then
we have xmid = (astart + aend)/2 and ymid = bstart.
4.2 Extracting edge and denoising

Canny operator[19] is a useful tool of edge extraction;
therefore, we use this operator to extract the edge of iris
image which is shown in Fig.4.

It is clear from Fig.4 that there are several noises in
the edge image, and they are eyelash, eyelid, and so on.

In order to overcome these noises, we determine a denois-
ing region according to the length (lmax) and the midpoint
(Pmid(xmid, ymid)) of line segment l. In other words, the
preserved region used for iris inner boundary detection is
stated by the following formulas:

{(x, y)|xmid − L 6 x 6 xmid + L,
ymid − L 6 y 6 ymid + L}. (9)

Where L = 0.5lmax + 0.2lmax = 0.7lmax. As can be seen
from Fig.3, the length (lmax) of line segment l is close to
the diameter of iris inner circle (pupil boundary). Roughly
speaking, the region {(x, y)|xmid−0.5lmax 6 x 6 xmid+
0.5lmax, ymid−0.5lmax 6 y 6 ymid +0.5lmax} can cover
almost the pupil boundary. Nevertheless, this approxima-
tion may miss out some important pixels of pupil boundary.
In order to avoiding this situation, we enlarge this region
by increasing L from 0.5lmax to 0.7lmax. Based on this
enlargement, we can obtain the preserved region which is
shown in Fig.5.

Fig. 4 Edge image based on canny operator

Fig. 5 The square region used to perform pupil
boundary detection

As can be seen from Fig.5, the square region can cover
the complete pupil boundary. Moreover, most noises can
be overcome by eliminating the pixels outside this square
region. According to the above denoising method, we can
obtain the denoised edge image which is shown in Fig.6.

Fig. 6 The denoised edge image for pupil boundary detection



1198 Control Theory & Applications Vol. 30

4.3 Using MDE to detect pupil boundary
After denoising the edge image, we will use MDE to

find the optimal inner circle which can fit the pupil bound-
ary. Most importantly, MDE takes the function f related to
the accumulator array of Hough transform as its objective
function. In detail, the accumulator array is given by

H(xc, yc, r) =
n∑

j=1

h(xj , yj , xc, yc, r), (10)

where

h(xj , yj , xc, yc, r) ={
1, if (xj − xc)2 + (yj − yc)2 − r2 = 0,
0, otherwise. (11)

Where r denotes the radius a circle, and (xc, yc) repre-
sents its center coordinate. According to Eqs.(10) and
(11), the parameter combination (xc, yc, r) which maxi-
mizes H(xc, yc, r) is commonly chosen as the parameters
of the inner circle of iris. It should be noticed that Hough
transform is actually a maximization problem. In order to
use MDE, we only need transform this maximization prob-
lem to a minimization problem, and the objective function
f is given by

f = min
xc,yc,r

−H(xc, yc, r). (12)

Before applying MDE to inner location, the ranges of
problem variables should be determined. For inner loca-
tion, the abscissa of the center of inner circle is in the range
of [xmid −∆x, xmid + ∆x], and the ordinate of the center
of inner circle is in the range of [ymid −∆y, ymid + ∆y].
In addition, the radius of inner circle is in the range of
[rmin, rmax]. Based on these settings, we can obtain the ac-
curate inner location image by using MDE, and it is shown
in Fig.7.

Fig. 7 The accurate inner location image

5 Detecting iris boundary by MDE
5.1 Eliminating noises

Extract the iris edge image using canny operator[19],
and the edge image is shown in Fig.8.

According to Fig.8, there exist three noises in the
above edge image, and they are eyelash, iris inner bound-
ary and iris texture, respectively. These noises are harmful
to the accuracy and speed of outer location. Thus, it is nec-
essary to adopt useful methods to eliminate these noises
and decrease their impacts on outer location. More specif-
ically, two kinds of noise areas are are determined in terms

of the parameters (xinner, yinner and r) of the inner circle
o, and they are illustrated as follows:

The first noise area is outside the iris outer boundary.
Suppose this area is represented by set Ω, then its opposite
area is represented by set Ω̄ which is given by

Ω̄ = {(x, y)|otop 6 x 6 obottom, oleft 6 y 6 oright}.
(13)

Here, otop = xinner − (r + Rmax)/2, obottom = xinner +
(r+Rmax)/2, oleft = yinner−1.1Rmax, oright = yinner+
1.1Rmax. Some noises including eyelash and eyelid can
be eliminated in set Ω. Regarding the value of 1.1Rmax,
if it is set to a small value such as 1.01Rmax, 1.02Rmax

etc., the iris outer boundary is likely to be eliminated. If
it is set to a large value such as 1.2Rmax, 1.3Rmax etc.,
the noises beside iris outer boundary will not be overcome
well. Therefore, the value of 1.1Rmax is suitable for keep-
ing a balance between eliminating iris texture and preserv-
ing iris outer boundary.

Fig. 8 The edge image

The second noise area is inside the iris outer boundary.
Suppose this area is represented by set Φ, then it is given
by

Φ̄ = {(x, y)|1 6 x 6 cols, yleft 6 y 6 yright}. (14)

Here, yleft = yinner− (r + Rmin)/2, yleft = yinner + (r +
Rmin)/2. This area are mainly composed of eyelash, iris
inner boundary and iris texture.

By eliminating the noises in the above two kinds of ar-
eas, we can obtain the denoised iris edge image, and it is
shown in Fig.9.

Fig. 9 The denoised iris edge image

According to Fig.9, most noises including eyelash, iris
texture and iris inner boundary have been eliminated from
the iris edge image. Therefore, the above denoising pro-
cedure plays a significant role in increasing the speed and
accuracy of outer location.
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5.2 Accurate location of iris boundary by using
MDE

After denoising the iris edge image, we will rely on
MDE to find the optimal outer circle which can fit the iris
boundary. Moreover, MDE chooses the function f related
to the accumulator array of Hough transform as its objec-
tive function (As Eq. (12)). Before applying MDE to outer
location, the ranges of problem variables should be deter-
mined. For outer location, the abscissa of the center of
inner circle is in the range of [xinner−∆X, xinner +∆X],
and the ordinate of the center of inner circle is in the range
of [yinner − ∆Y, yinner + ∆Y ]. In addition, the radius of
outer circle is in the range of [Rmin, Rmax]. Therefore, we
can find accurate iris boundary by using MDE, and it is
shown in Fig.10.

Fig. 10 The accurate outer location image

6 Experimental results and analysis
The Chinese Academy of Sciences Institute of Au-

tomation (CASIA) eye image database[18] is utilized to per-
form the following experiments. Furthermore, 200 iris
images from different individuals are chosen to investi-
gate the efficiency of MDE on performing iris location.
The iris location algorithm based on MDE is executed in
MATLAB on the Intel(R) Core(TM)2 2.30 GHz PC. To be
more specific, the MDE parameters include population size
M = 30; the maximal number of iterations K = 100; con-
trol parameter µ = 4; stagnation period SP=20; the min-
imal crossover rate CRmin = 0.5; the maximal crossover
rate CRmin = 1. In the mean time, problem parameters
are determined as follows: the problem dimension N = 3;
For inner location, ∆x = 20; ∆y = 20; rmin = 20;
rmax = 65; For outer location, ∆X = 20; ∆Y = 20;
Rmin = 85; Rmax = 125; Additionally, four other iris
location algorithms are selected to compare with ILA-
MDE, and they are Hough transform (HT)[2], differential
evolution algorithm based on self-adapting control param-
eters (SADE)[16], opposition-based differential evolution
(ODE)[20] and adaptive differential evolution with optional
external archive (JADE)[13], respectively. The above five
methods are used to implement iris location for 200 iris,
and the experimental results are recorded in Table 1.

Table 1 The computational times of HT, SADE, ODE, JADE and MDE for iris location

Problem Algorithm tmin/ s tmax/ s tmean/ s tstd/ s PTS/ % SR/ %

HT 1.7559 5.8383 2.8774 0.6934 76.48 98
SADE 0.6376 0.8204 0.6826 0.0335 0.84 98

Inner location ODE 0.7450 1.2538 0.8523 0.0872 20.58 98
JADE 0.6459 0.7777 0.6809 0.0251 0.59 98
MDE 0.6170 0.8279 0.6769 0.0325 — 98

HT 3.7023 9.0476 5.5577 0.9373 85.89 97.5
SADE 0.7228 0.9490 0.8015 0.0474 2.16 97

Outer location ODE 0.9796 1.6930 1.2265 0.1190 36.06 97
JADE 0.7568 1.0929 0.8518 0.0670 7.94 97.5
MDE 0.6746 0.9485 0.7842 0.0393 — 97.5

HT 6.2522 11.5756 8.4351 1.1064 82.68 96.5
SADE 1.3747 1.6676 1.4841 0.0610 1.56 96.5

Complete location ODE 1.7966 2.4605 2.0788 0.1448 29.72 96.5
JADE 1.4113 1.7688 1.5327 0.0721 4.68 96.5
MDE 1.3295 1.6317 1.4610 0.0526 — 96.5

Here, tmin and tmax represent the minimal time and
maximal time of iris location, respectively. tmean repre-
sents the average time, and tstd represents the standard de-
viation. The term SR stands for success rate. For measur-
ing the improvement, PTS (percentage of time saving) is
defined to measure the time saving of iris location based
on MDE to the other four methods, and it is given by

PTS = (tother − tMDE)/tother, (15)

where tMDE denotes the time of iris location based on
MDE and tother denotes the time of iris location based on
any other method.

According to four criterions (tmin, tmax, tmean and

tstd), MDE performs better than the other four methods
for iris location in most cases. To be more specific, MDE
achieves the smallest values of tmin, tmax, tmean and tstd,
and they are 0.6746 s, 0.9485 s, 0.7842 s and 0.0393 s, re-
spectively, for outer location. Moreover, the values of tmin,
tmax, tmean and tstd obtained using MDE are also smaller
than those of the other four methods for complete location,
and they are 1.3295 s, 1.6317 s, 1.4610 s and 0.0526 s, re-
spectively. Furthermore, the average execution times of
HT, SADE, ODE, JADE and MDE are 8.4351 s, 1.4841 s,
2.0788 s, 1.5327 s and 1.4610 s per image, whose size is
480 × 640, thus, MDE is the fastest. According to the
term PTS, MDE saves the computational time by 82.68%
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of the HT’s, 1.56% of the SADE’s, 29.72% of the ODE’s,
and 4.68% of the JADE’s in average. Although the supe-
riority of MDE over SADE and JADE is small in terms
of the criterion PTS, even a little time saving is critical
to the efficiency of iris location. Additionally, the success
rate of MDE is the same as those of the other four methods
for the inner location, and it is equal to 98%. Regarding
the outer location, the success rate of MDE is the same as
those of HT and SADE, and it is higher than those of ODE
and JADE. With respect to the complete location, all the
five methods have the same success rate, which is equal to
96.5%. In fact, the success rate of each iris location algo-
rithm does not only depend on the searching method such
as HT, SADE, ODE, JADE and MDE, etc., but also de-
pends on the tools of edge extraction such as canny opera-
tor[19], sobel operator[21] etc.. As is well known, the differ-
ence between the average gray level intensity of pupil and
that of iris is notable. Therefore, the inner boundary can
be easily obtained by using canny operator. In contrast, the
difference between the average gray level intensity of iris
and that of scleral is smaller, and the outer boundary ex-
tracted by canny operator usually loses its upper and lower
segments because of the masking of eyelashes and eyelids.
Thus, the outer boundary could not be extracted easily by
canny operator in some cases.

7 Conclusions
In this paper, a modified differential evolution (MDE)

algorithm is proposed for iris location. MDE makes three
improvements on the original DE algorithm. First, MDE
adjusts scale factor F and crossover rate CR by using
chaotic sequences and uniform distribution, respectively,
because both distributions are beneficial to increasing the
diversity of candidate solutions and the randomness of
searching. Second, MDE modifies the mutation operation
of the worst solution in terms of center solution, which pro-
vides a promising searching direction for global searching.
Third, MDE updates the trapped solutions according to the
best solution, which is helpful to enhance its convergence.
In addition, we introduce two kinds of denoising methods
to decrease the effects of noises on inner and outer loca-
tions. Finally, correct results of iris location are obtained
by using MDE and the other four methods in most cases.
According to experimental results, our proposed MDE has
demonstrated higher efficiency in saving execution time
when compared to the other four methods for iris loca-
tion. In this paper, our main work contains denoising edge
image and searching inner and outer circles. In order to
further improve the success rate of iris location algorithm,
our subsequent work will concentrate on the modification
of the canny operator, which is beneficial to improving the
quality of edge image.
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