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Abstract: This paper presents an optimal terminal iterative learning control (TILC) approach by considering only the
terminal output tracking error instead of the whole output trajectory tracking error. The control signal is directly updated
from the error information of the given final terminal point. The key contributions of the presented optimal terminal iterative
learning control (ILC) is that the controller design and analysis only uses the measured I/O data without any modeling
information of the plant and the monotonic convergence is guaranteed. In this sense, the proposed controller is a data-
driven approach. Both rigorous mathematical analysis and simulation results illustrate the applicability and effectiveness
of the proposed approach.
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1 Introduction

There is a new control scenario: i) the system dy-
namics ends in a finite time interval and repeats, ii) the
only available measurement is the terminal state or ter-
minal output, iii) and the ultimate control objective is
also the terminal state or terminal output instead of the
whole trajectory of the system. For example, in the
rapid thermal processing (RTP) of wafer industry!!!, the
exact measurement of wafer temperature is almost im-
possible due to the insufficient measurement capability,
and the ultimate control objective is to control the de-
position thickness (DT) at the end of the RTP cycle.

By virtue of repeatability, iterative learning control
(ILC)>! is most suitable to improve system control
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performance using its learning ability from repetitions.
However, the conventional ILC that drives to follow a
desired output trajectory in a given time interval through
learning iteratively, is not applicable to such a control
task because the intermediate measurements of the sys-
tem state and output are impossible except for the ter-
minal output.

To overcome these problems, terminal iterative
learning control (TILC)!!! was extended from ILC the-
ory to use the terminal point only at the end of every
run. Now terminal ILC is becoming a new research di-
rection of ILC for the requirements of many practical
applications, such as chemical vapor deposition!!), ther-
moforming process!'?!, and chemical reactor!'!! in batch
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processes, as well as the point-to-point control in a two-
link flexible arm system!'?! and the station stop control
of a train!'¥. However, in comparison with applica-
tions, the existing theoretical results of TILC are too
few and mainly focus on P-type learning laws! ! 10:12-13]
and optimal learning mechanism!'¥ for linear systems.
The exact lower and upper bounds of coefficient matri-
ces in linear systems must be known a priori to select
the learning gain of P-type TILC so as to satisfy the
convergence conditions.

Although optimization based TILC!'¥ can guaran-
tee monotonic tracking error convergence and over-
come the poor transient performance along itera-
tion axis compared with P-type learning control
laws!!- 10127131 "3 major limitation of norm optimal ter-
minal ILC is the requirement of a perfect model to
calculate the learning gain via solving a Riccati equa-
tion. Similar to the existing norm optimal ILC ap-
proaches!!>~1°!, when the model is inaccurate, its mono-
tonic convergence is no longer guaranteed and learning
transients including large, rapid growth of the error or
even instability will occur. As a direct result, the nor-
mal optimal TILC is lack of flexibility regarding modi-
fications and expansions of the controlled plant in prac-
tice due to its dependence on the accurate known linear
model of the system dynamics.

For a practical nonlinear plant, however, the exact
linear model of the plant is often difficult to develop.
Sometimes, it is impossible. Furthermore, even though
a linear model is constructed, the optimal learning con-
trol system would inherit a born instability caused by
the unmodeled dynamics, which always exists in the
modeling process. For example, a common approach
optimal leaning control design for nonlinear systems is
to develop a linearization model using Taylor series ex-
pansion, while the neglected higher order terms will af-
fect the exact values of systems Jacobian matrices to
calculate the optimal control gains. Recently, [20] pro-
posed a neural network model based batch-to-batch op-
timal TILC strategy for nonlinear systems, but the se-
lection of a proper neural network requires some efforts
in practice.

It is worth pointing out that in many real processes,
a most prominent feature is the presence of vast volume
of data although there is lack of an effective process
physical model that can support control, fault diagno-
sis, scheduling, and decision making!?'=?*!. This moti-
vates us to explore a data-driven optimal terminal ILC
method, which does not require any model information
but the input and output measurements of the controlled
plants. Then we can enjoy not only extra good proper-
ties of the norm optimal terminal ILC, but also the little
requirements on the system dynamic model.

In this work, a new data-driven design for optimal
terminal ILC is developed for nonlinear systems. The
presented approach consists of an iteration-recursive
optimal learning law of control input and an iterative
optimal estimating law of partial derivative (PD). The
distinct features of the presented approach are as fol-
lows:

a) Itis proposed for a class of completely unknown
nonlinear non-affine systems and the only priori is the
existence of the boundary of system partial derivative
with respect to control input.

b) A linear incremental dynamical mapping rela-
tionship of input-output is developed between two con-
secutive iterations. It is quite different from the input-
output relationship based on lifting technology and su-
per vector transformation!'¥ since the latter is a static
mapping and cannot reflect the system dynamics real-
timely.

¢) The learning gain of the optimal control law is
calculated by using the iterative estimation values of PD
parameters not by solving a static Riccati equation like
the typical optimal approaches!'*'°!, and thus able to
be updated iteratively and flexible to the modifications
and expansions of the controlled plant.

d) The proposed approach is a data-driven model-
free control strategy, since the controller design and
analysis requires only the measurement I/O data with-
out using any model information of the plant.

The rest of this paper is organized as follows. Sec-
tion 2 gives the problem formulation. The optimal TILC
design is developed in Section 3. Section 4 shows the
stability and convergence of the TILC system with rig-
orous analysis. Some simulation results are provided in
Section 5. Finally, some conclusions are given in Sec-
tion 6.

2 Problem formulation

To clearly demonstrate the main idea, we first con-
sider a discrete-time single-input-single-output (SISO)
nonlinear discrete-time as follows:

ye(t +1) = fyr(t), uk), (1)
where ¢ = 0,1,--- , N is the sampling time index, N
is the finite time interval of the run-to-run system; k
indicates the system repetition number; y; () € R is
the system output, where only y,(/N) is measurable at
the end of every run; u;, € R denotes the system in-
put, which is time-invariant at all sampling time in the
same run; f is an unknown function and continuously
differentiable.
Over each trial, the relationship between the input
and output time-series can be expressed by the follow-
ing algebraic functions:



No. 8

CHI Rong-hu et al: An optimal terminal iterative learning control approach for nonlinear discrete-time systems 1027

yi(1) = f(yr(0), ur) = g" (yx(0), ur),

yi(2) = f(ye(1),un) = F(g" (yx(0), up), up) =
92(91@(0)?%)7

Yk(3) = f(yr(2),ur) = f(QQ(yk(O)auk)>uk) =
93(yk(0))uk)7

2
where 3, (0) is the initial value of system (1), g*(-,-),
-+« , g~ (-, ) are the corresponding nonlinear functions
and differentiable to all the arguments.
To reveal the dynamical relationship of system (1)
among iterations, one can explore the difference of
Ay, (N) along the iteration axis, i.e.,

Ayr(N) = yr(N) — yp—1(N) =
9~ (yx(0), ur) — g™ (Yr—1(0), up—1) =
g™ (e (0), ue) — g™ (4 (0) = Ayi (0), up — Awy), (3)

where Ay, (0) = yx(0) — yx—_1(0), Aup = up —up_q.
Using the mean value theorem,

Ayp(N) = g™ (y(0), ur) — [9" (y£(0), ur) —
giv(gk)Ayk(o) - giv(Ck)]Auk =
g}]zv(gk)Ayk(O) + g5 (C) Ay, 4)

0 0
879/’95:8% [5:(0)—|Ayk (0)],

To restrict our discussion, the nonlinear system (1)
is assumed to satisfy the following assumptions.

Assumption 1 System (1) is completely control-
lable.

Assumption 2 The initial value y,(0) is assumed
identical for every iteration k, i.e, ¥ (0) = yx—1(0) = ¢
with ¢ being a constant.

Assumption 3 ¢" has lower and upper bounds,
both are of the same sign and strictly nonzero, i.e., if as-
sume o the lower bound and a, the upper bound, then
either 0 < a1 < ag or 0 > g > . Without loss of
generality, in this paper we assume 0 < v < Q.

Remark 1 Assumptions 1-3 are quite standard as
these are widely considered to design a learning control
algorithm!'~2%, In addition, we just need the existence
of the lower and upper bounds in Assumption 3 without
requiring their exact values.

Remark 2 It is worth pointing out that g is the
equivalent process gain like that in linear case. How-
ever, in the non-affine case the process gain ¢’ is de-
pending on the control input w. Thus it is also necessary
to limit u, especially when g2 turns out to be a radially

where gl¥ = and &, €

unbounded function of u, i.e., lim |gY| — oco. In
|u|— o0

such circumstance we have to limit u to a compact set
S.,.. By virtue of the continuous differentiability of g2,
gY is bounded on S,>*). The boundedness of control
input « is guaranteed in the following discussion.

Remark 3 Note that it is essential that g©¥ # 0
for non-affine cases because the singularity yields a zero
process gain, hence the system is uncontrollable at the
singular points.

In terms of Assumption 2, Eq.(4) becomes

Ay(N) = 63 (G Awy = O Ay, (5)

where 0, = ¢~ (¢). According to Assumption 3,

0 < aq < 8, < as holds for all iterations k.
Eq.(5) can be rewritten as

Ye(N) = yp_1(N) + 0pAuy,. (6)

The control target of TILC is to track a given de-
sired output y4(/V) at the single terminal point during
system operation by generating an optimal control sig-
nal uq through trials.

3 Optimal terminal ILC design

Define tracking error e (N) = yq — yx(IN). Con-

sider an index function of the control input as follows:
J(ur) = lex(N)* + Mug, — up—s %, (N
where A > ( is a weighting factor.

According to Eqs.(6)—(7) can be rewritten as

J(ur) = |ya — ye-1(N) — O (u, — up—1)]> +
)\’Uk — Uk_l‘Q =
ler—1(N) = Op(ur, — up—1)* +

)\|Uk *Uk,1‘2. (8)
By the optimal condition, we have
PO
Up = Ug—1 + mek—l(]\[)a )

where p is a positive constant, added as a step-size con-
stant series to make the generality of algorithm (9), and
will be used in the following analytical convergence
proof.

Since 6}, is unknown, we give an estimate algorithm
for it. Consider a new index function as

J(ék) = |Ayr1(N) - ék(ukq — up—2)|® +
10 — 01| (10)
According to Eq.(6), we can rewrite Eq.(10) as
T(0r)= lyr-1(N) = (Us—2(N) = 1 Aug_y) —
(0 —0p_1) Ay |>+ |0 — 0,1 2. (1)

The estimate algorithm is shown as follows in term
of the optimal condition:

N(Ay-1 (V) — ék—lAuk—l)Auk—l

0, =01 +
k k—1 I[,L—’—Aui_l

12)
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where 0 < 1 < 21is a positive constant, added as a step-
size constant series to make the generality of Eq.(12),
and 6 is selected as 0y > ¢ > 0.

Remark 4 Without loss of generality, the initial
value éo in Eq.(12) can be chosen as zero if there is not
any information about 6, available.

Correspondingly, the control law (9) becomes

POy,
N2
A+ 065
In order to make the parameter estimation algorithm

(12) have a strong tracking ability, we present a reset al-
gorithm as follows:

ek = 60, if wk‘

Remark 5 The optimal terminal ILC (12)—(14) is
designed only by the system input and output measure-
ment data. In other word, there is neither the explicit
model dynamics nor the structural information of the
plant used in the presented terminal ILC.

Remark 6 Compared to other optimal TILC or
ILC methods, the presented optimal TILC law is non-
linear and the learning gain can be iteratively updated
by Eq.(12).

4 Convergence analysis

The validity of the above presented optimal termi-
nal ILC (12)—(14) is verified by the following theorem.

Theorem 1 For the general nonlinear system (1)
under Assumptions 1-3, applying the presented optimal
TILC (12)—(14), we can guarantee that:

) The partial derivative parameter estimation value
0, is bounded for all iterations k;

up = up—1 + ex—1(N). (13)

corsgnfy #sgnb,. (14)

b) The terminal tracking error e, (N') converges to
zero iteratively and monotonically as iteration number
k approaches to infinity, i.e., ;}LIEO er(N) = 0;

¢) The system terminal output y; (V) and the con-
stant control input uy, are bounded for all iterations.

Proof There are three parts for the theorem proof,
as shown in the following details:

i) The boundedness of estimation value ék

Define ék = 0, — ék Subtracting 6;, from both

sides of Eq.(12),
ék = ék% + (O — O—1) —
U(Ayk—1(N) - 6’k-1Auk—1)Auk—1

. (15
pt Aug_y >

According to Eq.(6), Eq.(15) becomes
ék = ék—l + (0 — Ok—1) —
77(91@71Auk71 - ékflAukfl>Auk_1
pt Aug_

Vol. 29
77Auk 1
1-— 0 + (0, — 0 16
( M+Ak1)k1(1@ k—1)- (16)
Taking norm of both sides of Eq.(16),
5 UAUiA ;i
0.l < |1 — ———||0k_1| +
0] < 11 = R
|0k — Or_1]. a7

Since 0 < n < 2 and p > 0, then there exists a
constant 0 < d; < 1 such that
nAu;_,
w4 Aui
According to Assumptlon 3, 0 <y <0, < as.
From Eqs.(17)—(18), one obtains

0<[1— y\¢<1 (18)

— Qg
—dy
(19)
Since the initial estimate error 50 is bounded, then
conclusion a) of Theorem 1 directly follows from
Eq.(16), i.e., both of Hk and Hk are bounded.
ii) The tracking error convergence.

105 < di 01| +az—0; < <dk\90|+

From Eq.(6) and control law (13), we have
er(N) = ya — yp—1 (V) — O (up, — up—1) =

09k9k .
ek_l(N) >\+02 _ (N>_
01,0,
1-— —Jer_1(N). 20
(1= o) (20)

According to the reset algorithm (14), apparently
the sign of ), and Hk is identical, hence 0k9k is positive
as a direct result. Furthermore, the boundedness of 8,
and 6, has been shown above, so by properly selecting
p and )\, one can assure that

6,0
0<1- ) <ay <1, 1)
A+ 67
Thus Eq.(20) yields
po 6
lex(N)] = |1 - \ k;ll p-1(N)] <

dyler—1(N)| < --- < dsleo(N)]. (22)

Apparently, when iteration k approaches infinity,
the terminal tracking error goes to zero iteratively and
monotonically.

iii) The boundedness of system output and control
input.

Since the target terminal point y4(V) is given
bounded and the tracking error e (IN') has been shown
convergent and bounded for all iterations &, then the
boundedness of y;, (V) is obvious.

The boundedness of 6y, yields

—| < M, (23)
A+ 67
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where M is a positive scalar.

It is clear that

Up = Up — Up—1 T Ug—1 — *** +
k
ul—uo—i-uozuo—l—ZAuj. (24)
j=1

In terms of Egs.(13)(22)—(24), using the Schwarz

inequality, we have

k
k] < Juol + 32 [Au;| <
j=1

k é
PUL
Ug| + —||e;—1(N)| <
‘0’ jzl|)\ 9i||]1( )‘

k
|uo| + M > &'~ Heo(N)| <
j=1

d
[uol + M lea(N)]. (25)
Thus, the control input is bounded for all iterations
k = 1,2,---. And the conclusion ¢) of Theorem 1 is
obtained.

5 Illustrative examples

Consider an ethanol fermentation process®®,
whose mechanistic model in the form of differential al-
gebraic equations (DAE) is described as follows!?%). It
should be noted that the mathematical model is assumed
to be unavailable, and just serve as the I/O data genera-
tor for the systems to be controlled, no any information
of them will be included in the controller design.

( dl‘l I
I = C.’Bl — ;471,,
1 —
72 _ o0, - 150 =22)
dt T4
E = D$1 au,
CL'E4 o
a
Yy = s,

where C = and D =

T+ 23/16)(0.22 + )

(1 4+ x3/71.5)(0.44 + z5)
centration; x, is the substrate concentration; s is the
product concentration; and x4 is the liquid volume of
the reactor. x4 is limited by the 200 L vessel size. The
initial condition is specified as z(0) = [1 150 0 10]T.
The batch length t; is fixed to be 63.00 hours and di-
vided into N = 10 equal stages (i.e., sampling time
h = t;/N = 6.3). The feed rate into the reactor u is
used for control and constrained by 0 < u < 12(1/h).
There is no outflow, so the feed rate must be chosen so
that the batch volume does not exceed the physical vol-
ume of the reactor.

The desired output y4(NN) = 103.53, was selected

; a1 is the cell mass con-

from the literature!®!. The controller parameters of the
presented optimal terminal ILC (12)—(14) were chosen
asp=0.1,7=1,\ =1, u = 1. Fig.1 shows the con-
vergence of terminal error with respect to the iterations.
The horizon is the iteration number and the vertical axis
is the absolute values of terminal tracking error. Fig.2
shows the control input profile with respect to the itera-
tions.

It is obvious that the presented approach has the
converging properties. The terminal tracking error con-
verges to zero iteratively, and the control input signal is
bounded for all iterations and converges to its optimal
value with iteration number increasing.

50
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2571
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Fig. 1 The terminal tracking error profile

4.0
3.5 f
3.0

2.5

2.0

Control inputs

0 10 20 30 40 50
Iterations

Fig. 2 The control signal profile

6 Conclusions

The requirement for data-driven control approaches
arises in more and more practical applications. This
paper shows how it may be tackled in the optimal
TILC design. The presented data-driven optimal de-
sign scheme provided a general framework of TILC for
nonlinear systems. The controller design and analysis
only depends on the real-time measured I/O data of the
plant without requiring any other model information.
Rigorous mathematical analysis and extensive simula-
tions are developed to illustrate the efficiency of the
proposed approach.
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