EHEERE LA
Control Theory & Applications

o5 29 B 8
2012 /£ 8 H

Vol. 29 No. 8
Aug. 2012

T U BT 0 A 2 BUR SRR A EE S

M, =L

(EREE TR ARl S TRE2ERG 148 T 510640)

WE: 9T — B L SR G MR R 8. 3L T L i ik, i T O i8R 5 —
FROB AT B IEN 7 AR kAR S 4 k. S T B SR S 1, IR XAVEEON S BUER T
PR S,

KSR EARE I B U AT A SRS

hE S %S TP273 XRRFRIRAD: A

Iterative learning control of

distributed parameter systems based on geometric analysis

TIAN Sen-ping, WU Xin-sheng
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Abstract: Iterative learning control problem for uncertain nonlinear distributed parameter systems is discussed. Based
on geometric analysis, a new nonlinear iterative learning control algorithm with adaptive factor is proposed for distributed
parameter systems. Furthermore, the convergence conditions of the new algorithm are deduced, and the new algorithm

convergence is proved by employing the generalized A norm.
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1 Introduction

In practical engineering, distributed parameter sys-
tems have extensive application, which are described by
partial differential equation or partial differential inte-
gral equation. And there are many research results on
the control problems for this kind of systems!!™!. Ttera-
tive learning control algorithm was emphasized since it
was proposed by Arimotol! in 1984. Now, many re-
search results!*!%! relating to it have been produced,
which makes it popular. Up to now, the research results
applying iterative learning control to distributed param-
eter systems are not fruitful. Xie et all'''?! discussed
the iterative learning control problems for linear and
nonlinear distributed parameter systems and proposed
linear iterative learning control algorithms. Dai et al'!*!
discussed the iterative learning control problems for un-
certain distributed parameter systems by employing ge-
ometric analysis method!'* and proposed a nonlinear it-
erative learning control algorithm by adjusting the first
term on the right of the normal P-type algorithm.

Based on the geometric analysis method similar to
that in [13—14], this paper studies the iterative learning
control problem of an uncertain distributed parameter

Received 8 May 2012; revised 10 July 2012.

system, proposes a nonlinear iterative learning control
algorithm with adaptive factor by adjusting the second
term on the right of the normal P-type algorithm, and
proves that the new algorithm is convergent by employ-
ing the norm defined literature [14].

2 Problem statement and new algorithm

Consider an uncertain distributed parameter sys-
tems in the following form:

0Q(x,t)

5 = DAQ(zt) + A)Q(z, )+
B(t)u(z,1), (1)
y(z,t) = C)Q(z, t) + G(t)u(z, 1),
(z,t) € 2 x[0,T],
where Q€R™, ueR™, ycR!, D, ACR"*", BER™"™,
GeR™™ and A, B, C are uncertain bounded matrices,
D is a diagonal matrix, D=diag{d;,ds,-- ,d,},0<
. 0?
d<d;<oo(i=1,2,---,n), dis given, A =) pyes
i=1 OT;
is a Laplace operator on {2, and {2 is an open bounded
domain of R? with smooth boundary 942.
Assume that the initial-boundary condition of sys-
tem (1) is
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aQ(a:,t)—f—ﬂaQ;i’t) =0, (z,t)€dN2 x R*, (2)

Q(z,0) = Qo(x), = € £, 3)

,Oén}, /6 = diag{ﬁla/62;

oo Bt =0, 6 >0, Ew is the outward normal
v

derivative on Of2.

For the controll object described by system (1), the
desired output we expect is yq(z,t). Now, our target
is to look for a corresponding desired input u4(z, t), so
that the actual output of system (1)

Yy (z,t) = C(t)Qalz, t) + G(t)ua(z,1)
will be close to its desired output y4(x, t). Since system
(1) is uncertain, it is not easy to get the desired control.

We will use iterative learning control method to gradu-
ally get the control sequence {uy(z,t)}, so that

where o = diag{ay, ag, - -

lim uy (z,t) = uq(z, t).
k— oo

The basic P-type iterative learning control algo-

rithm to obtain the control sequence {uy(x,t)} is
Upr1(x,t) = ug(z,t) + I'(t)er(x,t), %)
where ey (x, t)=yq(x, t)—yx(x, t) is output error.

The basic idea of geometric analysis is: to make
a sequence approach zero fast, the norm of the vector
corresponding to the sequence only needs to become
smaller and tend to zero fast. Regarding every term in
Eq.(4) as a vector, we can obtain a graph of geometric
analysis as Fig.1(a).

In order to make sequence {uy(z,t)} convergent
fast, the norm ||I"(¢)ex(x,t)| only needs to become
smaller and tends to zero fast. For this reason, we draw
a vertical line [ of vector u;, through point b as Fig.1(b).
When cd /| uy, similar to the analysis of literature [14],
we can get an iterative learning algorithm as follows:

Upr1(x,t) = up(z,t) + I'(t)e(x,t) —
up (z, ) (e (x,t
k ) E\T, )

where t€[0,T], 0 = a(l — exp(=b|lex(z,t)|)),
(a,b) € (0,1) x [0, +00) are adjustable constant, de-
termining the change condition of adaptive factor o cor-
responding to error change. Because (a,b) € (0,1) x
[0,4+00), 0 € (0,1). Let yp(x,t) be the kth output
of system (1) corresponding to the kth input uy(z,t),

I'(t) is a learning gain matrix.

(b)
Fig. 1 Graph of geometric analysis

In the course of learning, we suppose the initial
states of system (1) is in the following form:

Qk(l’,O):Qﬁk(ﬂf), HAS Q? k:132737"' ) (6)
‘|90k+1($) - @k(z)Hig < lrkv re [07 1)7 [ >0. (7)
3 Convergence of the new algorithm

We take the norm
lexllzzace) = sup{(llex(-, t)|7-e7)€"}
0<t<T
in the following discussion.

Lemma 103 If p, 0 € (0,1), and for positive
dlpo
I—p
& > 1 and appropriate large number A > 0, so that for
the positive ¢, h, F((A,§) € (0,1), where

¢p  Ledi(l +0)?
F(\E =
Lemma 2 For the appropriate large A and £ > 1,
we have the following estimation

1Qk( )l (2.2 <

g
1(ré)* + m(l +0)’brlerllzzaey, 9

constants d, [, < 1 is satisfied, then there exist

+otdl). (8

where

Qk(x>t) = Qk+1(x>t) - Qk(x7t)7
br = max ”F(t>H2a g :ggi)i()‘maX(B(t)))v

0<t<T

h = max(Anax (A(t) + AT (1)) + Anax(B(1))).

0<t<T

Proof Because

2 Qe 1) — Q1) =
At)(Qrsr(z, 1) — Qu(z, 1)) +
B(t)(ugs1(z,t) — ug(x,t)). (10)

Using (Qri1(z,t) — Qr(x,t))T to left-multiply
both sides of Eq.(10), then it becomes
o Q0 Qul, 1) =

Qi (2, ) DAQw(x, 1) + Qi (2, ) A(t) Qu (2, t) +
Qp (z,t)B(t)uy(x, t),
where uy(x,t) = upsq(x, t)—ug(x, t).
Integrating formula above about z on {2, and em-
ploying Ostrogradsky-Gauss formula, we can get



1084 Control Theory & Applications Vol. 29
d .~ 2 matrix I'(t) of the algori i
< . _ gorithm (5) satisfy
IR 1) 22) ; -
- ) D || -G D) |P<p, 3p+r<1;2) L2620
2 [ QF (@ )DAQ(w, t)dx + . S 1=3p
0 1. Then, algorithm defined by Eq.(5) is uniformly con-

| QF @, (AT (1) + A®) Qu(ar, )da +
2 fQ QT (z,t) B(t)uy(z, t)dz <

2] QI ) DAQu(z, t)dS -

2 fQ VQT (z,t)DVQy(z, t)dz +

Ao (AT (6) + A, 172 +
Amax(B()(1Q1 (- 122 + 1T (- 1)1 72)-
Due to

Qk: (z, )DAQk(x t)|zcon=

Qi (z,t)D (= 'aQy (2,1)) lsesn < 0.
And then
d _
SR DI <
—2d|[VQr(, )72 + Amax (AT (2) +

ADIQKC DT +

)\max(B(_t>)(HQk-('7 t)H%i + |t (- t)]32) <
—2d||VQi (-, )| 7+ R Qu (- D)1+ gllan (- 1)I[7 <
h|Qw(- D172 + gllaw(-,t)|7-. (11)

Integrating (11) about ¢, and employing Bellman-
Gronwall inequality, we can get

1Rk D72 <N1Qk (- 0720 +
g [ M ()] Fads.
Choosing appropriate large positive number A, so

that A > h, multiply both sides of the formula above by
e MEF then it becomes

1@ D20 <

[ O] h)*é

g [ e O a5 [Faegkds <
1Qx(- >umgk

t
Illwrsr = ukll 2z fo e <

1(ré)* + 3 ﬁ s = wellzz e
From Eq.(5) it follows that
[t (2, 1) = wp(z, )| < (L+0) |1 (E)ex (2, 1),
then
[ursr = urllzeae) < (14 0)brller] e e,
o)

Q- )H<L2 AE) <

1(rg)* +ﬁ(1+0 brlerlliz ey (12)

The following are the main results of this paper.
Theorem 1 If the parameter o and learning gain

vergent on [0, 7] and
khm H€k(.%',t)HL2 = 0, Vit € [O,T],

where bg= max |G(t)]?.
0<t<T

Proof From system (1) and algorithm () it fol-
lows that
ert1(2,t) = ep(z,t) — yrra (2, 1) + y(z, 1) =
en(z,t) — G(t) (upra (2, t) — up(z, 1)) —
C)(Qur(x,t) — Qulz, 1) =
(I=G)I'())ex(x,t) —
C(t)(Qur1 (2, 1) —Qp(z, 1)) +

uy (, ) (t)ex(, 1)
oG(t) up (x, t)ug(z,t) b

ex(z,t) + Cr(z,t) + Gi(,t),
where
ér(x,t) = (I ( k(
Cr(z,t) = —C(t)(Qusr(z, 1) — Qr(x, 1)),
t

Gr(z,t) = 0G(t)

And then
T, (2, O (2,8) =
(e (0 )+ O (2, )+ G (2, ) -
(ex(m,t)+Cx(z,t)+Gr(x, 1)) <
3(6k (xat)ek(x7t) + 7;($,t) 7k(z7t) +
G (2, 1) G, 1)) =
B(llen(@, ) + 1Ck(z, )1* + | Gul, 1)II*) <
BII=G(O) I ()| lex(ar, )2 +
BICOIEIQu(, DI+ 30| GO (E)ex(, DI
3pllex(, )II* + 3be||Qr(x, )II* +
3obebr|ler(z, t)]?, (13)
where bC:Ei’i{”C(t)”Q}'
Integratir\lg\(13) for x € (2, we get
lewsi( OlI7: <
3pllex(z, )22 + 3bel| @z, )22 +
3obabr|len(z,t)||3:.
And then we have

lex (-, 8)]122 <
k-1 ) _
(30) lleol:, )32+ 3 (3p) 7 Bbe Qi )3 +

obabr|lei(-,)]*).

Multiplying both sides of formula above using
£ke= (¢ > 1) and employing Eq.(12), then it becomes

(lex (- B)][728")e™ <
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(306)"leo (-, t) |72~ +
k-1

2= (36p)M e (Bbel(Er)" +

=1

Sbcg
A—h
3obcbrllellz ) <

k—1
Jeall ez + 3= (389)* 6 (Bbel(er)’ +

3b
S U R 1 [PV
3obabrleill(zae))- (14)

So, if A is sufficiently large, then from Lemma 1,
we have & > 1, making F'(\, &) < 1,and & (3p+7)
< 1. Replacing the previous & with &;, then F'(\, &) =
F(X, &), where

3¢p  3gbebr(1+ o)
F(&N) =
From Eq.(14), we get
(llew (-, t)lZ2€")e™ <

k71 . .
[eoll(z2,5) + ;(3§p)’“”’13€bcl(§7“)’ +
F(&,A) sup {llell 2@}

X

(L4 0)*brllell w2 +

+ 3¢obebr).

then
leillz2.ae) <
lleall(z2,n) + 3bclE(E(Bp + 1)) " +
FEN) s flledlog} <

1<ig

lleoll (2, + 3bclé+F (&, N) 1S<1_lgk{|!6iH(L2,A<s>>}-

Because F'(\, &) € (0,1), and
leall(z2 ) + 3bolr*

sup {lleillzz )} <

1<i< 1 - F(é—’ )\)
And then
ler(- )72 < €77 sup {lleillzz @)} <

£kAT lleoll(z2.n) + 3bc
- F<£7 )‘) ’
since £ > 1, then
Jim [Jex (D)3 = 0, Vi € [0,7]

The uniform convergence of {uy(x,t)} can be
proved from the previous process.
4 Conclusions

This paper has discussed the iterative learning con-
trol problem for distributed parameter systems, which
has extensive application in practical engineering. Us-
ing the method of geometric analysis, we have obtained
a new nonlinear iterative learning control algorithm of
distributed parameter systems. And the research we do
is not only an exploration for the iterative learning con-
trol applied to distributed parameter systems, but also

an enrichment for the iterative learning control method
based on geometric analysis.
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