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Pulse compensated iterative learning control
to nonlinear systems with initial state uncertainty

RUAN Xiao-e, ZHAO Jian-yong

(School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an Shaanxi 710049, China)

Abstract: A type of rectangular pulse is adopted to compensate for conventional proportional-derivative-type first-
order and second-order iterative learning controllers of nonlinear time-invariant systems with initial state uncertainty. The
tracking error is measured in the form of Lebesgue-p norm and the tracking performance is analyzed by the technique of
generalized Young inequality of convolution integral. The analysis shows that the asymptotical tracking error is incurred by
the initial state uncertainty and can be eliminated by tuning the compensation gain in the presuppose that the proportional
and derivative learning gains together with the Lipschitz constant of the nonlinear state function are properly chosen to
guarantee that convergence factor is less than one. Numerical simulations exhibit the validity of the theoretical derivation
and the effectiveness of the compensation strategy.
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1 Introduction

As studied for robotic systems by Arimoto!!!, tar-
get trajectory tracking is one of the important topics. In
this regard, iterative learning control (ILC) has become
a popular strategy in intelligent control community. The
basic mode of the ILC scheme is that the system oper-
ates on a fixed finite time interval to track a unique de-
sired trajectory. It is the multi-operation feature that has
made the ILC mechanism feasible to make use of the
observed tracking error of the current operation to up-
grade its input so as to generate a control input for the
next operation. Owing to its satisfactory tracking per-
formance by using less prior system knowledge, ILC
has been widely applied to repetitive operations includ-
ing robot manipulations, batch industrial processes and
so on!>!,

For most of the existing ILC investigations, a basic
postulate is that the initial state of the system at each
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cycle is to reset at the desired state!®®!. But, in the
real world, it is difficult to always reset the iteration-
wise initial state precisely at the desired one due to un-
avoidable noise produced by instrument sensitivity lim-
itation or unidentified disturbance. As such, an early
study! has reported that a small mismatch of the ini-
tial state might deteriorate the learning process. To
handle the deterioration, the proportional tracking error
has been introduced into the error derivative-type (D-
type) iterative learning rule, formed as a proportional-
derivational-type (PD-type) rule, in order to make the
tracking error smaller'”. This implies that the PD-
type scheme is better than the D-type scheme in terms
of improving the learning performance. Further, for
the initial state uncertainties in a mean form, an av-
erage operator-based PD-type iterative learning control
strategy has been developed to drive the system to fol-
low a desired trajectory as close as possible, in which
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the asymptotical tracking discrepancy is estimated by
the system parameters and the original initial state mis-
match!l,  Meanwhile, pieces of investigations have
focused on the robustness of the ILC schemes con-
cerning initial state shifts issue for nonlinear and time-
discrete systems!'>"'¥l. Those tracking ILC strategies
for the initial state uncertainty issue are, however, ordi-
narily error-based forms and performance feature anal-
ysis. An ideal method is to compensate for the exist-
ing ILC scheme by single impulse signal''*!, but this is
not practically executable. Another active method has
been to rectify the P-type ILC scheme by a sequence
of iteration-varying polynomial functions of time vari-
able!'®!. The investigation exhibits that the rectifying
action may alleviate the tracking error incurred by the
initial state uncertainty effectively but mildly perhaps
because that the updating ILC law has no proportional
error modification and rectifying action is mild.

Recall that, regarding to the tracking error which
is a time-varying function over the fixed operation pe-
riod, its lambda-norm is defined as the supremum value
of the weighted tracking error function by an exponen-
tial function of minus time variable multiplying a pos-
itive parameter lambda. Due to the weighting mode
of the lambda-norm, which is mostly adopted for the
performance analysis in the above-mentioned litera-
tures, the sufficient largeness of the parameter lambda,
which is required to guarantee the convergence, may
extremely suppress the tracking error function. This
also may cause the neglect of the fact that the system
state dynamics and the proportional learning gain of the
ILC rule does influence the convergence!!”!. Besides,
the supremum norm evaluates the point-wise maximum
without considering the operation interval length. In
this circumstance, even though the iteration index is
so large that ensures the tracking error in lambda-norm
seems very small, the iteration-wise control input gen-
erated by so-called convergent ILC scheme may possi-
bly drive the system not to track the desired trajectory
within a practical engineering error tolerance.

To avoid the above-mentioned phenomenon,
Lebesgue-p norm is regarded as a good measure tech-
nique since it concerns all the tracking error scales in
an integration form over the whole operation time in-
terval. Motivated by the dissatisfaction of the mild
error elimination of the rectifying action-based D-type
ILC scheme and mentioned drawbacks of the lambda-
norm, this paper is to develop a pulse-compensated
ILC scheme for nonlinear systems with initial state
uncertainty and analyze its tracking performance by ac-
cessing the tracking error in the form of Lebesgue-p
norm.

The remaining of the paper is organized as follows.
Section 2 addresses the constraint to the initial state un-
certainty and its property in the sense of Lebesgue-p

norm and then corresponding ILC schemes. In Sec-
tion 3 the tracking performance is derived and further
discussions are remarked. The validity and the effec-
tiveness are simulated in Section 4. Finally, Section 5
concludes the paper.

2 [Initial state uncertainty and ILC strate-
gies
Consider a class of single-input-single-output non-
linear systems as follows:

&(t) = f(z(t),t) + Bu(t),
y(t) = Cx(t), (1
x(0) = xg, t € [0,Tp],

where x(t) € R™ denotes n-dimensional state vector,
u(t) € Rand y(t) € R are scalar control and output,
respectively; B and C' are matrices with appropriate di-
mensions with the output matrix C' is supposed known
and xy is a random initial state, called a base initial
state; the function f(x(t),t) is an n-dimensional non-
linear vector function satisfying Lipschitz condition, in
specific, for all ¢ € [0,Tp], there exists a constant Ly
such that

|C(f(a(t), 1) = flaa (D), )] <

Lo|C(z2(t) — 21(t))] = Loly2(t) —wni(t)]. (@)
Here, |-| refers to the absolution operation. Assume
that the nonlinear system (1) is repetitive over a finite
time interval [0, 7] with the initial state being iteration-
varying.

Note that, for a linear or nonlinear time-invariant
repetitive system with its initial state is resettable, it is
realizable for a PD-type ILC law with appropriate learn-
ing gains to make the system to track a desired trajec-
tory precisely as the iteration index goes to infinity!'®!,
While the initial state is uncertainly iteration-varying,
the precise tracking of the developed ILC law is impos-
sible. In this circumstance, a proper compensation for
the existing ILC rule is regarded as an efficacious man-
ner to suppress the tracking error caused by the initial
state uncertainty.

In this paper, a sequence of rectangular pulses, prac-
tical form of the ideal singlet impulses, is adopted as
iteration-wise compensations specified as follows:

Let {dx(t),k = 1,2, - } be a sequence of rectan-

gular pulses expressed as
1
—, 0<t<ey,
on(t) = 4 &x )
0, er <1t < To,

k=1,2,--.

For an engineering applicability, it is assumed that
the sequence is uniformly bounded, mathematically,
|0k(t)] < 1/er, < M, where M is a tolerance of the
system input capability. The subscript k refers to the
iteration index.

Suppose that y4(t), ¢t € [0,Tp] is a desired trajec-
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tory with y4(0) € U(Cx), where U(Cx) refers to
a neighborhood of the point C'zy. With the starting in-
put u,(t) being arbitrarily given, if the latest histori-
cal tracking error and its derivative are available, then
a pulse-based first-order PD-type ILC scheme is formu-
lated as
uy (t) : given arbitrarily,
w1 (1) = wi(t) + Toren(t) + Tarén(t)+
K05 (t)(ya(0) — Cx),
te0, ], k=1,2,3,--,

where the subscript k refers to the iteration index, I
and [y, are assigned as the first-order proportional and
derivative learning gains, respectively. Here K is called
as a compensation gain. The term ey (t) = yq(t) —yx (t)
represents the tracking error between the desired trajec-
tory yq(t) and the output yy(¢) at the k-th operation.

If we make use of historical control inputs, tracking
errors and their derivatives of the latest two adjacent op-
erations, then a pulse-based second-order PD-type ILC
scheme is constructed as

3)

uy(t) : given arbitrarily,
Ug(t) = Ul(t) + Fplel(t) + Fdlel(t)+

K61(t)(ya(0) = Cao),

Upg1(t) = wi (ur(t) +Lpren(t) +Tarée(t))+
wa(ug—1(t) + Ipoeg—1(t)+
Fazér-1(t))+ K05 (t) (ya(0) = Cy),
te[0,To), k=2,3,4,---.

4)

Here w; and wy are weighting coefficients satisfy-
ing 0 < wy,wy < 1and w; + ws = 1. It is seen that

= 1 induces w, = 0 which implies that the ILC
scheme (4) is thus reduced to the scheme (3). In the
law (4), the parameters [ ,,» and [ 4 are assigned as the
second-order proportional and derivative learning gains,
respectively.

Given that the control input u(¢) of the system (1)
is undertaken by uy 1(t) generated by the above learn-
ing control scheme (3) or (4), the corresponding system
dynamics description becomes

Try1(t) = f(@ra1(t),t) + Bupsa(t),
Y1 (t) = Cappa (t), (%)
2r11(0) € N(zo), t € [0, Tp),

where x1(0) is a random initial state which lies in a
neighborhood of xy denotes as N (). Specifically, we
assume that the average of the random initial state val-
ues around x from the first iteration to the k-th iteration
is subject to the following constraint:

I 3 2 (0) po(p),©

i=1

_xOHP <

. . 1
where 3 is a positive constant and 0(%) represents

1
a high-order infinitesimal with respect to % as k ap-

1.1
proaches to infinity, that is, klim [O(E) / %] = 0. Here,

the norm || - ||,, refers to the Lebesgue-p norm of a vec-
tor. Its definition together with the functional Lebesgue-
p norm may be referred to the reference [18].

Before the convergence analysis, the property of the
initial state shifts satisfying the inequality (6) is dis-
cussed in the following:

Lemma 1'% If the initial state shifts of system
(5) satisfies the inequality (6), then

Jim [4(0) — o, = 0

Proof The inequality (6) gives rise to

1
k 0(%)
H;m(m — o)l < B——
k
Thus
k
Jim {132 (2:(0) = o) |, = 0. @)
—0 =1

From the triangular inequality property of Lebesgue-p
norm, we have

|4(0)
I3 (i(0) = ) - z (:(0) — z0)l, <

_‘TOHP =

k k-1
13 @:(0) —@o)lly + 1 (:(0) = o)l
From the above inequality (7), we get
Jim [(0) — oll, = 0.

This completes the proof.
Lemma 2['°)  Suppose that initial state values sat-
isfy the inequality

1 k: +1=
where (3 and -y are posmve constants. Then,

2:(0) — 20|l < Be 7, (8)

Jim |z4(0) — o, = 0.

Proof From the L’Hospital’s rule of limit for a ra-
tional function whose both numerator and denominator
are differentiable, we have

. _ . xz .
lim ze™7 "= lim —= lim
—+00 z—+o0 1% z—+oo yeI¥

=0, v > 0.

According to Cauchy principle for limit theory, the
above equality implies that the result hm Bke "* =0

guaranteed. Then, the inequality (8) leads to

Be "
0< klim HZ (2;(0) — x0) |00 < klim =0,
—00 i —

that is
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Jim 13- (24(0) = 0) = 0.
Similar to the proof of the Lemma 1, we obtain
kli_)nolo |21 (0) — zo|oo = 0.
Since
J4(0) — woll, = (3 2} (0) ~ ().
thus

l NP1
Jx(0) = ol < (n max |a2(0) — 2i|") =

lax(0) — wolloe = ¢/ max [ (0) — 2.
Therefore,

Tim [[24(0) — ol = 0.

Lemma3!""" Let{a;, k = 1,2, -} be areal se-
quence defined as
ax < P1ag—1 + p20g—2 + -+ +
Pumag—n +d, k> M+ 1,
with initial conditions
ay = Ay, Gy = A2, ,ap = QM,
where dj, is a specified real sequence. If py, pa, -,
pu are nonnegative numbers satisfying

M
p=>p; <l
j=1
Then
i) di <d,k > M + 1implies that

d
Qg <max{dl,ag,-~ ,aM}—I—E, k>M+l

ii) limsup d; < d implies that
k—oo
doo

limsupa, < ——.
1—p

k—oo

Lemma 4"°! (Bellman-Gronwall inequality) Let
(2 denote an interval of the real line of the form [a, 00)
or [a, b] or [a, b) with a<b. Let a(t), 5(t) and f;(t) be
real-valued functions defined on (2. Assume that 3(t)
and f;(t) are continuous and that the negative part of
a(t) is integrable on every closed bounded subinterval
of (2. If 3(t) is non-negative and f;(t) satisfies the in-
tegral inequality

) < alt) + [ B fi(r)ar, i e 2,
then
At <a) + [ amsmen([ fs)ds)dr,
vVt € (2.
Let © = [0.T), a(t) = () + [ ga(r)dr and
B(t) = n, where 7 is a non-negative constant. Then

it is immediate to get a corollary as follows:
Corollary 1 Let f;(¢), g1(t) and hy(t) are posi-

tive continuous functions over the time interval [0, 75].
If there exists a constant 77 > O such that the inequality

fit) < hi(t) + fot nfi(r)dr + jot gi1(7)dr
holds, then

fi(t) <
m(t) + | exp(n - (t = 7))k (7) + g1 (7)]dr.

As mentioned above, the scheme (3) is a specific case of
the scheme (4) when the coefficients are set as w; = 1
and wy = 1. We thus only prove the scheme (4), and
remark the performance of the scheme (3).

Before giving the proof, for simplicity of the anal-
ysis of convergence in the next section, we list a group
of denotations as follows:

p1=|1—CBIy|+ (Lo +|CBIL |+
Lo|1 = CBIw|)x|lexp(Lo(-)) |1,
p2=1|1—CBIy|+ (Lo + |CBIL | +
Lo|1 — OBILa|)x[lexp(Lo(-)) 1,

p = wip1 + waps,
t

Wk(t)z 5,0<t<5ka
1, e <t<Tp,

U, = C(241(0) — w124(0) — woxy_1(0)),
2} = CBw, T, C(2x(0) — x0),
2} | = CBwyT3,C(14-1(0) — x0),
@k(t) = (CBLUlF(n + CBwyl yo—

CBEW,(t)) x (ya(0) — Cxo),
Hy(t) = CB(I'yy — KW, (t))(ya(0) — Cxy),
7 = 1w sup | (), (1 + Zollosp(Lo( )],

¢ = limsup(1 + Lollexp(Lo(-))|| )| P (t) |-

k—o0
From Lemma 1 and Lemma 2, it is immediate to attain
that
Corollary 2 If the initial state of the system (5)
satisfies either the constraint (6) or (8), then

Jim (|2}, =0, lim |2}, =0, Jim |22 [}, =0.

3 Convergence analysis

Theorem 1 Assume that the pulse-based second-
order PD-type ILC scheme (4) is applied to the system
(1) and the average of initial states of the corresponding
system (5) satisfies the constraint (6). If the system ma-
trix B, C' and the Lipschitz constant L, together with
the learning gains 1,1, L41, I },2 and Iy, satisty the in-
equalities p; < 1 and py < 1, then we have

. o
hinsup ya() = ke lly < —=

~
— 00 1_

where p = w1 p1 + wWapo.
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Proof ~CB [ K= (ya(0) - Cag)dr =
g
er1(t) = ; g
Ya(t) — yrra(t) = _CBKa(yd(O) — Cy). (10)
wi(a(t) = ye(t)) + w2 (yalt) — ye-a(t)) — And then, we consider that ;. (t) = 0, fore;, < ¢ < Ty,

(Yrsa (t) — wlyk(t) —wayk—1(t)) =
wieg(t) + woep_1(t) —

C(pr1(t) — wizp(t) — womp—(t)) =
wieg(t) + waep_1(t) — Clzrs1(0)+

[0 (@), 7) + Buga (7)) +
Cuw[z(0) + f
Cwalz—1(0) +

I} (), 7) + Bugy (m)dr] =

wreg(t) + waer_1(t) —
C(2111(0) — w124(0) — wozy—1(0)) —

Cun || (F(naa(r),7) = fwn(r),7)dr =
Cus ! (F(onaa (), 7) = flwis (1), 7)dr

CB jot (Upr1(T) — wiug(T) — wotg_1 (7))dT =
wreg(t) + woep_1(t) —
C(@k41(0) — w124(0) — waax-1(0)) —

Con [} (Flara(r), ) = F@n(r),7))dr -
Con [[ (F @ra(r),7) = faioa (7). 7))
CB jot (w1 Tpren(T) + wy Dy éx (1) +

walper—1(T) + woluaéy 1 (7))dr —
OB [ K8u(r) (4a(0) — Ciro)dr =

wieg(t) + waer_1(t) —
C(2111(0) — w124(0) — wozy—1(0)) —

Cun || (F(onaa(r),7) = fan(7),7)dr —

Co [ (f(@sa(7),7) = flan (1), 7))dr —
CBuwi Ty, jot en(7)dT —

CBuw Tyie(t) + CBuw Ty, (0) —

CBuws Ty f: ex 1 (7)dr —

CBuwsTyses_1(t) + CBwsTyser_1(0) —

OB | K6u(t)(ya(0) — Cao)dr. ©)

) + Buy,(7))d7] +

1
—,for0 <t <

It is known that 6 () =
Ek

€. Thus, we

have

_CB jot K6(7) (4a(0) — Cag)dr =

we get that
t
~CB || K6.(r)(ya(0) — Cro)dr =

ee 1
—C'Bfo K (ya(0) = Co)dr =
—CBK (ya(0) — Cxo). (1
So from the above definitions, we get that
~CB [ K6(r)(a0) — Cirg)dr =
—CBEW;(t)(ya(0) — Co). (12)
Notice that
er(0) = ya(0) — Czy,(0) =
(a(0) = Czg) — C(z1(0) — o),
ex-1(0) = (¥a(0) — Cxp) — C(z1-1(0) — 20).
So the Eq.(9) can be changed to

ert1(t) =
wrek(t) + waep_1(t) —
C($k+1(0) — Wlxk(o) - wak—l(O)) -

Cuor [ (f(n(7),7) = flan(r), m))dr
Cus [ (f(a(7),7) = (i a(r),7)dr
CBunT, jot ex(7)dr — CBuwr Thex(t) —
CBuw I'y1C(21(0) — o) —

Cngrpgj ex1(7)dr — CBwyTyney 1 (t) —

CBwol'4oC(21,-1(0) — x0)

CBwiTy1(ya(0) — C 0) +

CBws I 45(ya(0) — Cxg) — CBK (y4(0) — Cxp).
(13)

Takeing absolute on both sides of the Eq.(13), and ap-
plying the Lipschitz condition, we get

lext1(t)] S will — CBLu|ex(t)] +
wg\l — CBFdQH€k_1(t)’ +

o [0 1O @ia(7),7) = (), 7))l +
wr 01O @i (7),7) = Flza(r), 7))l +
CBwr T [ lex(r)ldr +

t
\Cszrpz\jo lerr (7)|d7 +

|Pil + [24] + 1251 + 185, (1)] <
w1|1—CBFd1Hek(t)| +w2|1—CBFd2||ek,1(t)\ +
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t
wiLo J| Ty (7) = ya(r) + a(r) =y (r)ldr +
t
waLo f| Iy (7) = 9a(7) + ya(7) =g (T)|dr+
t
CBurTl | lex(r)ldr +

t
(CBuwaTyal | lex-a(r)ldr +

[P + 192] + 1920 | + [ (8)] <
wlll—C'BFdlﬂek(t)\—i—w2|1—CBFd2||ek,1(t)|+

t t
wiLo [ lensa(7)ldT +wnLo [ len(r)ldr +
t t
waLo [, lersa(T)ldr +wsLo [ fex 1 (r)ldr +
t
CBur Tl | lex(r)ldr +

t
(CBuwaTyal | lex-a(r)ldr +

|| + [925] + 1254 + 12(8)] =
wlll—C'BFdlﬂek(t)\—l—w2|1—CBFd2||ek,1(t)| +

[} @(Lo + [CBTp)lew(r) 1+

t
wa(Lo + |CBLy)))dr + Lo jo e (7)]dT +

@] + | 92] + 192 ] + [@()]- (14)
Applying Corollary 1 to the above inequality (14) yields
lex1(t)] <

w1|1 — CBFleek(t)] +
w2|1 — CBFd2||e;€_1(t)\ +
wl(Lo + |CBFP1|+L0|1 - CBFdl’) X

t
|, exp(Lo(t = 7))len(r)ldr +
UJQ(LO + |CBFp2| + Lo‘l — CBFdQD X

fot exp(L(t — 7))|ex—1(7)|dT +

Lo {[ exp(L(t = 7)) (%] + |2} +

28]+ @k ())dT +

G| + 1924 + 19271 | + |Pi(2)]. (15)
Taking Lebesgue-p norm on both sides of the above in-
equality (15), and applying the generalized Young in-
equality of convolution integral, we get

lexta()llp <

wi|l = CBLallex()ll, +

wa|l = CBLwllex—1 ()l +

w1(Lo + |CBIyi|+Lo|l — CBILy]) X

lexp(Lo(-) 1 llex ()l +

wa(Lo + |CBI | + Lo|1l — CBILys]) %

lexp(Lo(-))llxllex-1()llp +

(1+ Lollexp(Lo(-))[l;) %

N@ell,, + 19201, + 1926_41,) +

(1+ Lollexp(Lo () 1) 1@ (£)]- (16)

From above denotations, the inequality (16) can be sim-
plified to

lerr1()lp <

wiptllen()llp + wapzller—1 ()l +

(1+ Lollexp(Lo(-))l,) X

(N@ll,, + 19211, + 1925411,) +

(1+ Lollexp(Lo(:)) I )@k (£)]],- (17)

It is obvious that p = wip; + wype < 1 under the
assumption that p; < 1 and p, < 1. Hence, from
Corollary 2 and Lemma 3, the inequality (17) leads to

. ]
lim sup [lex11 ()|, < T (18)

—o0 1
This completes the proof.

Remark 1 If the learning gains 1,1, [41, [},2 and
I'y- are chosen in such a way that the convergence fac-
tor p is sufficiently small, the expression (18) indicates
that the limit superior of the tracking error sequence is

which in turn can

bounded by the upper bound 1

be confined as small as possible.

Remark 2 In the scheme (4), if the weighting co-
efficients are w; = 1 and wy = 0, the scheme (4) turns
to be the first-order scheme (3). Hence, the convergence
condition of the first-order scheme (3) is p; < 1 and the
upper bound of the limit superior of the tracking errors

sequence becomes

. Comparing the bound ——
— P 1-p

with the , it is observed that the upper bounded

—P1

~ is smaller than

if the learning gains and

the weighting coefficients arle appropriately chosen such
that the conditions p < p; and @ < H hold simultane-
ously. Under this condition, the second-order scheme is
convergent faster than the first-order one.

Remark 3 From the expression of W (), it is
further observed that W, (¢) < 1. Hence, a feasible
way to choose the compensation gain K is to let it be
approximately equal to w41 + waly2, wWhich results
that @y, (t) is sufficiently small and thus @ is also suffi-
ciently small concurrently.

4 Numerical simulations
Consider the following nonlinear system:

Bg 8] = %)]mw (t?ﬁg.(;((:z)s(x(l)(t)) *
O u(o), (19)
v =10 11| Sl

The desired trajectory is set as yq(t) =12t3(1 — t),
t € [0, 1]. The initial state shifts are produced as zy =
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[0 0.2]T and x1,(0) = xo + %(rand —0.5), k=1,
2, - - -, where rand refers to a uniformly distributed ran-
dom number over the interval (0,1). A sequence of
pulse signals is set as

1
T

®"H=9 o<t<o1- (—1)’@%; 20)
0, 0.1— (—1)*@% <t<1.

Here, we illustrate tracking performances operated
by the proposed scheme (4). The weighting coefficients
are assigned as w; = 0.4 and wy, = 0.6. The compen-
sation gain K = 0.8 and K = 0, respectively. The
first order learning gains in both scheme (3) and (4)
are identically chosen as I,; = 0.1 and [4; = 1.3,
whilst the second order learning gains are selected as
I, = 0.4 and Iy, = 0.6, respectively. It is com-
puted that p; = 0.8898 < 1, po = 0.8822 < 1 and
thus p = wy1p; + wops = 0.8852. Their tracking per-
formances at the 5th and the 8th iterations are shown
in Figs.1-2, respectively, where the dash-dotted curves
present the desired trajectories, the solid curves depict
the outputs stimulated by the pulse-based second-order
PD-type ILC scheme with X = 0.8 and the dash
curves denote the rectifying action-based second-order
PD-type ILC scheme with K = 0.

In term of the convergence speed of the pulse com-
pensated first and second-order ILC scheme, the track-
ing errors is shown in Fig.3, which indicates that the
asymptotic tracking error of the pulse-based second-
order PD-type ILC scheme is smaller than that of pulse-
based first-order PD-type ILC scheme after the third it-
eration.
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Fig. 1 Tracking performance at the 5th iteration
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5 Conclusions

In this paper, for nonlinear systems a type of rect-
angular pulse signal is adopted to compensate for a
class of PD-type ILC updating laws so as to suppress
the tracking discrepancy caused by the nonzero initial
state shift. By means of the generalized Young inequal-
ity of convolution integral, the tracking performance is
quantified with the tracking error being measured in the
sense of the Lebesgue-p norm. It is observed that the
pulse signal can suppress the tracking error incurred
by the initial state shift effectively. In comparison of
the pulse-based first-order ILC scheme with the pulse-
based second-order PD-type ILC scheme, it is noted
that the second-order scheme can improve the transient
tracking performance better.
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