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LI Yan1, CHEN Yang-quan2, AHN Hyo-Sung3

(1. School of Control Science and Engineering, Shandong University, Jinan Shandong 250061, China;
2. School of Engineering, University of California, Merced CA 95343, USA;

3. Department of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong Buk-gu Gwangju 500-712, Korea)

Abstract: The classical time domain and frequency domain analysis of iterative learning control (ILC) are extended to a
type of time domain analysis of fractional order iterative learning control (FOILC) for fractional order nonlinear systems. A
novel FOILC scheme is proposed, which leads to simpler convergence condition. The equivalence of the above two FOILC
schemes is shown for the constant learning gain cases, which leads to two further developments: the learnable domain of
an adaptive FOILC for the uncertain fractional order systems, and a desirable band-stop FOILC scheme. Several examples
are provided to illustrate the presented results.
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1 Introduction
The formal concept of iterative learning control (ILC)

was published in 1978 by Uchiyama (in Japanese) and
in 1984 by Arimoto et al (in English)[1]. Some earlier
works of ILC can be traced back to 1967 the US patent
3555252 ‘learning control of actuators in control systems’
and the multi-pass system analysis in 1974 by Edwards
and Owens[2]. The ILC method is a batch process that
operates a given objective system repeatedly on a fixed
time interval so that the reference can be perfectly tracked
as the operation repeats. Along with the global Lipschitz
condition, the ILC schemes can be easily applied to both
nonlinear and linear systems with less prior model knowl-
edge[1, 3–7]. So, both the theory and applications of ILC
gained increasingly attention and have been highly devel-
oped in the past three decades[8–12]. Many interesting prob-
lems of ILC have been discussed[13–22], and all of them are
linked to the ‘repetition’ of the control system, such as the
batch process and periodic system uncertainties and distur-
bances, etc[5–7, 23–24]. In simple words, an ILC scheme is
introduced to improve the system control performance by

using the historical data even without a complete knowl-
edge of the system to be controlled[3, 8–9, 21–22].

The fractional order iterative learning control (FOILC)
is relatively new in ILC, which can be traced back to 2001,
when, in [25], a Dα−type ILC updating law was proposed
and the convergence conditions were analyzed in the fre-
quency domain, which became a main technique in the
FOILC area. The high-pass characteristic of the Dα term
((jω)α) was applied to compromise the low-pass charac-
teristic of the controlled system. To allow for the practical
applications, the implementation of (jω)α was discussed
as well. Besides, given a manipulator model, it was veri-
fied numerically that the optimal ILC scheme was pointed
to a fractional order one[25]. Since then, many fractional-
order ILC problems have been presented aiming at enhanc-
ing the performance of ILC scheme for linear or nonlin-
ear systems[26–29]. Recently, a number of new questions
emerged from FOILC such as the time domain analysis,
the applications to fractional-order linear and nonlinear
systems, the tuning and auto-tuning rules, and the com-
bination with various robust feedback control strategies,
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etc[2]. The time domain analysis of FOILC addresses FO
systems and the FO updating laws. In earlier studies, it was
proved that the convergence conditions of the FOILC were
exactly the same with the ILC cases if the FO system and
the FO updating law shared the same order α[27]. The good
news was that the FOILC could be directly applied to the
more complicated FO systems using the same convergence
conditions with the corresponding FOILC schemes. Many
nice results were derived under the known knowledge of
α. However, some reviewers pointed out that the above
strategy might be unpractical, because the accurate iden-
tification of the system order α might be extremely hard
in reality. Therefore, the order adaptive problems were
raised in [12, 25]. The rejection of the order uncertainty
or the order disturbance in both time and frequency do-
mains became a specific topic in FOILC. But, as far as the
authors know, the knowledge of adaptive control cannot
be directly applied to these problems, and therefore new
control strategies should be investigated. Several papers
and their references are cited here to illustrate other re-
cent discussions of FOILC[27, 30–34]. It has been shown that
the FOILC not only retains the advantages of the classical
ILC, but also offers potentials for better performances in a
variety of complex physical processes.

In this note, the time domain and frequency domain
analyses of the linear ILC schemes are extended to a cor-
responding FOILC scheme. The convergence conditions
are derived in time domain. Based on the result, a new
FOILC scheme is proposed, which fills a gap in the pre-
vious scheme. The equivalence, adaptiveness, robustness
and band-stop proper-ties of the discussed FOILC scheme
are analyzed in time domain. Several numerical examples
are illustrated to validate the concepts.

2 The convergence analysis in frequency do-
main
To date, most ILC schemes are linear ones. Thus it

is common to analyze them in frequency domain, even
through it is a finite time horizon problem[19, 26]. Given
a control system G(s), the input-output relationship at the
k iteration can be described by

Yk(s) = G(s)Uk(s), (1)

where yk(0) = yd(0), yd(t) is the desired output. More-
over, let the learning update law in the Laplace domain be

Uk+1(s) = Uk(s) + γH(s)Ek(s), (2)

where γ is a scalar learning gain, and H(s) is the learn-
ing compensator in the Laplace domain. It follows from
Eqs.(1) and (2) that Ek+1(s) = [1− γG(s)H(s)]Ek(s),
where the commutative property of γ and G(s) should be
satisfied in the Laplace domain. It can be proved that the
convergence condition of the above ILC scheme is

|1− γG(jω)H(jω)| < 1. (3)

It can be easily verified that most ILC and FOILC
learning update laws fall into the above scheme. However,
there are two problems in the above discussions. Firstly, if
γ is a time varying constant or even an output of a dynamic
system, (3) does not hold any more. Moreover, in reality,

most systems cannot be fully returned or repositioned to
the desired initial state yd(0) so that the initial disturbance
must be considered.

3 Time domain analysis of fractional-order
iterative learning control
Firstly, in time domain, the system can be extended to

a nonlinear one

y(α)(t) = f(t, y, u), (4)

where α ∈ (0, 1), y(0) ∈ Rn×1, u ∈ Rm×1, · (α) denotes
the α order Riemann-Liouville or Caputo derivative with
respect to t, and the piecewise continuous function f sat-
isfies

‖∂f

∂y
‖∞ 6 l1‖y‖∞, ‖∂f

∂u
‖∞ 6 l2‖u‖∞, (5)

where l1, l2 > 0 and ‖matrix‖∞ and ‖vector‖∞ de-
note respectively the matrix norm induced by the vector
p−norm and the maximum norm of a vector.

Remark 1 It can be seen that any fractional-order
system with rational or commensurate orders can be in-
cluded in Eq.(4). Moreover, it follows from (5) and the
uniqueness and existence theorem of the fractional-order
differential equations that, for the fixed y(0) and u(t),
there exists a unique solution for system (4)[35–36].

Thus in each iteration,



y
(α)
k (t) = f(t, yk, uk),

y
(α)
d (t) = f(t, yd, ud),

ek(t) = yd(t)− yk(t),

(6)

where ud(t) and yd(t) denote the desired control effort and
system output, respectively. The main objective of ILC is
to find a suitable learning law so that lim

k→∞
uk(t) = ud(t).

Then it follows from the uniqueness and existence of
Eq.(4) that lim

k→∞
yk(t) = yd(t) holds almost everywhere

on t ∈ [0, T ]. Moreover, it follows from Eq.(6) that

fd − fk = f(t, yd, ud)− f(t, yk, uk) =
f(t, yd, uk)−f(t, yk, uk)+f(t, yd, ud)−f(t, yd, uk)=

{ ∂fi

∂yj
}yj=ηij(t)ek(t) + {∂fi

∂ul
}ul=ξil(t)δuk(t) =

kA(t)ek(t) + kB(t)δuk(t), (7)

where kA(t) ∈ Rn×n, kB(t) ∈ Rn×m are depending on
the iteration k due to the heredity of fractional-order sys-
tems, and there exist functions ξij(t) and ηil(t) satisfying
the mean value theorem.

Lemma 1 For the fractional-order nonlinear systems
(6) and an arbitrary positive constant q > 1/α, suppose

‖∂f

∂u
‖∞ 6 γ‖u‖∞, we have that there exists a large

enough λ satisfying ‖ek‖λ 6 O(λ−1/q)‖δuk‖λ, where

O(λ−1/q) =

γ(1− e−qλT )T
qα−1

q Γ
q−1

q (
qα− 1
q − 1

)

(qλ)1/qΓ (α)− c(1− e−qλT )T
qα−1

q Γ
q−1

q (
qα− 1
q − 1

)
.
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Proof The proof can be found in [30].
Lemma 2 For the linear operator K {w(t)} =w t

0
h(t − τ)w(τ)dτ , it is a bounded linear operator if and

only if there exists a positive constant c satisfying
w t

0
|h(τ)|dτ 6 c, t ∈ [0, T ], (8)

where | ∗ | denotes the absolute value of ∗. Moreover,
for an arbitrary vector w(t) ∈ Rn, we have ‖K{w}‖∞ 6
c‖w‖∞.

Proof The proof can be found in [36–37].
The fractional-order ILC updating law to be discussed

in this part is

∆uk+1(t) =B{Γ̃ (t)ek(t)}+ Γ (t)h(t) · e(α)
k (t), (9)

where α ∈ (0, 1) is the system order 1, B is a bounded
linear operator, and Γ (t) can be a scalar variable or a time
varying gain matrix with proper dimensions.

Theorem 1 For the fractional-order system (4) and
the FOILC scheme (6) and (9), if kB(t), k = 0, 1, 2, · · ·
are full column rank matrices and there exists a constant
ρ1 ∈ [0, 1) satisfying

‖I − k+1B(t)Γ (t)‖∞ 6
1w T

0
h(τ)dτ

[ρ1 − ‖Θ(t)‖∞ ·
w T

0
|h̃(τ)|dτ −

‖Θ(t)− I‖∞
w T

0
|h(τ)|dτ ], (10)

where k ∈ {0, 1, 2, · · · }, we have lim
k→∞

yk(t) = yd(t).

Proof If kB(t), k = 0, 1, 2, · · · , are full column
rank matrices, it can be proved that

k+1B(t)δuk+1(t) =
Θ(t)kB(t)δuk(t)−k+1B(t)Γ (t)h(t) · [ kB(t)δuk(t)]−
k+1B(t)B{Γ̃ (t)e(t)}− k+1B(t)Γ (t)h(t) · [ kA(t)ek(t)],

where Θm×m(t) = k+1B(t)[ kBT(t) kB(t)]−1
kBT (t). It

can be proved that

k+1B(t)δuk+1(t) =
Θ(t) {kB(t)δuk(t)− h(t) · [ kB(t)δuk(t)]}+
[Θ(t)− I]h(t) · [ kB(t)δuk(t)] + [I − k+1B(t)Γ (t)] ·
h(t) · [ kB(t)δuk(t)]− k+1B(t)B{Γ̃ (t)e(t)} −
k+1B(t)Γ (t)h(t) · [ kA(t)ek(t)].

Applying the λ−norm to the above equation, it follows
from Lemma 1 and kB(t)(k = 0, 1, 2, · · · ) are full col-
umn rank matrices that

‖k+1B(t)δuk+1(t)‖λ 6 [ρ1+O(λ−1/q)]‖kB(t)δuk(t)‖λ,

where

ρ1 = ‖Θ(t)‖∞
w t

0
|h̃(τ)|dτ +‖Θ(t)− I‖∞

w t

0
|h(τ)|dτ +

‖I − k+1B(t)Γ (t)‖∞
w t

0
h(τ)dτ.

Therefore, if ρ1 < 1, there must exist a sufficient large λ

satisfying lim
k→∞

‖kB(t)δuk(t)‖λ = 0. It then follows from

kB(t)(k = 0, 1, 2, · · · ) are full column rank matrices and
the uniqueness and existence of the system equation that

lim
k→∞

yk(t) = yd(t), t ∈ [0, T ].

Remark 2 In Theorem 1, the term L{h(s)}sα is
corresponding to the H(s) in Section 2. Moreover, it
should be noted that, if h(t) = δ(t) is the Dirac-Delta
function or K(t) = K is a constant matrix, Eqs.(11) and

(9) are the same. Moreover, if h(t) =
tq

Γ (q + 1)
, q > −1,

Eq.(9) becomes

∆uk+1(t) = B{K̃(t)e(t)}+ K(t)e(β)
k (t),

where β = α − q − 1 < α, which is corresponding to the
PDβ ILC scheme[27]. Lastly, the linear term B{Γ̃ (t)ek(t)}
does not influence the ILC convergence, but it is closely
related to the convergence speed of the scheme.

4 A novel fractional order iterative learning
control
It can be seen from Theorem 1 that the gain γ has been

extended to a time varying one. Nevertheless, the con-
vergence condition is still too complicated to be practical,
because both sides of the inequality are related to the un-
known terms kB(t). Therefore, a new FOILC scheme is
proposed in this section.

Let the fractional-order ILC updating law be δuk(t) =
ud(t)− uk(t) and

∆uk+1(t) = uk+1(t)− uk(t) =

B{Γ̃ (t)e(t)}+ h(t) · [Γ (t)e(α)
k (t)], (11)

where B is a bounded linear operator. It follows that

δuk+1(t) =

δuk(t)−B{Γ̃ (t)e(t)} − h(t) · [Γ (t)e(α)
k (t)] =

L−1{1− h(s)} · δuk(t) + h(t) · {[I − Γ (t) kB(t)] ·
δuk(t)} −B{Γ̃ (t)e(t)} − h(t) · [Γ (t) kA(t)ek(t)],

where h(s) is the Laplace transform of h(t) 2 and L−1{1−
h(s)} denotes the inverse Laplace transform of 1− h(s).

Applying the maximum norm to both sides of the
above equation yields

‖δuk+1(t)‖∞ 6
‖L−1{1− h(s)} · δuk(t)‖∞+
‖h(t) · {[I − Γ (t) kB(t)]δuk(t)}‖∞+

‖B{Γ̃ (t)e(t)}‖∞ + ‖h(t) · [Γ (t) kA(t)ek(t)]‖∞.

It follows from Lemma 2 that
‖δuk+1(t)‖∞ 6
w t

0
|h̃(τ)|dτ · ‖δuk(t)‖∞ + b‖Γ̃ (t)‖∞ · ‖e(t)‖∞+

w t

0
|h(τ)|dτ · ‖I − Γ (t) kB(t)‖∞ · ‖δuk(t)‖∞+

w t

0
|h(τ)|dτ · ‖Γ (t) kA(t)‖∞ · ‖ek(t)‖∞.

1 For clarity, we first assume the system order α is known. The unknown order case will be discussed later.
2 Note here, instead of H(s), the h(s) is denoted as the Laplace transform of h(t) to avoid the confusion of H(s) in Section 2 and

to emphasis that h(t) is a scalar function.
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where h̃(t) = L−1{1− h(s)}. Then applying the λ-norm
to the above equation yields

‖δuk+1(t)‖λ 6
w T

0
|h̃(τ)|dτ · ‖δuk(t)‖λ+

w T

0
|h(τ)|dτ · max

t∈[0,T ]
‖I − Γ (t) kB(t)‖∞ · ‖δuk(t)‖λ+

b max
t∈[0,T ]

‖Γ̃ (t)‖∞ · ‖e(t)‖λ+

w T

0
|h(τ)|dτ · max

t∈[0,T ]
‖Γ (t) kA(t)‖λ · ‖ek(t)‖λ.

By using the Lemma 1, we arrive at
‖δuk+1(t)‖λ 6 [ρ + O(λ−1/q)]‖δuk(t)‖λ,

where

ρ=
w T

0
|h̃(τ)|dτ +

w T

0
|h(τ)|dτ max

t∈[0,T ]
‖I−Γ (t) kB(t)‖∞.

It can be seen from the above discussions that if
0 6 ρ < 1, there must exist a large enough λ satisfying
ρ + O(λ−1/q) < 1, which implies that lim

k→∞
‖δuk(t)‖λ =

0 for all t ∈ [0, T ]. In order to derive the convergence con-
dition of the generalized fractional-order iterative learning
control scheme, the following theorem is introduced.

Theorem 2 For the fractional-order system (4) and
the generalized fractional-order iterative learning control
scheme (6) and (11), if there exists a constant ρ ∈ [0, 1)
satisfying

‖I − Γ (t) kB(t)‖∞ 6
ρ−

w T

0
|h̃(τ)|dτ

w T

0
|h(τ)|dτ

, (12)

where k ∈ {0, 1, 2, · · · }, we have lim
k→∞

yk(t) = yd(t) on

[0, T ].
Proof It can be easily seen from (12) that

w T

0
|h̃(τ)|dτ +

w T

0
|h(τ)|dτ · ‖I − Γ (t) kB(t)‖∞ 6 ρ

holds for all t ∈ [0, T ] and k ∈ {0, 1, 2, · · · }. In

other words,
w T

0
|h̃(τ)|dτ +

w T

0
|h(τ)|dτ · max

t∈[0,T ]
‖I −

Γ (t) kB(t)‖∞ 6 ρ < 1. Therefore,

‖δuk+1(t)‖λ 6 [ρ + O(λ−1/q)]‖δuk(t)‖λ,

and there exists a sufficient large λ satisfying [ρ +
O(λ−1/q)] < 1, which implies that, for all t ∈ [0, T ],
lim

k→∞
‖δuk(t)‖ = 0. Moreover, it follows from yd(0) =

yk(0) and the uniqueness and existence of the system
equation that lim

k→∞
yk(t) = yd(t), t ∈ [0, T ].

Remark 3 In Eq.(11), if an extra term is added, i.e.
∆uk+1(t) = h1(t) · [Γ1(t)e

(α)
k (t)] +

h2(t) · [Γ2(t)e
(α)
k (t)] + B{Γ̃ (t)e(t)},

it follows that ‖δuk+1(t)‖λ 6 [ρ̂ + O(λ−1/q)]‖δuk(t)‖λ,
where

ρ̂ =
w T

0
|ĥ(τ)|dτ+

w T

0
|h1(τ)|dτ · max

t∈[0,T ]
‖I − Γ1(t) kB(t)‖∞+

w T

0
|h2(τ)|dτ · max

t∈[0,T ]
‖I − Γ2(t) kB(t)‖∞,

and ĥ(t) = L−1{1− h1(s)− h2(s)}. Therefore, the con-
vergence condition becomes

max
i=1,2

{‖I − Γi(t) kB(t)‖∞} 6

ρ̂−
w T

0
|ĥ(τ)|dτ

w T

0
|h1(τ)|dτ +

w T

0
|h2(τ)|dτ

, (13)

where ρ̂ ∈ [0, 1) and k ∈ {0, 1, 2, · · · }.

In addition, if ∆uk+1(t) =
N∑

i=1

hi(t) · [Γi(t)e
(α)
k (t)] +

B{Γ̃ (t)e(t)}, the convergence condition is that there ex-
ists a constant ρ̌ ∈ [0, 1) satisfying

max
i
{‖I−Γi(t) kB(t)‖∞}6

ρ̌−
w T

0
|ȟ(τ)|dτ

∑
i

w T

0
|hi(τ)|dτ

, (14)

where t ∈ [0, T ], k ∈ {0, 1, 2, · · · } and ȟ(t) = L−1{1 −∑
i

hi(s)}.

It can be seen that the convergence conditions in The-
orem 2 and Remark 3 are much simpler than the ones in
Theorem 1.

5 The case of constant learning gain
If Γ (t) = Γ is time invariant, it follows from Γh(t) ·

e(α)(t) = h(t) · [
Γe(α)(t)

]
that either Eq.(10) or (12)

guarantees the convergence of the fractional-order learn-
ing schemes, where

∆uk+1(t) = B{Γ̃ (t)ek(t)}+ Γh(t) · e(α)
k (t).

Proof The proof comes from Theorems 1 and 2.
Remark 4 Let h(t) = δ(t) be the Dirac-Delta func-

tion, it can be seen from Theorems 1 and 2 that the conver-
gence condition is either ‖Im−Γ (t) kB(t)‖∞ < 1, where
k ∈ {0, 1, 2, · · · } or ‖In − k+1B(t)Γ (t)‖∞ < 1, where
k ∈ {0, 1, 2, · · · }, kB(t) and k+1B(t) are full column
rank matrices, and the ILC updating law is

∆uk+1(t) = B{Γ̃ (t)ek(t)}+ Γ (t)e(α)
k (t). (15)

In other words, Eq.(15) guarantees the convergence of the
ILC scheme if one of the following conditions is satisfied:
·There exists a Γ (t) satisfying ‖Im−Γ (t) kB(t)‖∞

< 1, where k ∈ {0, 1, 2, · · · }.
·There exists a Γ (t) satisfying ‖In−k+1B(t)Γ (t)‖∞

< 1, where k ∈ {0, 1, 2, · · · }, rank( k+1B(t)) = m and
k+1B(t) ∈ Rn×m.

Based on the discussions in Sections 3 and 4, some
further results are presented in the following.

5.1 An adaptive fractional order iterative learn-
ing control

Given a linear fractional-order system, in frequency
domain, it follows from Eq.(1) that the system order α is
absorbed into G(s) so that the learning filter H(s) can be
investigated directly. For example, besides the frequency
domain methods, the time domain analysis previously dis-
cussed in this paper can be applied as well. However, in
Theorems 1 and 2, the system order α exists in the updat-
ing law, which means that the FOILC is still dependant on
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the accurate value of α, which maybe impractical. There-
fore, to allow for the real application and the consistence of
time and frequency analysis, an adaptive FOILC scheme is
proposed based on the results in Section 4.

In Theorem 2, if Γ (t) = Γ is a constant learning gain,
the fractional-order learning law and the convergence con-
dition become

∆uk+1(t) = B{Γ̃ (t)ek(t)}+ Γh(t) · e(α)
k (t), (16)

and

‖I − Γ kB(t)‖∞ 6
ρ−

w T

0
|h̃(τ)|dτ

w T

0
|h(τ)|dτ

. (17)

Moreover, if α is unknown and 0 < a 6 α 6 b 6
1, let Φ(s) = H(s)sβ , ∆uk+1(t) = B{Γ̃ (t)ek(t)} +
ΓL−1{Φ(s)}·ek(t), where H(s) = L{h(t)} and the given
constant β ∈ [a, b]. It follows from (17) that the conver-
gence condition becomes

‖I − Γ kB(t)‖∞ 6
ρ−

w T

0
|φ̃(τ)|dτ

w T

0
|φ(τ)|dτ

, (18)

where φ(t) = L−1{Φ(s)s−ξ}, φ̃(t) = L−1{1−Φ(s)s−ξ}
and ξ ∈ {a, b}.

An example is presented for illustration here. For the
fractional-order nonlinear system (4), where 0 < a 6 α 6
b 6 1, and the FOILC scheme (6) and

uk+1(t) = uk(t) + Γ φ̂(t) · e(t).
let φ̂(t) = λtµ−1Eβ,µ(−λtβ), where λ > 0, β ∈ (0, 1]
and µ ∈ (−a, 1 − b], it follows from Theorem 2 that the
convergence condition becomes

‖I − kB(t)K(t)‖∞ 6
ρ−

w T

0
|φ̃(τ)|dτ

w T

0
|φ(τ)|dτ

,

where ρ ∈ (0, 1), φ(t) = λtβ−1Eβ,β(−λtβ), and φ̃(τ) =
dEβ(−λtβ)

dt
< 0. Moreover, for the arbitrary positive

constants T and ρ ∈ (0, 1), there exists a small enough
λ satisfying the convergence condition.

Remark 5 In the above discussion, µ ∈ (−a, 1− b]
is called the ‘learnable domain’ of α. Particularly, for
an unknown α ∈ (0, 1], we can always let µ = 0, i.e.

φ̂(t) = λ
dEβ(−λtβ)

dt
, so that the convergence condition

can always be guaranteed, i.e. the learnable domain covers
all the possibilities of α.

5.2 The desirable band-stop FOILC scheme
Let the FOILC learning law be

∆uk+1 = Γφ(t) · e(α)(t), (19)

where φ(t) =
a

λ
tβ−1Eβ,β(−atβ

λ
)+

d
dt

Eβ̃(−ctβ̃

b
)+ δ(t),

δ(t) denotes the Dirac-Delta function, and L{φ(t)} =
b

b + λsβ
+

asβ̃

c + asβ̃
. It follows from Remark 3 that the

convergence condition of the above learning law is

‖I − Γ kB(t)‖∞ <

ρ̃−
w T

0
| d
dt

[Eβ(−btβ

λ
)− Eβ̃(−ctβ̃

a
)]|dt

a

λ
T βEβ,β+1(−aT β

λ
)− Eβ̃(−cT β̃

b
) + 1

, (20)

where ρ̃ ∈ [0, 1).
Remark 6 It can be seen from the above discussion

that Φ(s) = L{φ(t)} is a summation of a low-pass fil-
ter and a high-pass filter. Besides, |Φ(s)| = 1 for both
s → 0 and s → ∞. Therefore, compared with the de-
sirable unit-gain compensator[26], Φ(s) is called the “de-
sirable band-stop” FOILC compensator. The idea of the
“desirable band-stop” method makes some practical sense.
For example, in reality, the noise and some other distur-
bances and uncertainties in the feedback loop can lead to
the divergence of the ILC scheme, even if the convergence
conditions are satisfied[2]. Therefore a band-stop compen-
sator can efficiently reduce the influences of the certain
noises. Besides, refer to the hereditary property of the
fractional order systems, the initial value yk(0) can not be
fully reset to yd(0), but may vary around it in a certain
bound. Thus the initial disturbances must be considered.
It follows from the finite energy property of the band-stop
compensator that the tracking error is bounded so as the
initial disturbances.

Remark 7 Given the linear fractional order systems

y(β)(t) = − b

λ
y(t) +

b

λ
x(t), and y(β̃)(t) = − c

a
y(t) +

x(β̃)(t), it can be easily proved that the transfer functions

of the above two equations are Y (s) =
b

b + λsβ
X(s), and

Y (s) =
asβ̃

c + asβ̃
X(s), respectively. Both of them can be

easily realized using the idea of fractional order element
networks[38].

6 Simulation illustrations
In this section, a fractional-order nonlinear system as-

sociated with the desirable band-stop FOILC scheme are
numericallly illustrated in MATLAB/Simulink. A band-
stop white noise is added to the system and a number of
plots are provided to illustrate our main results.

The fractional order nonlinear system is

y
(1/2)
k (t) = y

(8/9)
k (t) + uk(t), k = 0, 1, 2, · · · , (21)

where the reference yd(t) = 12t(1− t) and yk(0) = 0.
Moreover, in Laplace domain, the FOILC updating

law is shown as

Uk+1(s) = Uk(s) +
9
10

Φ(s)s(ξ)E(s), (22)

where ξ ∈ {2
5
,
1
2
} and Φ(s) =

1
1 + s1/2

+
s1/5

1 + s1/5
.

It can be seen from Fig.1 and 2 that the FOILC updat-

ing law (22) works for both ξ =
1
2

and ξ =
2
5

. Never-

theless, it is shown that the convergence speed is faster for

ξ =
1
2

, which is the same with the system order. More-

over, if ξ >
1
2

the monotonicity of the tracking errors or
the convergence of the scheme may not be satisfied, which
is also discussed in Remark 2. Lastly, the linear term
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B{Γ̃ (t)e(t)} does not influence the convergence condi-
tion. However, it is strongly related to the convergence
speed of the FOILC scheme, which implies that a proper
linear operator B should be used to guarantee the mono-
tone decreasing of the tracking errors. The implementa-
tions of fractional order operators can be found in [39,40].

Fig. 1 The system outputs yk(t) and the 2−norms of ek(t) for
different iterations, where k ∈ {0, 1, 2, · · · , 8} and

ξ =
1

2
.

Fig. 2 The system outputs yk(t) and the 2−norms of ek(t) for
different iterations, where k ∈ {0, 1, 2, · · · , 8} and

ξ =
2

5
.

7 Conclusions
In this paper, the frequency domain analysis of the ILC

scheme and its corresponding time domain analysis of an
FOILC scheme were discussed. Based on our time domain
results, a novel FOILC scheme is proposed, which greatly
simplifies the ILC convergence conditions. The constant
learning gain cases are investigated which provides a num-
ber of new insights of FOILC. The equivalence of the con-
vergence conditions is proved so that the convergence of
the FOILC scheme can be easily guaranteed depending on
the controller information. The order adaption problem, a
distinguishing feature for fractional order systems, is well
solved in time domain. Refer to the practical applications
of FOILC, the desirable band-stop FOILC scheme is pro-
posed and a number of numerical simulation illustrations
are presented.
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