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摘要:对于非线性迭代学习控制问题,提出基于延拓法和修正Newton法的具有全局收敛性的迭代学习控制新方
法. 由于一般的Newton型迭代学习控制律都是局部收敛的,在实际应用中有很大局限性. 为拓宽收敛范围,该方法
将延拓法引入迭代学习控制问题,提出基于同伦延拓的新的Newton型迭代学习控制律,使得初始控制可以较为任
意的选择.新的迭代学习控制算法将求解过程分成N个子问题,每个子问题由换列修正Newton法利用简单的递推
公式解出.本文给出算法收敛的充分条件,证明了算法的全局收敛性. 该算法对于非线性系统迭代学习控制具有全
局收敛和计算简单的优点.
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A new iterative learning control algorithm of
extension-updated Newton method for nonlinear systems

KANG Jing-li
(Science and Technology on Information Systems Engineering Laboratory,

China Aerospace Science and Technology Corporation, Beijing 100854, China)

Abstract: A new algorithm based on extension method and updated Newton method with global convergence for
nonlinear iterative learning control problem is proposed. Since classical Newton-type iterative learning schemes are local
convergence, conditions of local convergence can be hardly satisfied in practice. In order to widen the range of convergence,
extension method is introduced to iterative learning control problem. A new Newton-type iterative learning control scheme
based on homotopy extension is presented, in which the initial control can be chosen arbitrarily. The solving process is
subdivided to N subproblem by the new algorithm. The exchange column update Newton method is employed to solve
the subproblem by simple recurrent formula. Sufficient conditions for global convergence of this algorithm are given and
proved. The implementation of the new algorithm has advantage of guaranteeing global convergence and avoiding complex
calculation for nonlinear iterative learning control.
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1 Introduction
Iterative learning control is a control strategy that

needs to improve the control performance of every iter-
ative process by operating in a repetitive mode. In it-
erative learning control systems, information from pre-
vious executions of the task is used in an attempt to
generate the updated control iteration and the tracking
error between the output trajectory and desired trajec-
tory tends to zero. Such systems include robot arm
manipulators, disk drive, chemical batch reactors and
other nonlinear industry. Since iterative learning con-
trol was originally introduced by Arimoto[1], signifi-
cant developments in iterative learning research area
has stimulated considerable interests in various update
algorithms for linear and nonlinear systems[2]. In re-

cent years, the study of iterative learning control has put
more and more emphases on nonlinear systems which
are the most often seen cases in practice[3–5]. Newton-
type iterative learning control schemes are one of the
important and effective schemes which have the advan-
tage of improving the convergence speed for nonlinear
systems. In [6], a new nonlinear iterative learning con-
trol algorithm used a special form of Newton method in
continuous time domain. Xu and Tan[7] provided P-type
learning and Newton-type learning method for non-
affine nonlinear systems. The proposed P-type iterative
learning control scheme has the simple form required
a prior system knowledge, while Newton-type itera-
tive learning control schemes have faster convergence
by incorporating a varying learning gain. For discrete
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nonlinear systems, Lin et al[8], introduced the Newton
method into the iterative learning control framework by
established the connection between the iterative learn-
ing control problem and nonlinear multivariable equa-
tions. Then, a nonlinear iterative learning control algo-
rithm with semi-local convergence was presented. By
introducing a relaxation index, a Newton method based
on iterative learning control for nonlinear systems was
shown to converge monotonically in [9]. Optimization
was suggested to calculate the index about monotonic
convergence and fast convergence speed at the same
time. Kang and Tang[10] presented a new iterative learn-
ing control algorithm for nonlinear systems based on
modified Newton methods. The exchange row updating
method was used to construct the approximation of the
derivatives of the output function by which the calcula-
tion work was reduced largely.

It is well known that iterative learning control based
on Newton-type method can greatly speed up the con-
vergence. However, there are some weaknesses. Firstly,
all these algorithms mentioned above have local conver-
gence or semi-local convergence. It is implied that the
convergence is only guaranteed when the initial control
is chosen in a small neighborhood of the target con-
trol. In practice, this condition can be hardly satisfied
because the control is unknown. Moreover, Newton
method need to spent a lot of time on complex calcu-
lation of nonlinear inverse systems.

In this paper, a new algorithm of iterative learning
control for nonlinear systems is proposed. The itera-
tive learning scheme with a homotopy extension is es-
tablished. The solving process is divided into N sub-
problem by the new algorithm. The exchange column
update Newton method is used to solve the subprob-
lem by simple recurrent formula. Global convergence
of this new algorithm is proved. What distinguishes our
work from previous iterative learning control schemes
is that the new algorithm has a strong connection to the
homotopy extension method and exchange column up-
date Newton method. Iterative learning control scheme
has taken advantage of homotopy extension to achieve
global convergence. Furthermore, the exchange column
update Newton method is considered in this algorithm
which makes it possible to reduce complex calculation
work. The significance of this paper is that a new it-
erative learning control algorithm with global conver-
gence is provided instead of local convergence of gen-
eral Newton-type method.

2 Problem statement
In this paper, we deal with the general setting of

nonlinear iterative learning control scheme. Consider
nonlinear systems as follows:{

ẋ(t) = f(x(t), u(t), t),
y(t) = φ(x(t), u(t), t),

(1)

and initial condition x(0) = x(0), where x(t) ∈ D ⊂
Rn, y(t) ∈ E ⊂ Rm, u(t) ∈ Rm, t ∈ [0, T ].

In order to consider the iterative learning control
problem, some definitions and assumptions are given.

Definition 1[11] Let the function
x(t) : [0, T ] → Rn,

then the λ-norm is defined as
‖x‖λ = sup

06t6T

{‖x(t)‖2e
−λt},

and the supreme norm is
‖x‖s = sup

06t6T

{‖x(t)‖2}.

Definition 2[11] Let A be a matrix, then the Frobe-
nius norm (F-norm) of A is

‖A‖F = (
m∑

i=1

n∑
j=1

a2
ij)

1
2 = (tr(ATA)) 1

2 .

In particular, if an element of the matrix is a function of
t(0 6 t 6 T ), then we can define ‖A‖Fs

as

‖A‖Fs
= max

06t6T
‖A‖Fs

.

Assumption 1 Suppose that f(x, u, t) and
φ(x, u, t) have second Fréchet continuous derivatives
in the compact convex subset Ω = D×E× [0, T ] with
respective to x and u.

From this assumption, the following results can be
easily obtained.

Remark 1 f(x, u, t) and φ(x, u, t) as well as
their first derivatives with respective to x and u are
uniformly bounded in Ω. The second derivatives of
φ(x, u, t) with respective to u is uniformly bounded in
Ω, i.e.

‖ φx(x, u, t) ‖6 K, ‖ φuu(x, u, t) ‖6 Q,

where K and Q are constants.
Remark 2 There exist constants L1 and L2, such

that

‖f(x1, u1, t)− f(x2, u2, t)‖2 6
L1(‖x1 − x2 ‖2 + ‖u1 − u2 ‖2),
‖φu(x1, u1, t)− φu(x2, u2, t)‖F 6
L2(‖x1 − x2 ‖2 + ‖u1 − u2 ‖2).

Assumption 2 Suppose that φ−1
u (x, u, t) exists

and is uniformly bounded in Ω, i.e.

B1 6 ‖φ−1
u (x(t), u(t), t) ‖Fs

6 B,

where B1 and B are constants.
Assumption 3 For given y(t), there exists a

unique x(t) and u(t) such that Eq.(1) is hold. In par-
ticular, for given target trajectory yd(t), there exists a
unique control ud(t) such that

{
ẋd(t) = f(xd(t), ud(t), t),
yd(t) = φ(xd(t), ud(t), t),

(2)

for t ∈ [0, T ].
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The control target is to find a control sequence
{ui(t)} such that the target trajectory yd(t) can be
tracked by the system output yk(t), i.e.

lim
k→∞

yk(t) = yd(t).

3 New iterative learning control scheme
3.1 Motivation of the new algorithm

It is well known that Newton-type methods have
been applied to nonlinear iterative learning control
problems with quick convergence[12–13]. However, only
when the initial approximation is sufficiently close to
the solution for the problem, the convergence of this al-
gorithm can be guaranteed, i.e, Newton-type methods
have only local convergence. Since the solution for the
problem is unknown, it is difficult to choose initial ap-
proximation such that the convergence of the algorithm
is guaranteed.

For example, in [2], the Newton-type iterative
learning control scheme was proposed with local con-
vergent in which the convergent range satisfies

‖ei ‖s6
2r1

Muuα
−2
1

,

where r1∈ (0, 1), α1 6‖φu ‖6α2 and ‖φuu ‖6 Muu.
In particular, the initial approximation is subject to

‖yd − φ(x0, u0, t)‖s=‖e0 ‖s6
2α2

1

Muu

.

Since the target control ud and the target state xd are
unknown, it is hard to choose u0.

In order to widen the range of convergence, when

‖ ei ‖s>
2r1

Muuα
−2
1

, the linear iterative learning control

scheme was presented as follows[2]:

ui+1 = ui + Γ∆ei(t).

The constant matrix Γ should be subject to some strict
conditions, but it is hardly to be found in fact.

Efficient iterative method should permit rather gen-
eral initial approximation not only those close to the so-
lution for the problem, i.e., called global convergence
algorithms[12–13]. In this paper, a homotopy transfor-
mation is constructed into the iterative learning control
problem. The homotopy extension and exchanging col-
umn update Newton method is utilized to iterative learn-
ing control scheme which can achieve global conver-
gence.
3.2 Iterative learning control scheme

In order to illustrate the proposition of the homo-
topy extension mapping, a lemma is presented, firstly.

Lemma 1 If Assumptions 1–3 are satisfied, then
for given u(t), there exists the unique x such that Eq.(1)
is hold and x is a continuous function of u.

Proof It can be seen that Eq.(1) is equivalent to

x(t) = x(0) +
w t

0
f(x(τ), u(τ), τ)dτ.

By using the contraction mapping theorem, it is able to
prove that for the given u(t), there exists the unique cor-
responding x(t) satisfies ẋ(t) = f(x(t), u(t), t)[14].
We can prove the state x is a continuous function with
respect to u. In fact,

‖x(u + ∆u)− x(u)‖=
‖
w t

0
(f(x(u + ∆u), u + ∆u, τ)−

f(x(u), u, τ))dτ ‖6
L1

w t

0
(‖x(u + ∆u)− x(u)‖ + ‖∆u‖)dτ.

From Grownwall Lemma, we get

‖x(u + ∆u)− x(u)‖6
eL1T − 1

λ
L1 ‖∆u‖→ 0 (if ‖∆u‖→ 0).

The new iterative learning control scheme is presented
in the following:

1) Choose initial control u0, and from the state
equation

ẋ0(t) = f(x0(t), u0(t), t),

we can obtain x0(t). Thus, we have

y0(t) = φ(x0(t), u0(t), t).

2) Construct the mapping
H(u, µ) =(φ(x(t), u(t), t)− yd(t))+

(µ− 1)(φ(x0(t), u0(t), t)− yd(t)).
It is obvious that when µ = 0, we get

H(u, µ) = H(u, 0) =
(φ(x, u, t)− yd)− (φ(x0, u0, t)− yd) =
φ(x, u, t)− φ(x0, u0, t).

Thus, (x0, u0) satisfies H(u, 0) = 0. When µ = 1, we
have

H(u, µ) =H(u, 1) = φ(x, u, t)− yd =
φ(x, u, t)− φ(xd, ud, t).

Therefore, (xd, ud) satisfies with H(u, 1) = 0, where
ud and xd are the target control and target state of sys-
tems, respectively. Choose appropriate N , then given
points of division {µi, i = 1, 2, · · · , N} which satisfy

0 = µ0 < µ1 < · · · < µN = 1,

and

∆µi = µi − µi−1 =
1
N

.

3) The iterative learning control process is derived
as follows:

For the ith(i = 1, 2, · · · , N) iteration, we have

ẋk(t) = f(xi
k(t), u

i
k(t), t),

yi
k(t) = φ(xi

k(t), u
i
k(t), t),

ui
k+1 = ui

k + (Ai
k)
−1H(ui

k, µi),
where
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H(ui
k, µi) = (φ(xi

k, u
i
k, t)− yd) +

(µi − 1)(φ(x0, u0, t)− yd),
x1

0 = x0, u1
0 = u0, xi+1

0 = xi
mi

, ui+1
0 = ui

mi
,

k = 0, 1, 2, · · · ,mi − 1,

and mi is a positive number which is the step of the ith
iteration.

4) In order to reduce calculation work, exchange
column update Newton method is presented as follows:

From the above iterative learning process, let




A1
0 = A0 = φu(x0, u0, t),

Ai
0 = φu(xi+1

0 , ui+1
0 , t) = φu(xi

mi
, ui

mi
, t),

Ai
k+1 =Ai

k+ (φu(xi
k+1, u

i
k+1, t)−Ai

k)elke
T
lk

,

lk = k (mod m), k = 0, 1, · · · ,mi − 1,

(3)

where elk denotes the unit vector of m dimension, i.e.
the kth element is one and others are zero. For the
method (3), A−1

k+1 can be calculated by the following
recurrent formula:

(Ai
k+1)

−1 = (Ai
k)
−1 − 1

r
(Ai

k)
−1PeT

lk
(Ai

k)
−1,

P = (φu(xi
k+1, u

i
k+1, t)−Ai

k)elk ,

where r = 1 + eT
lk

(Ai
k)
−1P . Therefore, the iterative

learning control law based on homotopy extension up-
dated Newton method is



ui
k+1 = ui

k(t) + (Ai
k)
−1H(ui

k, µi),

(Ai
k+1)

−1 = (Ai
k)
−1 − 1

r
(Ai

k)
−1PeT

lk
(Ai

k)
−1.

(4)

4 Convergence of new iterative learning con-
trol scheme
Lemma 2[10] If the Assumptions 1–3 hold, the it-

erative process is produced by Eqs.(3)–(4), then we can
get the following results.

1) If k 6 m, then

‖Ak − φu(x, u, t)‖Fs
6

L(
k∑

i=0

(‖xk−i − x‖s + ‖uk−i − u‖s)).

2) If k > m, then

‖Ak − φu(x, u, t)‖Fs
6

L(
k∑

i=k−m−1

(‖xk−i − x‖s + ‖uk−i − u‖s)),

where L is a constant.
According to Lemma 2, the following result is

given.
Theorem 1 Let the initial error ε0 = yd(t) −

φ(x0, u0, t), if Assumptions 1–3 are satisfied, and in
the above iterative learning process, ∆µ satisfies the
following inequality:

∆µ 6 1
2(4LmB2 + QB2)‖ε0 ‖s

,

then the new iterative learning control algorithm is con-

vergent

lim
k→∞

‖H(uN
k , 1)‖λ= lim

k→∞
‖H(uN

k , 1)‖s= 0,

i.e.
lim

k→∞
yN

k (t) = yd(t).

Proof From iterative learning control scheme in
Section 3, we obtain

u1
1 =u1

0 + A−1
0 H(u1

0, µ1) =
u0 − φ−1

u (x0, u0, t)∆µε0,

then
‖u1

1 − u0 ‖=‖φ−1
u (x0, u0, t)‖|∆µ |‖ε0 ‖6

B |∆µ |‖ε0 ‖= B ‖H(u1
0, µ1)‖ .

Moreover,

‖x1
1 − x1

0 ‖=
‖
w t

0
(f(x1

1, u
1
1, τ)− f(x1

0, u
1
0, τ))dτ‖6

L1

w t

0
(‖x1

1 − x1
0 ‖ + ‖u1

1 − u1
0 ‖)dτ 6

L1

w t

0
‖x1

1 − x1
0 ‖ dτ + L1B |∆µ |

w t

0
‖ε0 ‖ dτ.

In terms of Bellman-Gronwall Lemma, we get

‖x1
1 − x1

0 ‖6L1eL1tB |∆µ | eλt−1

λ
‖ε0 ‖6

O(
1
λ

)∆µ ‖ε0 ‖,
and

‖A1
1 − φu(x1

1, u
1
1, t)‖Fs

6
L2(‖x1

1 − x0
1 ‖s + ‖u1

1 − u0
1 ‖s) 6

O(
1
λ

) ‖ε0 ‖s +B∆µ ‖ε0 ‖s .

From Assumption 2, we have

‖A−1
1 ‖Fs

6 B

1− (O(
1
λ

)+B∆µ)‖ε0 ‖s B
62B.

Thus,

‖u1
k+1 − u1

k ‖=‖(Ai
k)
−1H(u1

k, µ1)‖6
‖(Ai

k)
−1 ‖‖H(u1

k, µ1)‖,
and

‖x1
k+1 − x1

k ‖=
‖
w t

0
(f(x1

k+1, u
1
k+1, τ)− f(x1

k, u
1
k, τ))dτ ‖6

L1

w t

0
(‖x1

k+1 − x1
k ‖ + ‖u1

k+1 − u1
k ‖)dτ 6

L1O(
1
λ

) ‖(Ai
k)
−1 ‖‖H(u1

k, µ1)‖λ .

We also have

H(u1
k+1, µ1)−H(u1

k, µ1) =
φ(x1

k+1, u
1
k+1, t)− φ(x1

k, u
1
k, t) =

−
w 1

0
φx(x1

k + τ(x1
k+1 − x1

k), u
1
k+1, τ)dτ ·
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(x1
k+1 − x1

k)− φu(x1
k, u

1
k, t)(u

1
k+1 − u1

k)−w 1

0
(1− τ)φuu(x1

k, u
1
k + τ(u1

k+1 − u1
k), τ)dτ ·

(u1
k+1 − u1

k)(u
1
k+1 − u1

k).

Therefore,
H(u1

1, µ1) =

H(u1
0, µ1)−

w 1

0
φx(x1

0 + τ(x1
1 − x1

0), u
1
1, τ)dτ ·

(x1
1 − x1

0)− φu(x1
0, u

1
0, t)(u

1
1 − u1

0)−w 1

0
(1− τ)φuu(x1

0, u
1
0 + τ(u1

1 − u1
0), τ)dτ ·

(u1
1 − u1

0)(u
1
1 − u1

0).
Then, we get

‖H(u1
1, µ1)‖λ6

L1O(
1
λ

) ‖H(u1
0, µ1)‖λ +

1
2
QB2 ‖H(u1

0, µ1)‖s‖H(u1
0, µ1)‖λ<

1
2
‖H(u1

0, µ1)‖λ .

If j 6 k, the following inequalities are hold:

‖(A1
j)
−1 ‖Fs

6 2B,

‖H(u1
j , µ1)‖λ6 1

2
‖H(u1

j−1, µ1)‖s,

‖xj − xj+1 ‖λ6 L1O(
1
λ

) ‖ε0 ‖λ .

If j = k + 1, from Lemma 2 and Eq.(3), we get

‖A1
k+1 − φu(x1

k+1, u
1
k+1, t)‖Fs

6

L(
m−1∑
i=1

(‖x1
k − x1

k−i ‖s
+ ‖u1

k − u1
k−i ‖s

)),

and
‖x1

k+1 − x1
k ‖2=

‖
w t

0
(f(x1

k+1, u
1
k+1, τ)− f(x1

k+1, u
1
k+1, τ))dτ ‖26

L1

w t

0
(‖x1

k+1−x1
k ‖2+‖(A1

k)
−1 ‖Fs

‖H(u1
k, µ1)‖2)dτ 6

2BL1eL1t e
λt − 1

λ
‖H(u1

k, µ1)‖λ .

Thus,

‖x1
k+1 − x1

k ‖λ6 O(
1
λ

) ‖H(u1
k, µ1)‖λ .

When k 6 m, from recurrent method, we can obtain

‖H(u1
k+1, µ1)‖λ6 1

2
‖H(u1

k, µ1)‖λ .

When k > m and j = k + 1, we have

φu(x1
k, u

1
k, t)(u

1
k+1 − u1

k) =
φu(x1

k, u
1
k, t)(A

1
k)
−1H(u1

k, µ) =
(φu(x1

k, u
1
k, t)− (A1

k))(A
1
k)
−1H(u1

k, µ1)+
H(u1

k, µ1).

Thus,
H(u1

k+1, µ1) =
− (φu(x1

k, u
1
k, t)−A1

k)(A
1
k)
−1H(u1

k, µ1)−w 1

0
φx(x1

k+τ(x1
k+1 − x1

k), u
1
k+1, t)dτ(x1

k+1−x1
k)−

w 1

0
(1− τ)φuu(x1

k+1, u
1
k+1 + τ(u1

k+1 − u1
k), τ)dτ ·

(A1
k)
−1H(u1

k, µ1)(A1
k)
−1H(u1

k, µ1).
From Bellman-Gronwall lemma, we have

‖H(u1
k+1, µ1)‖λ6

‖φu(x1
k, u

1
k, t)−Ak ‖Fs

‖(A1
k)
−1 ‖Fs

‖H(u1
k, µ1)‖λ +

1
2
‖φuu(x1

k, u
1
k, t)‖Fs

‖(A1
k)
−1 ‖Fs

·
‖H(u1

k, µ1)‖Fs
‖(A1

k)
−1 ‖Fs

‖H(u1
k, µ1)‖λ +

‖φx(x1
k, u

1
k, t)‖Fs

‖x1
k+1 − x1

k ‖λ6

L(
m−1∑
i=1

(‖x1
k − x1

k−i ‖s +‖u1
k − u1

k−i ‖s)) ·

2B ‖H(u1
k, µ1)‖λ +

Q

2
4B2 ‖H(u1

k, µ1)‖s ·

‖H(u1
k, µ1)‖λ +KO(

1
λ

)‖H(u1
k, µ1)‖λ6

8LmB2 ‖H(u1
k−m+1, µ1)‖s‖H(u1

k, µ1)‖λ +
2QB2 ‖H(u1

k, µ1)‖s‖H(u1
k, µ1)‖λ +

O1(
1
λ

)‖H(u1
k, µ1)‖λ6

O1(
1
λ

)‖H(u1
k, µ1)‖λ +2(4LmB2 + QB2) ·

‖H(u1
k, µ1)‖s‖H(u1

k, µ1)‖λ6
1
2
‖H(u1

k, µ1)‖λ . (5)

Then, we get

lim
k→∞

‖H(u1
k, µ1)‖λ = lim

k→∞
‖H(u1

k, µ1)‖ s = 0.

There exists the positive number m1 such that

‖H(u1
m1

, µ1)‖λ6 1
2
∆µ‖ε0 ‖s .

We can take u2
0 = u1

m1
and x2

0 = x1
m1

for solving the
i = 2 subproblem iteration.

Similarly, we can also obtain

‖H(ui
k+1, µi)‖λ6

8LmB2 ‖H(ui
k−m+1, µi)‖s‖H(ui

k, µi)‖λ +

2QB2 ‖H(ui
k, µi)‖s‖H(ui

k, µi)‖λ +

O1(
1
λ

)‖H(ui
k, µi)‖λ6 1

2
‖H(ui

k, µi)‖λ .

Thus,

lim
k→∞

‖H(ui
k, µi)‖λ= lim

k→∞
‖H(ui

k, µi)‖s= 0.

There exists the positive number mi such that

‖H(ui
mi

, µi)‖λ6 ∆µ‖ε0 ‖s .
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We can take ui+1
0 = ui

mi
and xi+1

0 = xi
mi

for solving
the ith problem, then

‖H(ui+1
k+1, µi+1)‖λ<

1
2
‖H(ui+1

k , µi+1)‖λ .

Therefore, for i = 1, 2, · · · , N − 1, we have

lim
k→∞

‖H(ui+1
k , µi+1)‖λ= lim

k→∞
‖H(ui+1

k , µk+1)‖s= 0.

In particular,

lim
k→∞

‖H(uN
k , 1)‖λ= lim

k→∞
‖H(uN

k , 1)‖s= 0.

i.e.
lim

k→∞
φ(xk(t), uk(t), t) = yd(t).

Since H(ui
k, µi) converges to 0 in supreme norm,

H(ui
k, µi) uniformly converges to 0 on [0, T ] from As-

coliarzela theorem. From Eq.(5), we can see that {ui
k}

is a Cauchy sequence which implies {ui
k} is a conver-

gent sequence. Therefore,

lim
k→∞

‖H(uN
k , 1)‖λ= lim

k→∞
‖H(uN

k , 1)‖s= 0,

i.e.

lim
k→∞

φ(xN
k , uN

k , t) = lim
k→∞

yN
k (t) = yd(t).

5 Conclusions
In this paper, a new iterative learning control algo-

rithm based on extension-updated Newton method for
nonlinear systems is presented. In terms of homotopy
extension methods, a homotopy is constructed in itera-
tive learning control problem. The solving process is di-
vided into N subproblem by the new algorithm. The ex-
change column update Newton method is used to solve
the subproblem by simple recurrent formula. The new
iterative learning control algorithm is proposed to wide
the range of convergence and the iterative learning pro-
cess of new algorithm is derived. Sufficient conditions
for the convergence of the new algorithm are given and
proved. This new algorithm has global convergence
instead of local convergence of classical Newton-type
methods.
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