5 & A

Control Theory & Applications

Vol. 29 No. 8
Aug. 2012

5520 %3 8 1] = 4 ¥ %
2012 4 8

JEAREE X PR B AR BB K35 > i e

B/, AREE,
L. PH2AC RS HOF B GG B, B 7622 710049; 2. Yo7 K5 HLA A S2BE, 1K 447-1, #5IH;
3. E SRR, B S THEHL T RSB, T 1L 689-798, il
T ASCHE G BT T IEAR S92 0 AT A RS TR )RR S RSP ST I U, UK, 2538 T ik AR
27 I AL B FC M SIOR BE LB AT R 15K, ﬁﬁSTﬁﬁtﬁfk%éﬁuﬁlbﬁﬁﬁi\lkiﬁ%‘zﬁ@iﬂﬁ%ﬁE?E?EWL
Bl g, e T AR S SR R O AR,
RBRIR): EAE I WS HT; BIARIRAEAS w2 KRS KMy
FESES: TPI3 XHEFRIRAD: A

iiEEIS

2R

Retrospective review of some iterative learning control techniques with
a comment on prospective long-term learning
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Abstract: This paper firstly makes a retrospective review of some iterative learning control techniques and results
regarding to the initial state shift issue and the monotone convergence analysis. Secondly, the paper presents a review of
the higher-order iterative learning control scheme including its convergence speed comparison and effectiveness. Then, the
paper exhibits a review of iterative learning control mechanism for large-scale systems including repetitive systems and
magnitude-varying industrial processes. Lastly, the paper gives a comment on prospective long-term learning control for
the future.
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1 Introduction

‘Learning’ is a common notion that pervades
through wide ranges from biology and psychology to
sociology and philosophy, and so on, both in theoretical
investigations and in practical applications. For exam-
ple, human beings must learn not only survival capa-
bilities including living resource acquirement and lan-
guage communication but also socially communicative
and cooperative ability with the environment. In addi-
tion, for advanced and quality-living convenience, hu-
man beings have invented various kinds of intelligent
machines such as robot. In order to drive such an intel-
ligent machine to work in accordance with human di-
rections and intention, some forms of human being-like
learning mechanism must be artificially embedded into
the machine to guide its operation.

The notion ‘learning’ has been dealt with in various
disciplines, including mathematics, computer science,
linguistics, psychology and philosophy, etc. Its inves-
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tigative interests include theories of scientific discovery,
formal learning, machine inductive inference, computa-
tional learning and empirical inquiry and so on. Typical
learning plan involves specification of target function,
choice of learning algorithm, selection of data/data sub-
sets, preprocessing, measure of performance as well as
halt criteria and so on. Generally speaking, learning
is a process for an intelligent system to acquire knowl-
edge or experience on the basis of its perception and
cognition of the environment and then to act on the en-
vironment referring the knowledge/experience so as to
improve its behavior performance the next time.

For the task of a robotic system to track a desired
trajectory, the technique of iterative learning control
(ILC) is well-known as one of the key artificial in-
telligent strategies. The ILC is a recursive algorithm
that utilizes the tracking discrepancy/error of the sys-
tem output from the desired trajectory and iteratively
updates its current control command so as to generate
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an upgraded control command for the next operation,
when the system operates repetitively over a fixed fi-
nite time interval'!. The aim is to improve the track-
ing performance more efficiently and effectively as the
system operation repeats. As the basic ILC mechanism
is simply the system input-output data driven scheme
and does not need a priori knowledge of the system dy-
namics, it is adoptable for the systems with uncertainty,
nonlinearity and complexity and so on!?!. As such, it
has drawn much attention for its development and in-
vestigation in three decades since the ILC technique has
been invented, and has been applied not only to robotic
systems but also to batch types of industrial processes
and video driver, etc!*!,

The topics of ILC mainly concern algorith-
mic construction!®1?!, convergence analytical tech-
niques!?*-23, initial state shift issue!>*>3!, adaptive ILC
updating law design®**="), and optimal ILC mecha-
nism!*%1 as well as practical applications!*’!. Regard-
ing to those constructed strategies, one of the key prob-
lems to be solved is convergence clarification. The ana-
lytical techniques hinge mainly on contraction mapping
and fixed point theory. Due to the fact that the tracking
performance is measured by some types of norm, the
corresponding convergent results may not coincide with
each other to some extent. Besides, the initial state shift
issue is of course an ordinary phenomenon while the
proposed scheme is implemented for practical systems.
Its investigations involve tracking performance evalu-
ation and compensation or rectifying strategies. For
adaptive and optimal ILC rules, some cost/energy func-
tions are constructed and the system parameters and
state information are utilized to design the algorithms.
Though the surveying status of the ILC investigations
is updated successively*' %!, some specific ILC tech-
niques and its focuses are prominent in clarifying some
controversial assertions as well as enriching the con-
tents of the ILC development. This paper presents a
retrospective review of some specific iterative learning
control techniques mainly explored by Bien’s group and
then gives a comment of prospective long-term learn-
ing control. The paper is organized as follows. Section
2 reviews the investigation of the initial state shift is-
sue and the monotone convergence. The higher-order
ILC schemes and some newly-developed results are ad-
dressed in Section 3 and ILC architecture for large-scale
system is exhibited in Section 4. Section 5 presents
a prospective view on long-term learning control, and
lastly, Section 6 concludes the paper.

2 Initial state uncertainty and monotone
convergence issue

In most ILC algorithms, it is assumed that the initial

state value of the plant is equal to that of the desired tra-
jectory for perfect tracking, even though it is hard to set

the initial state value of the plant at that of the desired
trajectory exactly. Lee and Bien reported the possibility
of divergence of control input due to the initial state er-
ror?!. Later, Lee and Bien showed that a proportional
term of error can be positively solicited to get a better
performance against initial state error!?®!,
To be more specific, consider the linear system de-
scribed by Eq.(1).
{:c(t) = Ax(t) + Bu(t),
y(t) = Cx(t).
Here, x € R”, u € R" and y € R? denote the state,
the input and the output, respectively. A, B and C are
matrices with appropriate dimensions and it is assumed
that C, B is a full rank matrix. Let a4(+) be the desired
state trajectory and yq(-) be the corresponding output
trajectory. Assume that y4(-) and x4(-) are continu-
ously differentiable on [0, T']. It is shown that when the
ILC algorithm (2) is applied to the system (1), the out-
put trajectory converges to the form in Eq.(3).

leIIolo yr(t) = ya(t) + e C(xo — 24(0)), (3)

where the subscript k is employed to mark the iteration
index and hereafter. yy (), ux(-) and ex(-) are output
trajectory, control input trajectory, and output error tra-
jectory at the k-th iteration, respectively. Eq.(3) shows
that the effect of initial state error can be controlled by
tuning the gain R of the ILC algorithm, and the error
asymptotically converges to zero if R is chosen so that
all the eigenvalues have negative real parts.

6]

Sometimes an intentional overshoot may be posi-
tively utilized to get a better performance. Park et al,
generalized the previous result to the PID-type ILC al-
gorithm and showed that the performance can be im-
proved by adding an integral term?”!. It is shown that
when the ILC algorithm (4) is applied to the system (1),
the output trajectory converges to the form in Eq.(5).

Q1 [ ex(r)dr), 4)
lim i () = ya(t) + Cre™'é, ®)
where
=] g | cn=tr 0l

& = [_éo] C(zo — x4(0)).

Eq.(5) implies that the output trajectory can be con-
trolled in a variety of ways by introducing the integral
term.

Park and Bien also extended the algorithms in the
form of linear controller to the generalized ILC algo-
rithm by adopting continuous operators?®!. It is shown
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that when the ILC algorithm (6) is applied to the sys-
tem (1), the output trajectory converges to the form in

Eq.(7).
s (1) = welt) + TEn(t) + (Per())(0)), ©)
Jim . (t) = ya(t) — e(t), (7

where P is an operator of error function ey (t), which is
continuous in e (-), and €(t) is the solution of

{é(t) + (Pe())(t) =0,

Eq.(7) implies that the trend of error reduction can be
effectively controlled by adopting relevant operators.

In spite of these conspicuous progresses in ILC, it
is still required that the initial state value of the system
should be same at each iteration even though it can be
different from that of the desired trajectory. It is how-
ever inevitable to have deviation in initialization from
the initial state value at last iteration although it may be
very small. To resolve this problem, Park introduced an
average operator-based ILC algorithm!. It is shown
that when the ILC algorithm (8) is applied to the sys-
tem (1), the output trajectory converges to the form in
Eq.(9).

wa(t) = ave (O} + T x
Caw-Rye®).  ®

Jim (ye(t) + Ce(ao — 24(0))) =

Ya(t) — ™ C(za(0) — x0), 9)

where avg {'}f:o denotes an average operator which is
defined as
1k
hi(-).

avg {hi()}i_y = PPl

Later, Ruan and Bien introduced a rectangular pulse
compensation for PD-type ILC algorithms to suppress
the tracking discrepancy incurred by initial state error,
and showed that the upper bound of the asymptotical
tracking error can be improved by tuning the compen-
sation gain properly*’!.

Recall that, for a vector function f : [0, 7] — R™,
F@) =1[f'@) --- f™()]" and a real number A > 0,
the A-norm is defined in [1] as

1700 = sup e ( sup [£(t)).
0<t<T 1<i<m

By comparison, the sup-norm!**! and Lebesgue-p

norm!*! are also utilized for ILC design, which are re-
spectively defined as

1f () llswp = sup ( sup |f*(£)]),

0<t<T 1<i<m

17Ol =1

(sup |fi(t)])dt]7, 1< p < 0.

1<i<m

The convergence property in the sensor of sup-norm
may seem to be equivalent to that obtained in the sense
of A\-norm. However, we can observe some huge over-
shoot in the sensor of sup-norm even though the mono-
tone convergence is guaranteed in the sense of A-norm.
Such an undesirable phenomenon of A\-norm was first
observed by Lee and Bien*® and it was reported that
the pure error term of a PD-type ILC algorithm plays
an important role in a bound of the interval where the
monotone convergence is guaranteed in the sense of
sup-norm. However, we have to obtain an accurate
model of the plant in order to get a desired error con-
vergence behavior in a wider range of the interval, since
the interval depends on the plant parameters.

To resolve this limitation, Park and Bien proposed
a new ILC algorithm with adjustment of learning inter-
val, which is found to be more robust against parameter
uncertainty, and achieved monotone convergence of the
output error in the sensor of sup-norm!*’!. It is shown
that the monotone convergence of the output error in
the sense of sup-norm can be guaranteed when the ILC
algorithm (2) is applied to the system (1) for the time
interval [0, ], where ¢} is the maximum value among
the time when e~*!||e;,(t) || takes its maximum value
over the given time interval [0, 7] and A is a real number
satisfying the inequality
ICllI[ABI" = BI'R||,

1—p ’
where || — CBI'||» < p < 1.

Park and Bien also proposed an intervalized learn-
ing scheme to achieve monotone convergence of the
output error in the sense of sup-norm for an arbitrarily
given long time interval*®!. In the proposed algorithm,
we first choose a real number A satisfying the following
inequality:

A> Al +

1 [A]l (1 = p)

S I Tl W V7 ey 7
and divide the given time interval [0, 7] into N subin-
tervals of length h and a remainder of length 7' — Nh,
where N is a maximum integer less than 7'/h. It is
shown that the monotone convergence of the output er-
ror in the sense of sup-norm can be guaranteed when
the ILC algorithm (2) is applied to the system (1) for
the time interval [0, ¢;, | where

o =N + 17 e[tflatO] = O’

i = maxc{il[lex[ty1, 1], < 5o MY

(§]

, 0y <i} + 1,

X

DN |

||ek[tj+l§,tj+l§+1]
o min LY, LY # @,
0, LY =2,

I
sup
j

L ={llllexlt; 11, tj 1141l 70, OIS N —j}.

Recently, Ruan et al. addressed the monotone con-
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vergence of typical PD-type ILC scheme in the sense
of Lebesgue-p norm!'*' It is shown that the out-
put error is monotone convergent on whole operation
time interval and the sufficient convergence condition
is dominated not only by the system input-output ma-
trices and derivative learning gain but also the system
state matrix and the proportional gain. The result is
objectively reveals the impact of the inherent system
dynamics and the constructive mode of the ILC algo-
rithm on the convergence without any requirement of
the system/algorithm-irrelevant parameter.

3 Higher-order ILC algorithm

Regarding to the higher-order ILC algorithm, the
pioneer scheme!*’! has been constructed in late 1980’s
for the following linear time-invariant systems:

x(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), (10)
x(0) =¢% te(0,T],

where [0,7] stands for an operation duration and
x(t) € R", u(t) € R and y(t) € R are n-dimensional
state variable, scalar input and output, respectively.
A, B,C and D are matrices with appropriate dimen-
sions. We assume that the control task executes repeti-
tively over the finite time interval [0, 7] and the initial
state is resettable, for simplicity, is zeroed at each rep-
etition. Given that y4(t), ¢t € [0,7] is a desired tra-
jectory to be tracked. Provided that w,(¢) is an initial
control input to substitute the control input u(t) of the
system (10).

The second-order ILC algorithm is formulated
[49]

uy(t) : arbitrarily given.
Uk+1 (t) = Pluk(t) + Pg’u,k_l(t) + Qlek(t) +
Q2ek71(t)’ k:]-aQa ) (11)
where P, and P, are weighting coefficients satisfying
P+ P, = I, (Q; and Q5 are respective the first or-
der and second order proportional learning gains. Be-
sides, for general inherent nonlinear systems taking a
form of (12), the pioneer work has further generalized

the second-order P-type ILC law to Nth-order P-type
ILC law (13) exhibited as follows:
&(t) = f(z,t) + B(t)u(t),
y(t) = g(mat) +D(t)u(t)a (12)
x(0)=¢&° te[0,T],
where f(a,t) and g(x,t) are nonlinear continuous
functions with respect to the state variable x and time

variable ¢ satisfying Lipschitz continuity condition. The
Nth order P-type ILC scheme is constructed as

U1 (1) = Prug(t) + - + Pyugp—nya(t) +
Quer(t) + -+ Qnep_ni1(t). (13)

In the case when the tracking error is measured in
the sense of A-norm, the convergence results are shown

as

as follows:

Theorem 1 Assume that the control signal u(t)
of the system (10) is undertaken by w1 (¢) of the algo-
rithm (11) successively. If the initial state of the system
(10) is resettable and the weighting coefficients and the
learning gains of the algorithm (11) together with the
direct feed-through gain D of the system (10) satisfy
Pi+P,=Tand||P, — Q1D|o + || P> — Q2D <
L, then lim y(t) = ya(t)*.

Theorem 2 Suppose that the matrices P; and Q);
N
(t=1,2,---, N) of the algorithm (13) satisfy > P;=

i=1
I and the polynomial has

Pz) =2 =12V — =y,
all its roots inside the unit circle, where
li= sup [|P;— QiD(t)||-
te[0,T]
If the initial state of the system (12) is resettable, then
klincjo yr(t) = ya(t)*),

As both the algorithm (11) and (13) weight the con-
trol inputs and tracking errors more than one iteration,
they are regarded to possess more robustness to noise.
In addition, it is illustrated that they may operate with
better tracking performance than the lower-order algo-
rithm. Though the better performance feature needs to
be argued in a rigorous manner, the higher-order ILC
has attracted a great deal attention. Its further develop-
ment has been shown in [29,50-51] and the results has
approved the opinion. The opinion, however, became
controversial after the () factor-based derivation has
been made that the convergence speed of a higher-order
P-type ILC scheme, of which the learning gains are cho-
sen to ensure its () factor minimal, for a nonlinear sys-
tem with direct feed-through term is not faster than the
lower-order P-type ILC scheme in virtue of the well-
defined () factor in the sense of A-norm!®?!. The deriva-
tion has developed a mathematical technique to assess
the learning performance regardless of some mathemat-
ical mistakes to be mended as commented in [53]. In
order to clarify the opinion in [49] and affirm the result
in [52] in a rigorous manner, the paper [10] refined the
concept of () factor raised in [52] and reformulated the
typical second-order P-type ILC to a more understand-
able form. The idea of the reformation is to separate the
second-order P-type ILC command into two iteration-
wise parts, one is the first-order learning component and
another is the second-order one, and then to describe
the second-order P-type ILC rule in a weighting form
of these two components as follows: u,(t), ¢t € [0, 7],
an arbitrarily-chosen initial input signal,

us(t) =wuq (t) + Les(t),
uk+1(t) = w1 [uk(t) + Ihe (t)] +
Wa [Uk_l(t) + F2€k—1(t)] )
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te[0,T], k=2,3,4,---. (14

Here, w; and w, are weighting coefficients satisfying
0w <1, 0w £land wy +wy = 1.

For comparison, the following algorithm (15) is
termed as the first-order P-type ILC rule. wy(t), t €
[0, T'], an arbitrarily-chosen initial input signal,

Uk+1 (t) = Uk(t) + Flek (t),
tel0,7]),k=1,2,3,---, (15)

where the term wuy(t) + [hex(t) is called as the first-
order learning component and the term wuy_(t) +
I'zep, 1 (t) is assigned as the second-order learning
component, respectively, whist I is assigned as the
first order proportional learning gain and /5 is named
as the second order proportional learning gain, respec-
tively.

By analyzing the property of the characteristics
polynomial of the second-order ILC (14), the conver-
gence speed in terms of the (), factor in the sense that
the tracking error is measured in Lebesgue-p norm is as
follows:

Theorem 3! Assume that the second-order P-
type ILC law (14) is applied to the system (10) and the
system matrices A, B, C, D and the learning gains I}
and [ satisfy the conditions in the following:

i) pr=|1—DI%|+|Cexp(A-(-)BI|1<1;

i) po=|1 — DIo|+|Cexp(A- (-))BLy|: <1;

i Ol

i T,
Then, if p7 > po, the second-order ILC law (14) is
Q,-faster than the first-order law (15); If p7 = po, the
second-order ILC law (14) is () ,-equivalent to the first-
order law (15); If pf < po, the second-order ILC law
(14) is Q,-slower than the first-order law (15).

It is worth remarking that the newly-developed re-
sult not only theoretically supports the pioneer opin-
ion in [49] but also rigorously approves the result in
[52] while tracking error is measured in the form of
Lebesgue-p norm. Further, the article [11] exploited the
second-order PD-type ILC rule to the LTI system with
no direct feed-through term and derived the similar re-
sult with the reference [10].

4 ILC schemes for large-scale systems

Large-scale system is a system that consists of a
number of interdependent/interconnected constituents
which serve particular functions/responsibilities, share
resources/information, and are governed by a set of in-
terrelated goals and constraints!>*!. Because large-scale
systems are structurally complex, multidimensional and
highly interacting and so on, its controller profile is usu-
ally designed in a decentralized form to reduce the com-
plexity, that is, each subsystem has its local independent
controller with no exchange information with other sub-

systems. The dynamics of such kind of (linear time-
invariant) LTI large-scale systems is usually described
as follows:

&0 (t) = A<i )z (t) + BO () u® (t)+

Z A(w)( )w(J)( ), 16)

J=1.ji
¥O 1) £ 00 (1) + DO ()
x(0) =&, t € [0, 7).
Here, the superscript (i) is employed to mark number
of the subsystem i. £ (¢) € R*"” u®(¢) € R"” and
y@(t) € R?"” are n-dimensional state vector, [(V-
dimensional control input and ¢()-dimensional output,

N

respectively. Specifically, > A (t)x9)(t) presents
iy

the state interactions frjomjf)ther subsystems, and

AW (#), BO(t), CO(t), DW(t) and AU (t) are ma-

trices with appropriate dimensions.

In practical engineering, batch industrial processes,
such as acrylonitrile-butadiene-styrene polymerization
reactor and cement manufacturing process, are multi-
operation repetitive systems. For the sake of pursuing
an expectable transient response, ILC scheme is adopt-
able. The basic ILC scheme is decentralized PID-type
as follows: u'”(t), t € [0, 7], an arbitrarily-chosen
initial input signal.

wll () = (1) + (el (1) +
t . .
1) [ el (mar+Lu(te] (),
tel0,T], k=1,23,--. (17

In reference [17], the authors firstly proposed a de-
centralized state-space PD-type ILC scheme (17) for
the large-scale system (16) with D (¢) = 0 which
uses an inverse model of each subsystems but no in-
formation of other subsystems. Under the assumption
that the error is measured in the form of A-norm and
the initial state is resettable together with the desired
control input is reachable, it is proved that the input

error dul” = ul(t) — ul”’(t) between the desired
input w.”(t) and the kth iteration-wise input u'” (t)

converges to zero as the iteration number k tends to
infinity. Besides, the reference proposed decentralized
input-output-based P-type ILC rule for the system (16)
and derived that the transmission term D (¢) plays a
crucial role in guaranteeing the convergence property.
Similar to the early convergence analysis in the sense of
A-norm, the sufficient convergence condition does not
rely on the system state parameters, neither the inter-
actions among the subsystems. The further work in-
cluding the ILC structure and the derivation technique
of the convergence analysis is analogous to the refer-
ence [17] except the tracking error measure is a relaxed
A-norm-like mode!'®). Because the decentralized large-
scale systems description of (16) can be rewritten as a
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general LTT system model in a whole point of view, the
result is no other than the obtained one for general LTI
system.

For many large-scale industrial processes, such as
petrochemical process, electrical power plants and met-
allurgical process, the whole process is usually designed
to operate continuously under some optimal operating
conditions. The operation may, however, deviate away
from the normal operating set-point due to changing of
the properties of raw materials or environmental condi-
tions including aging of catalyst and wearing of some
equipment. This implies that the steady-state optimiza-
tion for control decision, that is, set-point, should be up-
dated so as to minimize the energy cost, save raw mate-
rials and thus enhance the efficiency. A typical steady-
state optimization scheme is based on a two-layer hier-
archical structure, whose supreme layer is a coordinator
whilst the lower layer is a set of local decision-making
units.

Due to the unavoidable discrepancy between the
mathematical model and the reality, the realistic steady-
state information is required to be fed back to the
coordinator for model modification so as to improve
the model-based optimum. It is interesting to notice
that conventional PID-type controlled process usually
operates in a slow response mode with a long set-
tling time or in a rapid response with an oscillatory
overshoot. To improve the dynamic transient perfor-
mance such as decreasing the overshoot, accelerating
the transient response and shortening the settling time
of such kind of magnitude-iteration-varying industrial
processes, a decentralized magnitude-varying PD-type
iterative learning control strategy is developed in ref-
erence [19], in which the distinct magnitudes of the
step set-point changes sequence of each subsystem are
considered by introducing some appropriate amplified
coefficients both in the updating law and in the selec-
tion of the desired reference trajectories. In particular,
the convergence analysis involving the proposed itera-
tive learning control algorithm is conducted in the sense
of Lebesgue-p norm by adopting generalized Young in-
equality of convolution integral. The conclusion shows
that not only the system input-output matrices and the
derivative learning gain but also the system state matrix
and the proportional learning gain dominate the con-
vergence. In addition, owing to the magnitude-varying
property and the decentralized ILC mode, the asymptot-
ical tracking error exists unless the large-scale system is
decoupling or the whole set-point vector is proportional.
The investigation adopts Lebesgue-p norm and thus the
result covers the existing result in the sense of A-norm
for repetitive unique desired trajectory tracking.

5 Prospect for long-term learning control

Human is a very complex large-scale system,
whose characteristics are high-dimensionality, com-

plexity, subjectivity, ambiguity, inconsistency and non-
stationary, etc. For a human-friendly welfare intelli-
gent machine such as a service robot for aged or dis-
abled user, the robot must identify and understand the
user’s commands with emotional information such as
facial expressions, voice tone or hand gesture, or by
physical information such as electromyography, elec-
trocardiogram or electroencephalography, or by behav-
ioral information such as posture, gait patterns and ges-
tures. It is of no doubt that a mathematical model of
the human system is quite difficult to use for realistic
control of human-in-the-loop systems such as a smart
home. This means that some forms of intelligence are
needed for the counterpart of human such as a robot to
have proper interaction with human. It would be desir-
able to fuse the above-mentioned information by some
logical intent. Heuristically, it is observed that life-long
learning capability for a service robot is essential to co-
exist, cooperate to serve well for human in the long run.
The life-long learning/adaptive capability is noted es-
sential for the intelligent service robotic system to be
human-friendly. The life-long learning, also termed as
continuous learning, emphasizes learning through the
entire lifespan of a systemP*. Here, we say ‘life-long
learning’ as the repetitively inductive learning process
by monitoring plus the deductive learning process by
control and feedback. Besides, by virtue of the science
and technology in incessant progress, robotic clone is
possible in our future life. As a matter of fact that hu-
man and his/her human (animal) clone are the same at
the beginning but may become ever-different as the time
elapses, whist human and his/her robotic clone are dif-
ferent at the beginning but must become more and more
similar as the time passes. It is hoped that, as time goes
by, a robot can become a mechanical clone that resem-
bles human-self by life-long learning/teaching and thus
can serve human better. The learning mode will be an
incessant interaction between the target and the learn-
ing agent. The learning process will be multi-layer,
that is, learning would take place from physical layer
to mental layer then emotional layer and so on. Life-
long learning is also useful for knowledge discovery
in database, which is the nontrivial process of identi-
fying valid, novel, potentially useful and ultimately un-
derstandable patterns in data®>!. Up to date, the gap
between the people’s expectation and the current level
technology is too big. It is believable that the gap can
be shorten by advancing multidisciplinary technologies
such as material technology to renew battery and sen-
sor, biological technology to update the understanding
of implementable brain as well as information technol-
ogy to synthesize the complex and time-varying infor-
mation along with life-long learning control techniques.
In short, learning will be a key notion for future robotic
systems and the notion of the existing learning algo-
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rithms such as ILC must go through a paradigm change.
6 Conclusions

This paper reviews some ILC techniques retrospec-
tively, including convergence analysis, initial state shift
issue, higher-order scheme as well as the structure
for large-scale systems. The paper also gives a brief
prospective investigation trend for long-term learning
control. The review mainly shows the investigation
stages and focuses of those techniques. It is observed
that the investigative progress has been achieved in a
long-term time consuming manner. It of course needs a
great deal effort and devotion as well as passion. Some-
times frustration or mistakes are unavoidable. However,
some topics need to be considered in a further deep
level. For instance, in terms of a realistic control sys-
tem, its dynamics can be mathematically modeled as
either a continuous-time system by an ordinary differ-
ential equation or a discrete-time system by an ordinary
difference equation. This implies that those two forms
of system description must be equivalent in the sense
that the increment of the state variable with respect to
time variable at two adjacent time points is equivalent
to the differentiation of the state variable over the subin-
terval confined by the two adjacent time points. But, in
the authors’ knowledge, the convergence results with
respect to the two dynamical forms seem not to be in
accordance with each other obviously. This requires a
rigorous elaboration.

Further, with the development of computer sci-
ence and internet technology, it is inevitable that the
prominently-existing ILC techniques will be imple-
mented by means of network to share the resource and
minimize the cost and so on. In this circumstance, the
networked ILC strategy must seek the manners to deal
with the internet induced time delay and data dropout
problem. This would be one of challenging issues for
future research.
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