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Abstract: Consensus problem of mobile multiple agents with nonlinear coupled function and exogenous disturbances
is studied. A pinning control, which has poor disturbance compensation ability, is presented to bring the consensus of
multi-agent to an expectation value without disturbances. By applying the disturbance-observer-based control(DOBC),
all the agents in the network can asymptotically reach consensus when disturbances are generated by a linear exogenous
system. By analyzing the mobile multi-agent systems with fixed and switching topologies, the convergence conditions
are obtained for multi-agent dynamical systems with exogenous disturbances from the disturbance-observer-based control.
Finally, numerical examples support the analytical results.
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摘要:本文研究了具有非线性耦合与外部干扰的移动多智能体系统的一致性问题.假设系统不存在外部干扰的
情况,设计了一个牵引控制使得移动智能体系统达到一个期望值.假设系统存在一个外部干扰,应用干扰–观测器控
制,使得系统中的所有智能体可以渐近达到一致.通过分析具有固定拓扑和时变拓扑的移动多智能体动态系统,得
到了许多基于抗干扰观测器的系统收敛性条件.最后应用仿真实例说明了结论的有效性.
关键词: 非线性耦合;多智能体系统;一致;牵引控制;干扰–观测器控制

1 Introduction
Developments in sensing, communicating, and

computing have made it possible to manage teams
of autonomous systems, e.g., unmanned air vehicles,
which gives rise to an active area of research, known as
multi-agent systems. Especially, recent years there have
been increasing interest in a problem in distributed co-
ordinated control of multi-agents. The problem is usu-
ally called the consensus problem. The basic idea of
consensus is that each agent updates its state based on
the states of its local neighbors in such a way that the
final states of all agents converge to a common value.

Consensus problems have a long history in the field
of computer science, particularly in automata theory

and distributed computation[1]. In recent years, numer-
ous results have been obtained for consensus problems
from various perspectives[2∼6]. Vicsek et al.[2] proposed
a simple model for phase transition of a group of self-
driven particles and numerically demonstrated complex
dynamics of the model. Moore and Lucarelli[3] ex-
tended the results for single consensus variables to in-
clude the ideas of forced consensus and multiple con-
sensus variables separated by hard constraints. A sim-
ilar problem was considered using the idea of a leader-
node by Tanner[4], where a single node is chosen that
ignores all other nodes, but continued to broadcast, and
the controllability properties of the resulting graph were
exploited. The result was extended to the case when
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one or more vehicles in the team are chosen to be con-
trolled by Jin and Murray[5]. The consensus problem
with a time-varying reference state has been studied for
example by Ren[6]. However, virtually all physical sys-
tems are nonlinear in nature. Chen[7] proposed and ana-
lyzed consensus algorithms with nonlinear coupling so
that each agent in the team reached consensus on a pre-
scribed value. Lin[8] investigated consensus problems
of the multi-agent systems on directed graphs with ex-
ternal disturbances and model uncertainty in absence
and presence of time-delay.

Pinning control is an effective control scheme
for controlling high-dimensional systems with numer-
ous applications to turbulence, instabilities in plasma,
multi-mode lasers, and reaction-diffusion systems,
where the method could work in any region of parame-
ter space and requires a significantly smaller number of
controllers (Grigoriev, Cross, and Schuster[9]). More-
over, for a large complex network, it is usually difficult
to control it by adding controllers to all nodes. In or-
der to reduce the number of controller, a natural ap-
proach is to control the network by pinning parts of
nodes[10,11]. Additionally, unmodeled dynamics and
parametric variations as well as external disturbance
widely exist in multi-agent systems. Analysis and syn-
thesis of nonlinear dynamic systems with disturbances
has been one of the most active research. A disturbance
observer based control is designed to deduce external
disturbances and then to compensate for the influence
of the disturbances using proper feedback. Muller and
Ackermann[12] and Nakao et al.[13] pioneered the devel-
opment of disturbance-observer-based control(DOBC).
After that, DOBC had been applied in many mecha-
tronic systems including disk drivers, machining cen-
ters, dc/ac motors, manipulators, robots[14∼16]. Chen[17]

developed a nonlinear disturbance observer for un-
known constant using Lyapunov theory and applied it
to a two-link manipulator.

The main objective of this paper is to apply the
method of DOBC with disturbance observer and pin-
ning control to stabilize the states of mobile multiple
agent systems with nonlinear coupling function. There
are two parts of the main differences between this pa-
per and Ref.[16]. First difference is the consensus al-
gorithm; this paper studies the consensus protocol with
a nonlinear coupling function, and Ref.[16] studies the

consensus algorithm with a first-order linear coupling
function. Second difference is the disturbance observers
(DO’s); this paper presents a linear DO’s that is differ-
ent from the nonlinear DO’s in Ref.[16]. The problem
of this paper is more generalized than that of Ref.[16],
but the method presented in this paper is simpler than
that in Ref.[16]. In section 2, some preliminaries are
briefly outlined. The main results are obtained in Sec-
tions 3, which present a pinning control for multi-agent
systems without disturbances and propose a design pro-
cedure of disturbance observer based control for multi-
agent systems. In Section 4, we discuss the variable
topology. The performances of DOBC is shown by
computer simulation in Section 5. Finally, Conclusions
are drawn in Section 5.

2 Problem statement
Let G = (V, E) be a directed graph of order

n(n > 2) with a nonempty finite set V of elements
called nodes and finite set E ⊆ V × V of ordered pairs
of nodes called arcs. Consider a node i in the graph
G = (V, E), its neighboring set Ni is defined to be the
set {j|j ∈ V, (i, j) ∈ E}.

In this paper, the relationships among agents are de-
scribed by a directed graph G. In G, the ith agent and
an arc from agent i to agent j denoted as (i, j) repre-
sents an unidirectional information exchange link from
agent j to agent i, that is, agent i receives or obtains
information from agent j.

Suppose that a system consists of n coupled nodes,
with each node being of m dimensions. The state equa-
tions of the multi-agent systems with disturbance are
given by

ẋi =
∑

j∈Ni

hij(xj − xi) + ui + di, (1)

where i = 1, 2, · · · , n, xi ∈ Rm, ui ∈ R and
di ∈ R are the state vector, input and external dis-
turbance, respectively. Ni denotes the neighboring set
of node i and it can be the time variant. The function
hij(xj − xi) = 0, when xj − xi = 0. It is noted that
hij(·) may be nonlinear. Moreover, hij(·) is valid only
when j ∈ Ni.

3 Disturbance-observer-based control of
multi-agent systems
In this section, firstly, the controller is designed un-

der the assumption that there is no disturbance or the
disturbance is measurable. Then, a disturbance ob-
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server is projected to estimate the disturbance. Based on
the disturbance observer, a disturbance-observer-based
control is synthesized to bring the agents with distur-
bances to the consensus.

3.1 Pinning control of system without distur-
bances

If there is no disturbance or the disturbance is mea-
surable, the controller can be chosen as pinning con-
troller, which can bring the consensus of multi-agent
to an expected value. Here, the pinning strategy is ap-
plied on a small fraction δ(0 < δ ¿ 1) of the nodes.
Suppose that nodes i1, i2, · · · , il are selected, where
l = bδNc stands for the smaller but nearest integer to
the real number δN . Hence, the controlled system can
be expressed as

ẋi =
∑

j∈Ni

hij(xj − xi) + ui, (2)

where i = 1, 2, · · · , n.

Suppose that one wants to stabilize network (1) onto
a homogeneous stationary state x̄ defined by

x1 = x2 = · · · = xn = x̄. (3)

If Eq.(2) is achieves, it is said that a consensus is
reached about x̄. Let pinning control

ui = −ki(xi − x̄), (4)

where the control gain matrix ki > 0 for i ∈
{i1, i2, · · · , il}, otherwise ki = 0 indicating there is
no control over agent i. Define the error vector

ei = xi − x̄. (5)

So system (2) can be rewritten as

ėi =
∑

j∈Ni

hij(ej − ei)− ui, i = 1, 2, · · · , n. (6)

It is easy to verify that e1 = e2 = · · · = en = 0
is an equilibrium point of system (6). The objective of
ui is to guide the agents to reach a consensus about x̄,
namely

lim
t→∞

‖ei‖ = 0, i = 1, 2, · · · , n. (7)

Definition 1 Let B be a m× n matrix and D be
an p× q matrix. Then the Kronecher product of B and
D is the mp× nq matrix

B ⊗D = (bijD). (8)

The error system (6) is rewritten in matrix form as

ė = h(e)− (K ⊗ In)e, (9)

where

e = [eT
1 · · · eT

n ]T,

h(e) = [
∑

j∈N1

hT
1j(ej − e1)

∑
j∈N2

hT
2j(ej − e2) · · ·

∑
j∈Nn

hT
nj(ej − en)]T,

K = diag{k1, k2, · · · , kn}.
Lemma 1 For system (2) with hij(·) continu-

ously differentiable, if the matrix

F =
1
2
(
∂hT

∂e
+

∂h

∂e
− 2(K ⊗ Im)) (10)

is negative definite, then system (2) reaches a consen-
sus about x̄ asymptotically with the pinning control (4).

Here
∂h

∂e
is defined as:

∂h

∂e
=




∂h1

∂e1

· · · ∂h1

∂en
...

...
∂hn

∂e1

· · · ∂hn

∂en




, (11)

with hi =
∑

j∈Ni

hij(ej − ei).

Proof Let Lyapunov candidate as follows: V =
n∑

i=1

eT
i ei. Thus, one has

V̇ = 2eTFe.

From the condition of the Lemma, the result is straight-
forward.

3.2 Disturbance-observer-based control of multi-
agent systems

The unknown external disturbance is supposed to
be generated by an exogenous system described by{

ξ̇i(t) = Aξi(t),
di(t) = Cξi(t).

(12)

where ξi ∈ Rl is the internal state variables of the ex-
ogenous system and di ∈ R is the output of the exoge-
nous system, namely the disturbance of system (1), A

and C are system matrix with appropriate dimensions.

A disturbance observer of system (1) to estimate the
disturbance di is given as




żi = (A−WC)(zi + Wxi)−
W (

∑
j∈Ni

hij(xj − xi) + ui),

ξ̂i = zi + Wxi,

d̂i = Cξ̂i.

(13)

where zi ∈ Rl is the internal state variables of the ob-
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server, ξ̂i ∈ Rl and d̂i ∈ R are the estimates of ξi and
di, respectively. W is control gain. Define the error
vector

ei = xi − x̄. (14)

So system (1) can be rewritten as

ėi =
∑

j∈Ni

hij(ej − ei)− kiei + di. (15)

Defined

εi = ξi − ξ̂i, (16)

we can have

ε̇i(t) = (A−WC)εi(t). (17)

Theorem 1 Consider multi-agent systems (1)
with the disturbance (12). The closed-loop multi-agent
systems under the disturbance observer (13) can reach
consensus asymptotically, if there exists an appropriate
matrix P > 0, Q, such that

Ψ =

(
Λ Θ

ΘT Ω

)
< 0, (18)

where

Λ = (
∂h

∂e
− (K ⊗ Im))T + (

∂h

∂e
− (K ⊗ Im)),

Θ = In ⊗ C,

Ω = In ⊗ (PA + ATP − (CTQT + QC)).

Proof In order to asymptotically stabilize the sys-
tem for any disturbance, a part of the control effort
ui(xi, d̂i) shall depend on the disturbance d̂i. Let

ui = −ki(xi − x̄)− d̂i, (19)

where x̄ is expected consensus value for multi-agents.
Substituting (19) into system (15) obtains

ėi =
∑

j∈Ni

hij(ej − ei)− kiei − d̂i + di =
∑

j∈Ni

hij(ej − ei)− kiei + Cεi. (20)

The error system is rewritten in matrix form as

ė =
∂h

∂e
e− (K ⊗ Im)e + (In ⊗ C)ε, (21)

where e = [eT
1 · · · eT

n ]T, ε = [εT
1 · · · εT

n ]T. Now, we
discuss system (21) with the observer error dynamics
(17), the closed-loop system under the composite con-
troller can be described by




ė = (
∂h

∂e
− (K ⊗ Im))e + (In ⊗ C)ε,

ε̇(t) = In ⊗ (A−WC)ε(t).
(22)

Consider Lyapunov function

V (t) =
n∑

i=1

(eT
i ei + εT

i Pεi),

where matrix P > 0. The derivative of V (t) is

V̇ (t) =
n∑

i=1

(ėT
i ei + eT

i ėi + ε̇T
i Pεi + εT

i P ε̇i) =

eT(
∂h

∂e
−(K ⊗ Im))Te+eT(

∂h

∂e
−(K ⊗ Im))e+

n∑
i=1

(εT
i CTei+eT

i Cεi)+
n∑

i=1

(ε̇T
i Pεi+εT

i P ε̇i). (23)

Let the gain W = P−1Q , we can obtain

V̇ (t) = (e ε)TΨ(e ε). (24)

Thus, we can obtain the consensus of the multi-
agent systems under the condition (18).

4 Switching topology
In this section, the system with switching topology

is described by

ẋi =
∑

j∈Ni(t)

hij(xj − xi) + ui + di, (25)

where i = 1, 2, · · · , n, ui is defined by Eq.(4) and
Ni(t) is the time-varying neighboring set of agent i.
Define the error vector

ei = xi − x̄. (26)

So system (25) can be rewritten as

ėi =
∑

j∈Ni(t)

hij(ej − ei)− kiei + di,

i = 1, 2, · · · , n. (27)

Theorem 2 Consider multi-agent systems (25)
with the disturbance subsystem (12). The closed-
loop multi-agent systems with switching topologies un-
der the disturbance observer (13) can reach consensus
asymptotically, if there exist appropriate matrix P > 0,
Q, such that (

Λ Θ

ΘT Ω

)
< 0, (28)

where

Λ = (
∂ĥ

∂e
− (K ⊗ Im))T + (

∂ĥ

∂e
− (K ⊗ Im)),

Θ = In ⊗ C,

Ω = In ⊗ (PA + ATP − (CTQT + QC)),

ĥ(e)=[
∑

j∈N1(t)

hT
1j(ej−e1)

∑
j∈N2(t)

hT
2j(ej−e2) · · ·

∑
j∈Nn(t)

hT
nj(ej − en)]T.
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5 Examples and simulation results
The following four graphs (Fig.1) will be needed in

the analysis of this section. The example includes the
following coupling function:

hij(xj − xi) = exj−xi − 1 + (xj − xi), (29)

where exj−xi is nonlinear. In the simulations, the initial
states are generated randomly in the range [0, 5].

Example 1 The first example demonstrates the
fixed topology Ga. Suppose that there is a periodic dis-
turbance d(t) acting on every agent, given by

A =

(
0 2

−2 0

)
,

C = [1 0],

ξ(0) =

(
0.5 sin 1
0.5 cos 1

)
.

Applying linear matrix inequality, we can get the pos-

itive definite matrix P =

(
1/2 −1/4
−1/4 1/3

)
and W =

[3.2 2.4]T. A disturbance observer is designed by (13).
In Fig.2, it is observed that a consensus about x̄ = 1 is
reached asymptotically with disturbance observer based
on control. In Fig.3, the disturbance estimated by the
disturbance observer (13) is shown, where the dot line
is the exogenous disturbance. The observer exhibits ex-
cellent tracking performance.

Fig. 1 Network graph consisting of 10 nodes

Fig. 2 Output of multi-agent systems with DOBC

Example 2 In the second example, the variable
topology is considered. Four possible topologies, which
are referred to as Ga, Gb, Gc, Gd respectively, are
shown in Fig.1. In this case, some of the existing com-
munication links fail and some of them are created due
to the moving of the agents. In the simulation Ga, Gb,
Gc, Gd switch among them randomly.

Fig. 3 Disturbance estimated by the disturbance observer

Fig. 4 Consensus of multi-agent systems reach

asymptotically with DOBC

Use the disturbance observer designed, in Fig.4, the
output of the multi-agent systems reach asymptotically
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with nonlinear disturbance observer based on control,
namely, the consensus about x̄ = 1 reached. It can
see that the observer exhibits excellent tracking perfor-
mance.

6 Conclusions
This paper has considered the consensus problems

with nonlinear coupling in networks of multi-agent sys-
tems based on disturbance observer. Two cases have
been considered: fixed topology and switching topol-
ogy. By introducing the disturbance-observer-based
control, all the nodes in the network can reach con-
sensus asymptotically. It is shown that this approach
is quite flexible and can be integrated with the pinning
control method which have poor disturbance attenua-
tion ability. The effectiveness of the DOBC procedure
is illustrated by the control problem of consensus in
network of multi-agent systems subject to disturbances
generated by a linear exogenous system. The simulation
results have been presented to demonstrate the effective
of the method.
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