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Abstract: To deal with the large amount of computation of moments during matching, we propose a novel fast matching
algorithm based on moment invariants. This algorithm utilizes the computational characteristic of moments and sets ten
sum-tables to reduce the computational complexity of moments during matching. With the proposed algorithm, lower order
moments of each sub-image can be determined by using only a few additive and multiplicative operations, which shortens
the matching time greatly. Meanwhile, the proposed algorithm computes moment features directly from the gray value of
image and the result is accurate and independent from the matching precision. Simulation results illustrate the effectiveness
of the proposed algorithm.
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摘要:针对图像匹配过程中矩特征计算量大的问题,从矩特征求解特点出发,提出了一种快速的矩特征匹配算法.
该算法利用匹配过程中相邻待匹配子图间的相关性,通过设置十个和表,使得每个待匹配子图低阶矩的计算只需很
少的几次加乘运算,大大降低了矩特征的计算复杂度,缩短了匹配耗时. 同时,由于所提算法矩特征的计算是基于
图像灰度值的精确计算,且匹配过程采用遍历搜索策略,因此其匹配精度与传统遍历搜索的匹配精度相当. 仿真结
果验证了所提算法的有效性.
关键词: 景象匹配;耗时;矩不变量;和表;小波分解

1 Introduction
Image matching refers to the ability to locate or

match a region of an image representing a view of
a scene with a corresponding region of another view
of the same scene often taken under different sensor
pose geometry, or different type of sensor. Generally,
there may exist geometric distortion such as transla-
tion, rotation and scaling between reference and ac-
tual image. In such applications, invariant moment-
based methods provided by Hu[1] can be used. Since
the evaluation of the moment is computationally ex-
pensive, there has been a need for low-cost moment
algorithms for real-time processing. Many fast com-
putation methods of single image moment have been
proposed[2∼4], however, in the matching process, it

needs to compute the moment invariants of each sub-
image to find the final location, and it is still hardly
practical for real-time matching even the methods men-
tioned above[2∼4] are applied to each sub-image. Then,
aiming at moment-based matching process, various
methods have been brought forward to speed up this
process. The papers[5,6] took histogram-based moment
invariants as matching features to reduce the compu-
tational complexity from two dimension into one di-
mension. The papers[7,8] applied wavelet transform
to images first to decrease the searching space of
moment-based matching process. Tong[9] performed
the moment-based matching by using the genetic algo-
rithm to avoid point by point searching. The methods
described above[5∼9] speeded up matching process ef-
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fectively, however, those methods may lose some image
information during matching and will affect the match
precision. In this paper, we propose a fast novel match-
ing algorithm by means of calculation characteristic of
moment features, which adopts point by point search-
ing in the original gray image and could not miss the
optimum points or lose any image information. The re-
mainder of the paper is organized as follows. Section
2 gives a brief overview of Hu’s seven famous moment
invariants. Section 3 presents the proposed algorithm
for fast matching. Section 4 analyses the computational
complexity of various algorithms. In Section 5, various
simulation results from the use of the proposed algo-
rithm are showed and compared with results from the
conventional methods in terms of the speed and preci-
sion of the algorithm. Finally, we give concluding re-
marks in Section 6.

2 Moment invariants of digital image
The two-dimensional (p + q)th order geometric

moment (or just moment for short) of a digital image
f is defined by:

mpq =
M∑
i=1

N∑
j=1

ipjqf(i, j), (1)

where f(i, j) is the pixel value of image f at location
(i, j).

The central moment µpq and its normalized central
moment are defined by:

µpq =
M∑
i=1

N∑
j=1

(i− ī)p(j − j̄)qf(i, j), (2)

where ī = m10/m00, j̄ = m01/m00, i ∈ M, j ∈ N,

ηpq =
µpq

µr
00

, r = (p + q)/2, p + q = 2, 3, · · ·, (3)

ηpq varies with respect to the rotation of image f . The
moments which are invariant with respect to rotation
and translation of image are as follows[1]:

φ1 = η20 + η02, (4)

φ2 = (η20 − η02)2 + 4µ2
11, (5)

φ3 = (η30 − 3η12)2 + (3η21 − η03)2, (6)

φ4 = (η30 + η12)2 + (η21 + η03)2, (7)

φ5 =(η30 − 3η21)(η12 + η03)[(η30 + η12)2 −
3(η21 + η03)2] + (3η21 − η03)(η21 + η03) ·
[3(η12 + η30)2 − (η21 + η03)2], (8)

φ6 =(η20−η02)[(η30+η12)2−(η21 + η03)2]+

4η11(η30 + η12)(η21 + η03), (9)

φ7 =(3η21 − η03)(η30 + η12)[(η30 + η12)2 −
3(η21 + η03)2]− (η30 − 3η12)(η21 + η03) ·
[3(η30 + η12)2 − (η21 + η03)2]. (10)

3 Fast moment matching algorithm based-
on sum-tables
In the moment-based scene matching process, the

operation of feature extraction in actual image only
needs one time, but this operation is executed in each
sub-image of reference image, so, it is very significant
to simplify the moments computation of sub-images.

3.1 Hu’s moment invariants of reference sub-
image

Let M × N be the size of the reference image f

and m×n the actual image, as illustrated in Fig.1, then
the geometric moment mpq(u, v) and central moment
µpq(u, v) of this sub-image can be expressed as:

mpq(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

{[i−(u−m)]p[j−(v−n)]qf(i, j)},
(11)

µpq(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

{[i− (u−m)− ī]p ·

[j − (v − n)− j̄]qf(i, j)}. (12)

Let

smpq(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

ipjqf(i, j). (13)

Then, the ten lower-order geometric moments of sub-
image determined by expansion (11) can be written as:

m00(u, v)=
u∑

i=u−m+1

v∑
j=v−n+1

f(i, j)=sm00(u, v), (14)

m01(u, v)=
u∑

i=u−m+1

v∑
j=v−n+1

[j−(v−n)]f(i, j)=

sm01(u, v)− (v − n)sm00(u, v), (15)

m10(u, v)=
u∑

i=u−m+1

v∑
j=v−n+1

[i−(u−m)]f(i, j)=

sm10(u, v)− (u−m)sm00(u, v), (16)

m11(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[i−(u−m)][j−(v−n)]f(i, j)=

sm11(u, v)− (u−m)sm01(u, v)−
(v−n)sm10(u, v)+(u−m)(v−n)sm00(u, v), (17)

m02(u, v)=
u∑

i=u−m+1

v∑
j=v−n+1

[j−(v−n)]2f(i, j)=
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sm02(u, v)− 2(v − n)sm01(u, v) +

(v − n)2sm00(u, v), (18)

m20(u, v)=
u∑

i=u−m+1

v∑
j=v−n+1

[i−(u−m)]2f(i, j)=

sm20(u, v)− 2(u−m)sm10(u, v) +

(u−m)2sm00(u, v), (19)

m12(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[i−(u−m)][j−(v−n)]2f(i, j)=

sm12(u, v)−2(v−n)sm11(u, v)+

(v−n)2sm10(u, v)−(u−m)sm02(u, v)+

2(u−m)(v−n)sm01(u, v)−
(u−m)(v−n)2sm00(u, v), (20)

m21(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[i−(u−m)]2[j−(v−n)]f(i, j)=

sm21(u, v)− 2(u−m)sm11(u, v) +

(u−m)2sm01(u, v)− (v − n)sm20(u, v) +

2(u−m)(v − n)sm10(u, v)−
(u−m)2(v − n)sm00(u, v), (21)

m30(u, v)=
u∑

i=u−m+1

v∑
j=v−n+1

[i−(u−m)]3f(i, j)=

sm30(u, v)− 3(u−m)sm20(u, v) +

3(u−m)2sm10(u, v)− (u−m)3sm00(u, v), (22)

m03(u, v)=
u∑

i=u−m+1

v∑
j=v−n+1

[j−(v−n)]3f(i, j)=

sm03(u, v)− 3(v − n)sm02(u, v) +

3(v − n)2sm01(u, v)− (v − n)3sm00(u, v). (23)

By substitution of (11) into the expansion (12), various
lower-order central moments can be expressed as:

µ00(u, v)=
u∑

i=u−m+1

v∑
j=v−n+1

f(i, j)=m00(u, v), (24)

µ10(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[i− (u−m)− ī]f(i, j) =

m10(u, v)−m00(u, v)̄i = 0, (25)

µ01(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[j − (v − n)− j̄]f(i, j) =

m10(u, v)−m00(u, v)̄i = 0, (26)

µ11(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

{[i− (u−m)− ī]

[j − (v − n)− j̄]f(i, j)} =

m11(u, v)−m01(u, v)̄i, (27)

µ02(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[j − (v − n)− j̄]2f(i, j) =

m02(u, v)−m01(u, v)j̄, (28)

µ20(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[i− (u−m)− ī]2f(i, j) =

m20(u, v)−m10(u, v)̄i, (29)

µ12(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

{[i− (u−m)− ī)]

[j − (v − n)− j̄]2f(i, j)
}

=

m12(u, v)− 2m11(u, v)j̄ −m02(u, v)̄i +

2m10(u, v)j̄2, (30)

µ21(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

{[i− (u−m)− ī)]2

[j − (v − n)− j̄]f(i, j)} =

m21(u, v)− 2m11(u, v)̄i−m20(u, v)j̄ +

2m01(u, v)̄i2, (31)

µ03(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[j − (v − n)− j̄]3f(i, j) =

m03(u, v)− 3m02(u, v)j̄ + 2m01(u, v)j̄2, (32)

µ30(u, v) =
u∑

i=u−m+1

v∑
j=v−n+1

[i− (u−m)− ī]3f(i, j) =

m30(u, v)− 3m20(u, v)̄i + 2m10(u, v)̄i2. (33)

It follows from the definition of Hu’s moment
invariants[1] that the computational complexity of seven
moment invariants φpq(u, v) mainly focuses on the
computation of lower-order central moments µpq(u, v),
and we can see from (24)∼(33) that the computa-
tion of µpq(u, v) is centralized at the computation of
mpq(u, v). If the ten lower-order central moments
had been worked out, the computation of lower-order
central moments µpq(u, v) will be easy. In the other
hand,we can see from (13)∼(23) that the computation
of smpq(u, v) costs most of the time during the com-
putation of mpq(u, v). From the aforesaid derivation
process we can see that the key problem of speeding
up matching is to find a method to simplify the com-
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putational complexity of the local-sum smpq(u, v) de-
fined by (13). In the following section, we will give the
derivation process of fast computation of smpq(u, v).

Fig. 1 Reference image and sub-image

3.2 Deriving fast computation of local-sum
smpq(u,v)

In Fig.1, we define

gpq(u, v) = upvqf(u, v), (34)

Spq(u, v) =
u∑

i=1

v∑
j=1

ipjqf(i, j) (35)

where u = 1, 2, · · · ,M ; v = 1, 2, · · · , N , then, it fol-
lows from (34) and (35)that[10]

Spq(u, v) = gpq(u, v) + Spq(u− 1, v) +

Spq(u, v−1)−Spq(u−1, v−1), (36)

where Spq(0, 0) = 0, Spq(0, v) = 0, Spq(u, 0) = 0,

We first set up ten sum-table matrixes (M ×N) of S00,
S01, S10, S11, S02, S20, S03, S30, S12, S21 and in terms
of (34)∼(36) respectively. According to (36), all ele-
ments of each sum-table matrix can be worked out only
one time traversal over the whole reference image. With
ten sum-table matrixes Spq, the computing of g(u, v)
sum within (m× n) range can be simplified as

u∑
i=u−m+1

v∑
j=v−n+1

gpq(i, j) = smpq(u, v) =

Spq(u, v)− Spq(u−m, v)− Spq(u, v − n) +

Spq(u−m, v − n). (37)

It follows in terms of (37) that the computing of each
local-sum smpq(u, v) at any location (u, v) can be
worked out with 3 additive operations.

3.3 Similarity measure
Considering the difference among the magnitude

order of Hu’s seven moment invariants, we take Cam-
berra distance[11] as the similarity measure, and the
point corresponding to the minimum distance will be
the matching location.

Let X = (x1, x2,· · ·, xn)T, Y = (y1, y2,· · ·, yn)T.

Camberra distance is defined by:

d(X, Y ) =
n∑

i=1

|xi − yi|
|xi + yi| , (38)

where xi, yi > 0, xi + yi 6= 0.

3.4 Main steps of the fast matching algorithm
Let M × N be the size of the reference image fR

and m × n the actual image fA. The main steps of
matching based on moment invariants are as follows:

1) Calculate Spq(M × N) with respect to (34)∼
(36);

2) Calculate mpq of fA with respect to (1);

3) In terms of (2)∼(10), calculate φA of fA;

4) For any sub-image at location (u, v) in reference
image fR, where u > m, v > n , calculate φR(u, v)
according to the following procedures:

Calculate smpq(u, v) with respect to (37) ;

Calculate mpq(u, v) with respect to (14)∼(23);

Calculate µpq(u, v) with respect to (24)∼(33);

Calculate φR(u, v) with respect to (3)∼(10);

5) Calculate Camberra distance d(u, v) between
φA and φR(u, v) with respect to (38);

6) Repeat 4) to 5) until all locations in reference
image have been searched;

7) Take the location corresponding to the minimum
distance d as the match point.

4 Analysis of computational complexity
The traditional moment-based matching algo-

rithms[7∼9] calculate moments of each sub-image inde-
pendently, and the computational complexity of each
sub-image is the same as that of the actual image. Com-
pared with the proposed algorithm, it can be seen that
their computational disparity mainly centralizes on the
computation of mpq during matching process. For the
reason that the global searching efficiency of genetic
algorithm is related to the control parameters adopted
and much lower than that of the hierarchical matching
methods[12], what’s more, the success match rate based
on wavelet decomposition is highest among the hierar-
chical matching methods[13], so, in this paper, we only
compare computational complexity of mpq between the
proposed and the wavelet-based methods.

4.1 Complexity of the proposed algorithm
Ten lower-order geometric moments of actual im-

age and each sub-image can be worked out by 1) 2) and
the first two procedures of 4) described in Section 3.4.



No.12 FU Yan-jun, et al: Fast matching algorithm based on moment feature of image 1775

Accomplishing 1) of Section 3.4 needs 30MN ad-
ditions and 9MN multiplications;

Accomplishing 2) of Section 3.4 needs 10mn addi-
tions and 9mn multiplications[14];

Accomplishing the first procedure of 4) in Section
3.4 needs only 30 additions;

Accomplishing the second procedure of 4) in Sec-
tion 3.4 needs only 55 additions and 52 multiplications;

The proposed algorithm adopts point by point
searching and the number of the participant match
points is (M −m)(N − n). So, to calculate the geo-
metric moments mpq of actual image and all sub-images
needs additive operations:

30MN + 85(M −m)(N − n) + 10mn (39)

and multiplicative operations:

9MN + 52(M −m)(N − n) + 9mn. (40)

4.2 Complexity of the wavelet-based method
Note that, with the wavelet-based methods[7, 8], the

computational complexity of each sub-image’s geomet-
ric moments is the same as that of the actual image.
Suppose a j-level wavelet transform is applied to the ac-
tual and reference images (j = 0 corresponding to the
traditional point by point matching), and we now only
consider the coarse matching complexity in the lowest
resolution image.

Computing ten lower geometric moments of actual
image needs 10mn/4j additions and 9mn/4j multipli-
cations, and the number of the participant match points
is (M −m)(N − n)/4j . So, to calculate the geomet-
ric moments mpq of actual image and all sub-images
needs additive operations:

10mn(M −m)(N − n)
/
16j + 10mn

/
4j (41)

and multiplicative operations:

9mn(M −m)(N − n)
/
16j + 9mn

/
4j. (42)

With respect to the aforesaid analysis, it can follow
that, on condition that j < 4, the computational com-
plexity of the proposed algorithm is lower than that of
the wavelet-based method, however, that condition is
also required by the match precision[15].

5 Simulation results and discussions
To measure the performance of the proposed algo-

rithm in terms of match speed and precision, exper-
iments with different types of images have been per-
formed on a 2.6GHz Pentium-IV PC and MATLAB7.5

platform. Considering that this paper emphasizes on the
speed of moment-based matching method, and that the
robustness of moment invariants had been proved by
Hu[1], the actual images in our tests are directly taken
from the corresponding reference image without any
geometric distortion. For simplicity, we only provide
two sample test results in this paper.

Sample1 is conducted with SAR image. The size of
the reference image is 200× 200, and the actual image
size varies from 60×60 to 90×90. Fig.2 shows part of
the results, where (a) and (b) are actual images and (c)
shows the simulation result of their location in reference
image. Sample 2 is conducted with IKONOS image.
The size of the reference image is 300×300, and the ac-
tual image size varies from 90×90 to 150×150. Fig.3
shows part of the results, where (d) and (e) are actual
images and (f) shows the simulation result of their loca-
tion in reference image. It is easy to see from (c) and (f)
that the proposed algorithm has located the position of
each actual image precisely. To emphasize the rapidity
of the proposed approach, we do the simulation experi-
ments with the same images using the traditional point-
by-point method and the wavelet-based method respec-
tively. Table1 shows their comparison results. It is easy
to see from table1 that the precision of the proposed ap-
proach is the same as the traditional one, but costs much
less time. At the same time, the proposed method is also
faster than the wavelet-based method provided that the
match precision is assured.

Fig. 2 Simulation result using SAR image

Fig. 3 Simulation result using IKONOS image
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Table 1 Comparison of matching algorithms

the proposed
algorithm

traditional point by
point searching method

wavelet-based
methodreference

image size
actual

image size
actual

match point simulated
match point

consuming
times/s

simulated
match point

consuming
times/s

simulated
match point

consuming
times/s

60∗60 30,30 30,30 2.402 30,30 242.6 28,32 6.74200∗200
SAR

70∗70 100,120 100,120 2.019 100,120 261.4 100,120 6.14
90∗90 15,70 14,70 1.925 14,70 263.9 40,60 4.01

90∗90 20,20 20,20 8.575 20,20 1782.2 128,184 14.07300∗300
IKONOS

100∗100 50,180 50,180 8.894 50,180 1870.9 56,184 14.14
150∗150 130,100 130,100 8.184 130,130 1616.065 130,102 12.402

6 Conclusions
In this paper, we proposed a new fast moment-

based matching algorithm. The traditional moment-
based methods speed up matching often by reducing
the searching space, which may make a bad influ-
ence on matching precision, and furthermore yields
mismatch. The proposed algorithm, however, uti-
lizes the computational correlativity of neighborhood
sub-images in terms of moment features to reduce
the computational cost, which could not influence the
matching precision. Experimental results show that
the proposed algorithm has a good performance both
in speed and precise.
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