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Abstract: In this paper, the problem of sensor fault detection in general non-uniformly sampled-data systems is inves-
tigated. First, the output delay approach is used to model non-uniformly sampled-data systems as continuous ones with
time-varying delay output. Then, based on the input-output approach, a fault detection filter is designed to guarantee not
only the effects of continuous-time process noise and discrete-time measurement noise on residual to satisfy a prescribed
H-infinity performance, but also the l-two gain from sensor fault to residual to be greater than a prescribed value. The
existence condition of such a fault detection filter is given in terms of matrix inequalities(MIs). Furthermore, an iterative
algorithm which transform MIs into the solvable linear MIs(LMIs) is proposed to make a tradeoff between the noise ro-
bustness and fault sensitivity. Finally, simulation results of a certain type of flight control systems are presented to show the
validity of the proposed method.
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1 Introduction

Modern complex control systems are widely ex-
posed to various faults which may drastically change
the system behavior, resulting in performance degrada-
tion, instability and even total breakdown. In order to
maintain the system safety and reliability, faults should
be promptly detected and identified so that appropriate
remedies can be applied. During the last three decades,
fault detection and isolation(FDI) algorithms with their
applications have attracted remarkable attention. Fruit-
ful results can be found in several excellent books and
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survey papers and reference there in [1~4].

On the other hand, sampled-data systems are exten-
sively used and accepted in industry because of numer-
ous advantages of digital technology. In these types of
systems the plant operates in continuous time while the
system outputs are sampled, yielding discrete-time sig-
nals. Sampled-data systems are thus hybrid systems,
involving both continuous-time and discrete-time sig-
nals®!. The traditional FDI approaches to sampled-
data systems are indirectly accomplished by the exist-
ing continuous-time and discrete-time FDI technolo-
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gies!®71.  However, these indirect approaches ignore
what happens between the sampling instants (the in-
tersample behavior), so approximations are involved,
resulting in unsatisfactory performances of FDI sys-
tems'®). Similar to the sampled-data controller design
problem, the intersample behavior of system is the
focus of direct design methods of sampled-data FDI.
Based on the continuous lifting technique which can ef-
fectively capture the intersample behavior, the parity-
based residual generator, optimal fault detection fil-
ter and optimal diagnostic observer are developed in
[9~11] respectively. Furthermore, by showing that
norms of a sampled system are equal to the correspond-
ing norms of a certain discrete time system, a new
discretization method called norm invariant transfor-
mation is proposed in [12] to convert the norm-based
sampled-data fault detection problem into an equiva-
lent discrete time one. However, all above direct de-
sign approaches based on continuous lifting technique
require the sampled-data systems under consideration
to be strictly proper and are thus not applicable for the
sampled-data systems with measurement noise or sen-
sor fault. The hybrid systems approach is another ef-
fective way to deal with the intersample behavior. The
optimal fault detection filter for general sampled-data
systems is developed in [13] based on the co-inner-outer
factorization technique of linear jump systems. By for-
mulating the sampled-data FDI problem as hybrid sys-
tem filtering one, the actuator fault detection and sensor
fault estimation problems are investigated in [14,15] re-
spectively. However, the results in [13~15] are given
in terms of Riccati differential equations with jumps
which are difficult to be sloved. Therefore, an LMI
solution of actuator fault detection problem of general
sampled-data systems are given in [16], which verifies
the feasibility of direct method based on hybrid system
approach.

All above direct design methods based on continu-
ous lifting techniques or hybrid system approaches usu-
ally assume that each process variable is sampled at
a constant rate. The sampling rates of different vari-
ables may be equal and synchronous (i.e., single-rate
systems) or different and asynchronous (i.e., multirate

rate)!!7- 181,

However, in many practical industry pro-
cesses or complex control systems, the output is sam-
pled at non-uniformly spaced time instants due to differ-

ent reasons, including the delays in sensors, networks

and laboratory analysis. It is also well known that
introducing non-uniform sampling can provide a bet-
ter tradeoff between performance and implementation
cost and can achieve objectives that can not achieved

(19201 " By using subspace iden-

by uniform sampling
tification method, the parity-based and Kalman filter
based FDI methodologies for non-uniformly sampled-
data systems are developed in [21] and [22] respec-
tively. However it is assumed that sampling, although
non-uniform, follows a periodic pattern. In other words,
the sampling instants are non-uniformly distributed in
a window of time, and this window is periodically re-
peated. This periodicity assumption allows the use
of discrete-time lifting technique to convert the non-
uniformly sampled-data system into linear time invari-
ant(LTI) systems, but it restricts the practical appli-
cations of the proposed method. By using continu-
ous lifting technique, the parity-based residual gener-
ator for general non-uniformly sampled-data systems is
proposed in [23]. However, the obtained time-varying
residual generator needs for calculation at every sam-
pling instant and thus has a large computation cost. Fur-
thermore, as mentioned above, the use of continuous
lifting technique requires the system under consider-
ation to be strictly proper, which means no measure-
ment noise and sensor fault exist. To the best of au-
thors’ knowledge, the problem of sensor fault detection
in general non-uniformly sampled-data systems has not
yet been fully investigated. The difficulties lie in sev-
eral aspects, such as how to convert the non-uniformly
sampled-data system into system easily to deal with
(e.g., in [21,22], the non-uniformly sampled data sys-
tem is converted into LTI system), and how to make a
good tradeoff between the fault sensitivity and noise ro-
bustness.

The design of sensor fault detection filters for gen-
eral non-uniformly sampled-data systems will be stud-
ied in this paper. Only a conventional restriction on
sampling is that the interval between sequel sampling
instants does not exceed a given bound. Inspired by
the time delay approach which has been proposed in
[24,25] for sampled-data stabilization and H,, control,
the output delay approach will be employed to convert
non-uniformly sampled-data systems into continuous-
time ones with time-varying delay output. More re-
cently, the fault diagnosis and fault tolerant control for
system with delayed output have already been investi-
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gated in [26,27], by use of an exosystem and the delay
free transform, the fault diagnosis problem for system
with delayed outputs has been converted into a state es-
timation problem for a delay free system. However, the
dynamic characters of faults are assumed to be known
and only constant delay is considered, which may place
some restrictions on realistic FDI. In this paper, the pro-
posed method does not need any assumption on faults
and the time-varying delay is well dealt with by the
input-output approach. An iterative algorithm is finally
developed to make a good tradeoff between noise ro-
bustness and fault sensitivity.

2 Problem formulation

Consider the following sampled-data system
z(t)=Ax(t)+ Byu(t)+ Byw(t), z(0) =z, "
y(tk) = Cx(tk) + va(tk) + fos(tk)7

where z(t) € R" is the state, u(t) € R™ is the con-
trol input, w(t) € R™ is the continuous-time pro-
cess noise belongs to L]0, 00) which stands for the
space of square integrable vector functions over [0, c0),
y(tx) € R™ is the sampled output at time instant
tr, v(ty) € R™ is the discrete-time measurement
noise belongs to 1,[0, 00) which is the space of square
summable vector sequences over [0, 00), fs(t;) € R™
is the sensor fault to be detected. A, By, By, C, D, D;
are known real constant matrices with approximate di-
mensions, and the initial zy is also known. The sam-
pling is non-uniform or even uncertain and the discrete

sampling instants are
O=to<ti <

Sty <o lim by, = oo
k—oo

We further assume that the maximum sampling in-
terval is not greater than h, i.e.,

thor —tr < h,Vk > 0. )

Between the sampling instants, the fault detection filter
can only use the control input u(t) and the sampled out-
put y(ty) at previous sampling instant to detect the fault,
so the sampled output equation may be represented as a
continuous time one with time-varying delay as follows:

y(t)=Cx(t —7(t)) + Dyv(t — 7(t)) +
Difs(t —7(t)), 3)

where 7(t) = t — ty,t, <t < ty41. Meanwhile, the
following fault detection filter is constructed

{Lx(t) = A& (t) + Buu(t) + L(y(t) — 9(t)), @
g(t) = Ca(t — 7(1)),r(t) = H(y(t) — §(2)),

where Z(t) € R™ is the state estimation, Z(0) = xo,
g(t) € R™ is the output estimation, r(t) € R™ is the
residual. L € R™ "™ is the filter gain matrix to be de-
signed, H € R™*™ is a suitable post weighting matrix
designed to assure isolability properties. Define the fil-
ter error e(t) = x(t) — Z(t), then the error dynamics is
described by
é(t)=Ae(t) — LCe(t — 7(t)) + Byw(t)—
LD v(t —7(t)) — LD¢fs(t — 7(1)),
r(t)=HCe(t — 7(t)) + HD,v(t — 7(t))+
HDyfs(t = 7(t)),

&)

where 7(t) is represented in continuous-time case,
while it is, in essence, the discrete-time non-uniformly
sampled signal. To effectively detect the fault, the fault
detection filter needs to be strong robust against the
noise and simultaneously high sensitivity to the fault.
Therefore, based on the above motivation, we now for-
mulate the design problem as follows:

Sensor fault detection filter problem: Under the
non-uniformly sampled-data system (1) and the fault
detection filter (4), determining the filter gain matrix L
such that

1) Filter (4) is asymptotically convergent for all
w=0,v=_0and f, =0.

2) For a given scalar v > 0, the following inequal-
ity holds for any non-zero w, v

J, <0, (6)

where

Iy = ;(tkﬂ—tk) (k) (tr) —
j YwT (H)w(t)dt —

o Z (ths1 — tr)

k=0

v (te)v(te)- (7

3) For a given scalar 3 > 0 and the residual eval-
uation time 7', the following inequality holds for any
non-zero f;

S )r) > 02X A0 ®)

4) ~/( is as small as possible.

Remark 1
performance index that measures the influence of resid-

Equation (7) is the noise robustness

ual to continuous-time process noise and discrete-time
measurement noise. It is evident that the smaller - is,
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the less sensitive the residual to noises becomes. Com-
pared with the conventional performance index!?®!, the
noise performance index (7) has some physical sense
since it takes the sampling rate into account and thus
can approximate the energies of measurement noise and
residual. Equation (8) is the fault sensitivity condi-
tion. The larger 3 is, the more sensitive the residual
to fault becomes. This class of fault sensitivity perfor-
mance index has been extensively used in the fault de-
tection for fuzzy systems, Markovian jump systems and
so on'?>3% Note that the length of time window in (8)
is finite (1" instead of oo) since in practice it is desired
that the fault will be detected as early as possible, an
evaluation of residual signal over the whole time range
makes less sense. The ratio /(3 indicates a tradeoff be-
tween noise robustness and fault sensitivity, the smaller
0 / (3 is, the better the fault detection filter will be.

3 Main results
3.1 Noise robustness analysis

In this section, the input-output approach which has
been widely used in the analysis and synthesis for time-
delay systems is applied to develop a sufficient con-
dition that guarantees the filter error dynamics (5) is
asymptotically stable and satisfies the noise robustness
constraint (6). We first represent the error dynamics (5)
in the following form:

(é(t) =
(A—LC)e Lcj s)ds+
i:;]it)—wvv(t—f( ))—Lfos(t—T(t)), o
HCe(t) +Hcf T sy dst

| HD,o(t — 7(t)) + HD:f,(t — 7(t)).

Regarding the integral term in (9) as the additional
output of system, we can obtain the following forward
system

é(t)=(A — LC)e(t) — hLCu, (t) + Byw(t)—
LDw(t —7(t)) = LD: f(t — 7(1)),
r(t)=HCe(t)+hHCuy(t)+HD,v(t—7(t))+
HDifs(t —7(t)),2(t) = e(t),
(10)

where z(t) is the additional output satisfying z(t) =
0, Vt < 0. uy(t) is the feedback input, i.e.,

u = Az s uy(t) =—1/h L s)ds, (11)

where A is an operator mapping z to u;.

Lemma 1 For any matrix R > 0, the following

inequality holds

T T
fo W (t) Ru (t)dt < fo 2T

Proof
changing the order of integral, (12) is easily obtained.

(t)Rz(t)dt. (12)

By applying Jensen’s inequality and

With the aid of Lemma 1, we are now in position to
give main results in the subsection.

Theorem 1  Under the non-uniformly sampled-
data system (1) and the fault detection filter (4) and as-
sume f;, = 0 (fault-free), for a given scalar v > 0, if
there exist matrices P, > 0, P, P;, R > 0, L that
satisfy the following MI:

[II, II, —hP}LC P} B, —PYLD, CTH"™ ]
x II; —hP]LC P/'B, —P}LD, 0
* *x —hR 0 0 hCTH™
2 <0,
* % * —~2I 0 0
* % * * —v*I  DIHT
B * * * —I |
13)
where
I, = PY(A—LC) 4+ (A— LC)" Py,
II, =P, — P} + (A— LC)" P,

I, = —PF — P, + hR.

Then the error dynamics (5) is asymptotically stable and
the noise robustness constraint (6) is guaranteed.

Proof We first show the stability of (5). Let
v(ty) = 0, w(t) = 0 and fi(tx) = 0, then system
(10) is represented as follows:

{ é(t) = (A — LO)e(t) — hLCu (t), (1
z(t) = é(t),
which, in turn, can be rewritten as

2(t) = G (t), ua(t) =

where the transfer function of G(t) is s(sl — (A —
LC)) Y (=hLC). Let R = I and T — o0 in Lemma
1, then ||A||
gain theorem®!!, system (5) is asymptotically stable if

Ax(t), (15

< 1. Followed from the scaled small

there exists a nonsingular matrix X € R™*" such that

1Gx | <1, (16)
where Gx = XGX 1.
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Consider the Lyapunov function V' (z) = ™ (¢) P, -
e(t) and introduce the following quadratic form:

Wa(e,uy) = V(e) + hzTRz — hul Ruy.  (17)

It can be proved that for a some € > 0 and any e and
Uy, if

V(e) > elle|?, (18)
Wale,ur) < —e(lle]|” + [Ju]*), (19)

then (16) holds. To show this, we integrate (19) from 0
to ¢ and take into account V' (e(0)) = 0 and then have

V(e(®)+h [ [7(r)Ra(r) —uf (r) Rus ()} dr <
—& [ (el + ). (20)

Let § = &/Amax(RR), XTX = RR, it follows from
(20) that

[ Ixa@)Pdr = (1-6) [ 1Xu(r)|dr <
[ @) tRy=(r) —ul (1) (R~ Ty ()T <
. j: lle|2dr — V(e(t)) < 0.

We thus have
||GX||Oo <(1-90) < 1. 21

Next we are seeking for conditions satisfying
(18)(19). Obviously, if P > 0, then (18) holds. Ap-
plying descriptor system approach?*!, we can rewrite
(17) as

V(e(t)) + hz"(t)Rz(t) — hul (t)Ruy(t) =

where

0 1
v =PpPT
A-LC -1
0 1 00
P+h
A-LC -1 + 0 R|’
p_ P 0
P, Py|’

Thus, a sufficient condition to satisfy (19) is

0
¥ hPT
—c|| <o. (22)
* —hR

So we can conclude that if (22) holds and P; > 0, then
(5) is asymptotically stable.
Finally we prove the noise robustness constraint (6).
Let f, = 0 and define the following quadratic form:
W =Wale(t),ur(t)) + ¥ (t)r(t) —

PVt Qwt)+ot (t=7())(E=T()], (23)
Integrating (23) from 0 to oo and following from
Lemma 1, we see that if

W, <0 24
holds, then the noise robustness constraint (6) is satis-
fied. Note that

V =2eT(t)Pré(t) =

2[e™(t) 2T (1) PT -

z(t)
—2(t)+(A—LC)e(t)+Byw(t) |, (25)
—hLCu,(t) + LDv(t — 7(t))
Substituting W (e(t), u1(¢)) into (23) and applying
Schur complements to the term 7T (¢)r(¢), we can ob-
tain that (24) is satisfied if

[ 0 0 0 cTaT ]
v hPT pT pT
—LC By LDy 0
* —hR 0 0 rCTHT
) <0.
* * -1 0 0
* * * —721 D:{HT
L * * * * —I ]

(26)

Note that (26) implies (23), namely (5) is asymptoti-
cally stable. MI (13) results from the latter LMI by ex-
pansion of the block matrices.
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3.2 Fault sensitivity analysis

In this subsection, we design a fault detection filter
under the noise free case (w(t) = 0,v(t;) = 0) to sat-
isfy the fault sensitivity condition (8). When there are
no process and measurement noises, the error dynamics

(5) can be expressed as

ét)=

(A—LC)e(t)—hLCuy(t)— LD fs(t—7(t)),
r(t)= 7)
HCe(t)+hHCuy(t)+HDgfs(t—7(t)),

2(t) = é(t),

where u; (t) is given by (11).

Theorem 2  Under the non-uniformly sampled-
data system (1) and the fault detection filter (4) and
assume w(t) = 0,v(tx) = O (noise free) and let
W = HTYH. For a given scalar 3 > 0, if there ex-
ist @1 > 0, Qa, @3, M > 0, L such that

6, 6, O3 e
* O —hP}LC —hQ3 LD <0
x «x —hM — h*CTWC —hCT™W Dy ’
x ok * B*I — DfW Dy
(28)
where

01 =QNA—-LC)+ (A—LO)TQ, — C™WC,
6, = Q1 — QF + (A~ LC)"Qs,

O; = —hQTLC — hC™WC,

O, = —Q; LDy — CTW Dy,

05 = Q5 — Q3+ hM.

Proof It can be derived along the same line as the
proof of Theorem 1.

Remark 2 Seen from the term (4, 4) of (28),
a necessary condition to satisfy the MI is (%I —
DIW Dy < 0. Therefore, the fault sensitivity perfor-
mance index [ is less than || D¢ H|| . As for the sensor
fault distribution matrix D¢ # 0, which guarantees the
proposed method can effectively detect the fault.

3.3 Filter gain iterative design

In previous two subsections, the sufficient condi-
tions to satisfy the noise robustness constraint (6) and
the fault sensitivity condition (8) have just been given in
terms of MIs. An iterative LMI algorithm is proposed in
this section to design the filter gain L which can make a
tradeoff between noise robustness and fault sensitivity,

namely make //3 as small as possible.

Filter gain iterative design algorithm: Given
system matrices A, B, By, C, D,, D; and the post
weighting matrix A and let gy > 0, us > 0 be suf-
ficiently small adjustable parameters. Set? = 0,5 = 0
and k € Z™ to be computational loops numbers.

Step 1 Choose a sufficiently large v = ¢ and
solve (13) to find L and let v = ¢ and 3 = 0.

Step 2 (Main Iterative Steps):

i) Substitute L into (13) and (28) and find a feasible
solution set of Py, P, P3, R, 1, Q2, Q3, M.

ii) Seti =i+ 1, substitute Py, P, Ps, R, 1, Q2,
@3, M obtained in last step into (13) and (28) and let
v =7 — w1 and B = B+ Lo, find a feasible solution L
for LMISs (13) and (28). Store L; = L and /3, repeat
Step2 1)ii) until there is no feasible solution. Then let
L;=1L; ;.

iii) If /0 is less than the desired level, then a
desired observer gain L; = L is found. Stop.

Step3 Setj = j+1,if j < k, repeat Step 2, else
stop (The feasible solution cannot be found).

Remark 3 In Step 1, MI (13) is still not LMI.
Let P; = P, where ¢ is a nonzero scalar. Note that
Pj + Ps appears on the diagonal, the matrix P, is non-
singular. Define PYL = PT, MI (13) can be easily
transformed into an LMI, and hence the filter gain ma-
trix is L = (PJ)~'PT.

Remark 4 In Step 2, for given a set of P, Ps,
P;, R, Qq, Q2, Q3, M, MIs (13) and (28) becomes
LMIs and a feasible solution L can always be obtained
as long as pq and po are sufficiently small. Therefore,
Step 2 can always locally improve the performance of
fault detection filter.

Remark 5 It is assumed that w(t) belongs to
L5[0,00), and v(t;) belongs to 15[0, 00).
residual evaluation over the whole time domain is unre-

Because

alistic, we choose 7' as the length of the evaluation time
window. If [lwl|, , < wo, [[v]l, < vo and the noise
robustness constraint (6) is satisfied, then the residual
r(t) satisfies the following inequality

2
Ir@®l5, + <
2.2 5 o
Ywg + 97 Y (begr — ti)v " (Ee)v(te) <
k=0
Ywg + v hvg,

for the fault free case. Therefore, the detection thresh-
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old can be chosen as
T, = ywo + vV huy. (29)

The fault detection logic is
||r(t)|] = T, = Faulty = Alarm,
lr(t)]] < T, = No fault.

4 Aircraft example

A remotely piloted aircraft example is examined
in this section to illustrate the effectiveness of the
proposed method. Consider the following four-state
model of the linearized lateral dynamics corrupted by
continuous-time process noise and discrete-time mea-

surement noise!3?!:

{ i(t) = Az(t) + Buu(t) + Byw(t),
y(tr) = C(te) + Dyv(ty) + De fo(tr),

where z = [0 p r ¢|T with o being the sideslip, p
the roll rate, 7 the yaw rate, ¢ the bank angle, u(t) =
[6. 0,]T is the control input with being §, the rudder
and &, the aileron. The system measurements outputs
y = [p ¢]T are non-uniformly sampled by roll rate
sensor and bank angle sensor. A fault occurs in the roll
rate sensor. The system matrices are

0277 0 —32.9 9.81
| -0.1033-8.525 3.75 0
03649 0 —0.639 0 |’
0 1 0 0
—5.432 0 0.1
g | 0 e o 1)
949 0 0
0 0 0.1

C =

010 0]7Df: H’DV: [0.1]'
0001 0 0
Assume that the sample interval is a random variable
obeying the uniform distribution on (0.2, 0.5) , and
then we have h = 0.5. Let H = [1 0;0 1]. Based
on the iterative algorithm, we can obtain that /3 ap-
proaches 0.87, where v = 0.67 and 3 = 0.77, and the
corresponding filter gain is

0.0346 1.0071

0.0396 0.0650

0.0078 0.2083

0.0095 0.8085

I =

The control input is u(t) = [1 2]T, w, v are zero
mean white noises with variance 0.1 respectively, and
the two kinds of faults (a constant fault and a time vary-
ing fault ) are ,respectively, as follows

0, < 10,
a(ty) =
far(te) {1,10<tk<30,

f (t ) B 0, t, < 10,
UMY 14 0.5sin(4nty,), 10 <, < 30.

Figures1 and 2 show the residuals under the cases of
constant fault and time-varying fault over time window
[0, 40]s respectively. Choosing the evaluation time
T = 2 s, it then follows from (29) that T, = 0.114.
Fig.3 and 4 show the residual evaluations for the two
cases. It can be seen that the designed fault detection
filter can effectively detect the occurrence and disap-
pearance of the fault despite the continuous time pro-
cess noise and discrete time measurement noise.

1.2 T T

1.0

0.8F .

(0

04F 1

02t :

,0.2 1 1 1 1 1 1 1

Fig. 1 The residual under constant fault case

18 T T T T T T T
1.6

14+
12+
Lo+
0.8
0.6 ; :
041 ' ; .

(0

70.2 1 1 1 1 1 I. . 1

t/s

Fig. 2 The residual under time varying fault case
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08 T T T T T T T

0.5t 1
04 1

@Il

0.2+ B
threshold
[ e e TRt

0.0 | 1 1 1 1 1

t/s

Fig. 3 The residual evaluation under constant fault case

10 T T T T T T T

09 1
0.8 A
0.7 1
0.6 - B
0.5 q
04+ b
03+ B
0.2+ threshold .

T R WY

t/s

Il

Fig. 4 The residual evaluation under time varying fault case

5 Conclusion

The problem of sensor fault detection of non-
uniformly sampled-data systems has been addressed by
using the output delay approach in this paper. Com-
pared with the system considered in [21~23], the sys-
tem in this paper is more general with no periodicity
assumption and no strictly properness constraint. The
designed fault detection filter not only guarantees the
H,, norm from continuous time process noise and dis-
crete time measurement noise to residual less than a pre-
scribed value, but also ensures the 1 gain from sensor
fault to residual greater than a prescribed value. Mean-
while, the proposed iterative algorithm can make a good
tradeoff between noise robustness and fault sensitivity.
The effectiveness of the proposed design technique has
been demonstrated on an aircraft example.
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