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Abstract: A class of discrete-time T-S fuzzy systems subject to input saturation is studied by introducing a fuzzy
Lyapunov function. A sufficient condition that ensures the stability at the system origin is derived; and the domain of
attraction may be enlarged by applying a fuzzy anti-windup compensator to the considered system. This method avoids the
difficulty in seeking a common positive-definite matrix P satisfying all fuzzy rules of this system. Moreover, an iterative
optimization algorithm for obtaining the anti-windup compensator gain is given.
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摘要:通过引入模糊Lyapunov函数,研究一类执行器饱和的离散T-S模糊系统.对系统设计模糊抗积分饱和补偿
器,得到系统稳定的充分条件,并扩大了系统的吸引域.这种方法避免了寻求一个满足系统所有模糊规则的公共正
定矩阵P . 最后,抗积分饱和补偿器增益通过迭代优化算法得到.
关键词: 离散Takagi-Sugeno模糊系统;模糊Lyapunov函数;模糊抗积分饱和补偿器;吸引域

1 Introduction
Lyapunov function approach is one of the most

popular approaches in stability analysis and synthe-
sis. Quadratic functions are often used to be Lyapunov
candidate functions. In [1] piecewise quadratic func-
tions were constructed for Lyapunov functions, how-
ever, this type of Lyapunov function may not be contin-
uously differentiable and its level sets may not be con-
vex. Ref. [2, 3] introduced a composite quadratic Lya-
punov function, which is continuously differentiable
and whose level set is the convex hull of a set of el-
lipsoids. Recently, based on a duality theory for lin-
ear differential inclusions, a particular pair of conjugate
Lyapunov functions was presented to study the stabil-
ity of a type of systems with saturation nonlinearities[4],
and a much weaker condition than that obtained in [5]

was derived. Ref. [6] presented a systematic and com-
prehensive analysis of a general system with saturation
or deadzone components by using quadratic and non-
quadratic Lyapunov functions, and showed that these
conditions in view of the nonquadratic Lyapunov func-
tions applied were less conservative than the conditions
in view of quadratic Lyapunov functions applied. In[7],
a new parallel distributed compensation(PDC) was pro-
posed to fully take the advantage of fuzzy Lyapunov
function. The new PDC provides a less conservative re-
sults than the ordinary PDC.

In this paper, the anti-windup design for the
discrete-time T-S fuzzy systems by the fuzzy Lyapunov
function is considered. New sufficient conditions that
ensures the stability of the origin of the system is de-
rived using a fuzzy Lyapunov function. The proposed
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method is proved to be less conservative compared to
those derived by using quadratic Lyapunov functions.

Notation: The following notation will be used
throughout the paper. R denotes the set of real num-
bers, Rm the m dimensional Euclidean space, Rn×m

the set of all n ×m real matrices. To reduce clutter, ∗
denotes the off-diagonal entries in symmetric matrices.

2 Problem statement
Consider the following discrete-time T-S fuzzy sys-

tem, the i-th rule is described as:

Rule i : IF z1(k) is M i
1 and · · · and zp(k) is M i

p,

THEN

ẋ(k + 1) = Aix(k) + Biu(k), (1)

y(k) = Cix(k), (2)

where M i
j (i = 1, 2, · · · , r, j = 1, 2, · · · , p) is fuzzy

set, r is the number of IF-THEN rules, z1(t), · · · , zn(t)
are the premise variables, x(k) ∈ Rn is the state vector,
u(k) ∈ Rm is the input vector, y(k) ∈ Rm is the out-
put vector. It is assumed in this paper that the premise
variables do not depend on the input variables u(t).

By using the fuzzy inference method with a single-
ton fuzzifier, product inference, and center average de-
fuzzifier, the fuzzy model (1) can be expressed as the
following:





x(k + 1) =
r∑

i=1

αi(z(k))
(
Aix(k) + Biu(k)

)
,

y(k) =
r∑

i=1

αi(z(k))Cix(k),
(3)

where αi(z(k)) is the membership function of the i-th
rule.

To guarantee the stability of the system (3) in the
absence of input saturation, we assume that the follow-
ing fuzzy controller has been designed:

Rule i : IF z1(k) is M i
1 and · · · and zp(k) is M i

p,

THEN



η(k + 1) = Ac(i)η(k) + Bc(i)y(k),
v(k) = Cc(i)η(k) + Dc(i)y(k),

i = 1, 2, · · · , rc.

(4)

Then, the fuzzy controller is




η(k) =
rc∑

i=1

αi(z(k))
(
Ac(i)η(k) + Bc(i)y(k)

)
,

v(k) =
rc∑

i=1

αi(z(k))
(
Cc(i)η(k) + Dc(i)y(k)

)
,

(5)

where η(k) ∈ Rnc is the controller state, y(k) is the
controller input and v(k) is the controller output.

Assume that the actual control input u is subject
to actuator saturation, i.e. u = σ(v). The function
σ : Rm → Rm is the standard saturation function de-
fined as

σ(v) = [σ(v1) σ(v2) · · · σ(vm)]T, (6)

where σ(vi) = sgn vi min{|vi|, u0(i)}, u0(i) > 0,

i = 1, 2, · · · ,m, are the control bounds. In order to
weaken the influence of input saturation, an anti-windup
term is added to the controller (5). Then the modified
fuzzy compensator has the form



η(k+1)=
rc∑

i=1

αi(z(k))
(
Ac(i)η(k)+Bc(i)y(k)

)
+

Ec(σ(v(k))− v(k)),

v(k) =
rc∑

i=1

αi(z(k))
(
Cc(i)η(k) + Dc(i)y(k)

)
.

(7)

Under the above fuzzy modified compensator, the
closed-loop system is

ξ(k + 1) =
r∑

i=1

rc∑
j=1

αi(z(k))αj(z(k))(Āijξ(k)+B̄iσ(Fijξ(k))),

(8)

where

ξ(k) =

[
x(k)
η(k)

]
,

Āij =

[
Ai 0

Bc(j)Ci−EcDc(j)Ci Ac(j)−EcCc(j)

]
,

B̄i =

[
Bi

Ec

]
, Fij = [Dc(j)Ci Cc(j)].

Without loss of generality, we assume that r = rc.
Denote ξ+ = ξ(k + 1), ξ = ξ(k), α+

i = αi(z(k +
1)), αi = αi(z(k)), the system (8) can be rewritten as

ξ+ =
r∑

i=1

r∑
j=1

αiαj(Āijξ + B̄iσ(Fijξ)). (9)

It is easy to obtain the following lemma.

Lemma 1 Given Fij,Hij ∈ Rm×(n+nc), i, j =

1, 2, · · · , r, and F =
r∑

i=1

r∑
j=1

αiαjFij , 0 6 αi, αj 6 1,

r∑
i=1

αi = 1. For ξ ∈ Rn+nc , if x ∈
r⋂

i,j=1

L(Hij), then

σ(Fijξ)∈ co{(EkFij + E−
k Hij)ξ : k ∈ [1, 2m]},

i, j ∈ [1, r].

Correspondingly, σ(Fijξ) can be expressed as

σ(Fijξ) =
2m∑
k=1

ηk(EkFij + E−
k Hij)ξ,
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∀i, j =1, 2,· · ·, r, k∈ [1, 2m], (10)

where co{·} denotes a convex hull of a set and 0 6

ηk 6 1,
2m∑
k=1

ηk = 1.

Combine (8) and (10), one obtains

ξ+=
r∑

i=1

r∑
j=1

2m∑
k=1

αiαjηk(Āij +B̄i(EkFij +E−
k Hij))ξ=

r∑
i=1

r∑
j=1

2m∑
k=1

αiαjηkÂijkξ =

2m∑
k=1

ηkÂk(α)ξ, (11)

where

Âijk = Āij + B̄i(EkFij + E−
k Hij),

Âk(α) =
r∑

i=1

r∑
j=1

αiαj(Āij + B̄i(EkFij + E−
k Hij)).

3 Estimation of domain of attraction
Construct a fuzzy Lyapunov function:

V (ξ) = ξTP (α)ξ, (12)

where

P (α) =
r∑

i=1

r∑
j=1

αiαjPij.

Theorem 1 Consider the system (11). If there ex-
ist the matrices X, Hij, Pij > 0, i, j = 1, 2, · · · , r,
with appropriate dimensions, satisfying[

Pij ÂT
ijkX

T

XÂijk XT + X − Pi′j′

]
> 0, (13)

∀i, j, i′, j′ ∈ [1, r], k ∈ [1, 2m], and Ω(P (α), ρ) ⊂
r⋂

i,j=1

L(Hij), then the closed-loop system (11) is

asymptotically stable at the origin of the system with
Ω(P (α), ρ) contained in the domain of attraction.

Proof If the inequality (13) is feasible, then

XT + X − Pi′j′ > 0

for all i′, j′ ∈ [1, r]. So, X is the nonsingular matrix.

Choose the Lyapunov candidate (12), then ∀ξ ∈
LV (ρ) ⊂

r⋂
i,j=1

L(Hij),

∆V (ξ) = V (ξ+)− V (ξ) =
2m∑
k=1

ηkξ
T(ÂT

k (α)P (α+)Âk(α)− P (α))ξ =

2m∑
k=1

ηkξ
T((

r∑
i=1

r∑
j=1

αiαjÂijk)T ×

(
r∑

i=1

r∑
j=1

α+
i α+

j Pij)(
r∑

i=1

r∑
j=1

αiαjÂijk)−

(
r∑

i=1

r∑
j=1

αiαjPij))ξ. (14)

If

ÂT
k (α)P (α+)Âk(α)− P (α) < 0,∀k ∈ [1, 2m],

(15)

then ∆V (ξ) < 0.

With (15), it follows that

ÂT
k (α)XT(XT)−1P (α+)X−1XÂk(α)−P (α)<0,

∀k ∈ [1, 2m]. (16)

From Schur complement lemma and the inequality
(16), we can get[

P (α) ÂT
k (α)XT

XÂk(α) XP−1(α+)XT

]
>0,∀k∈ [1, 2m]. (17)

With the inequality (P (α+)−X)TP−1(α+)(P (α+)
−X) > 0, we obtain

XTP−1(α+)X > XT + X − P (α+). (18)

Thus, with (17) and (18), it follows that[
P (α) ÂT

k (α)XT

XÂk(α) XT+X−P (α+)

]
>0,∀k∈ [1, 2m].

(19)

Therefore,


r∑
i=1

r∑
j=1

αiαjPij (∗)T

X
( r∑

i=1

r∑
j=1

αiαjÂijk

)
∆


 =

r∑
i=1

r∑
j=1

r∑
i′=1

r∑
j′=1

αiαjα
+
i′α

+
j′ ·

[
Pij ÂT

ijkX
T

XÂijk XT+X−Pi′j′

]
>0, (20)

for any k ∈ [1, 2m], where

∆ = XT + X −
r∑

i′=1

r∑
j′=1

α+
i′α

+
j′Pi′j′ .

If the inequality (13) holds for any i, j, i′, j′ ∈
[1, r], k ∈ [1, 2m], then ∆V (ξ) < 0 for any ξ ∈
LV (ρ) \ {0}. We can conclude that the system (11)
is asymptotically stable at the origin, and Ω(P (α), ρ)
is contained in the domain of attraction. The proof is
completed.

Theorem 1 gives a sufficient condition for the level
set LV (ρ) to be inside the domain of attraction. In or-
der to obtain the least conservative estimation of domain
of attraction, we may choose the“largest”one of the
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level sets satisfying the conditions of Theorem1. This
problem can be formulated as the following constrained
optimization problem:

max
P (α)>0,ρ,Hij

λ, (21)

s.t. a) λχR ⊂ Ω(P (α), ρ)

b) the inequality (13),

c) Ω(P (α), ρ) ⊂
r⋂

i,j=1

L(Hij).

The shape reference set χR may be chosen to be a poly-
hedron, i.e.

χR = co{ξ1, ξ2, · · · , ξp}. (22)

The set χR may also be chosen to be an ellipsoid, i.e.

χR = {ξ ∈ Rn+nc : ξTRξ 6 1, R > 0}. (23)

Since it is obvious that
r⋂

i,j=1

Ω(Pij, ρ) ⊂ Ω(P (α), ρ),

we choose
r⋂

i,j=1

Ω(Pij, ρ) to be the estimation of the set

Ω(P (α), ρ). Then, the optimization problem (21) can
be formulated as the following optimization problem:

max
Pij>0,ρ,Hij

λ, (24)

s.t. a) λχR ⊂ Ω(Pij, ρ),∀i, j ∈ [1, r]

b) the inequality (13),

c) |hij(s)ξ| 6 1,∀ξ ∈ Ω(Pij, ρ),

∀i, j ∈ [1, r], s ∈ [1,m].

Let

Q =
(X

ρ

)−T
, Zij = HijQ,

zij(s) = hij(s)Q,Qij = QT(
Pij

ρ
)Q,

∀i, j ∈ [1, r], s ∈ [1,m],

where hij(s), zij(s) is the s-th row of the matrices Hij

and Zij , respectively.

Since (Qij −Q)TQ−1
ij (Qij −Q) > 0, we have

QQ−1
ij QT > QT + Q−Qij,

∀i, j ∈ [1, r].

If the shape reference set χR is a polyhedron as de-
fined in (22), then Constraint a) is equivalent to

λ−2ξT
q

(Pij

ρ

)
ξq 6 1 ⇔




λ−2 ξT
q

ξq (
Pij

ρ
)−1


 > 0 ⇔




λ−2 ξT
q

ξq Q(QT
(Pij

ρ

)
Q)−1QT


 > 0 ⇔

[
λ−2 ξT

q

ξq QQ−1
ij QT

]
> 0 ⇐

[
λ−2 ξT

q

ξq QT + Q−Qij

]
> 0.

The inequality (13) is equivalent to[
X−1PijX

−T X−1Âijk

ÂijkX
−T X−T+X−1−X−1Pi′j′X

−T

]
>0 ⇔

[
Qij (∗)T

ĀijQ+B̄i(EkFijQ+E−
k Zij) QT+Q−Qi′j′

]
>0,

∀i, j, i′, j′ ∈ [1, r], k ∈ [1, 2m].

Constraint c) is equivalent to

hij(s)(
Pij

ρ
)−1hT

ij(s) 6 1 ⇔

hij(s)Q(QT
(Pij

ρ

)
Q)−1QThT

ij(s) 6 1 ⇔
[

1 hij(s)Q

QThT
ij(s) Qij

]
> 0 ⇔

[
1 zij(s)

zT
ij(s) Qij

]
> 0,

∀i, j ∈ [1, r], k ∈ [1, 2m], s ∈ [1,m].

Then, the optimization problem (24) can be modi-
fied as the following optimization problem:

min
Q>0,Qij ,Zij

γ, (25)

s.t.

a)

[
γ ξT

q

ξq QT + Q−Qij

]
> 0,

b)
[

Qij (∗)T
ĀijQ+B̄i(EkFijQ+E−

k Zij) QT+Q−Qi′j′

]
>0,

c)

[
1 zij(s)

zT
ij(s) Qij

]
> 0,

∀i, j, i′, j′ ∈ [1, r], k ∈ [1, 2m], q ∈ [1, p], s ∈ [1,m],

where γ = λ−2.

4 Anti-windup compensation design
From the optimization problem (25), we can

see that the constraint b) cannot be an LMI in
Ec, Q, Zij(i, j = 1, 2, · · · , r) simultaneously. This
implies that we cannot obtain the anti-windup compen-
sation gain Ec by directly solving an LMI optimization
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problem. However, with all Hij and X fixed, the anti-
windup compensation gain Ec can be solved by an LMI
optimization problem as follows

min
Pij ,Ec

γ, (26)

s.t.

a) (ξ0
q )

TPijξ
0
q − γ 6 0,

b)
[

Pij (∗)T
XĀij +XB̄i(EkFij +E−k Hij) XT+X−Pi′j′

]
>0,

c) Pij > γ(hij(s))Thij(s),

∀i, j, i′, j′ ∈ [1, r], k ∈ [1, 2m], q ∈ [1, p], s ∈ [1,m].

Let

X =

[
X11 X12

XT
12 X22

]
, X1 =

[
X11

XT
12

]
, X2 =

[
X12

X22

]
,

X11 ∈ Rn×n, X12 ∈ Rn×nc , X22 ∈ Rnc×nc ,

then the optimization problem (26) is equivalent to

min
Pij ,Ec

γ, (27)

s.t. a) (ξ0
q )

TPijξ
0
q − γ 6 0,

b)

[
Pij ΛT

Λ XT + X − Pi′j′

]
> 0,

c) Pij > γ(hij(s))Thij(s),

∀i, j, i′, j′ ∈ [1, r], k ∈ [1, 2m], q ∈ [1, p], s ∈ [1,m],

where Λ = XĀij+(X1Bi+X2Ec)(EkFij+E−
k Hij).

Therefore, we give an iterative optimization algo-
rithm for designing the anti-windup compensation gain
Ec such that the domain of attraction of the closed-loop
system is as large as possible.

Algorithm 1 Iterative algorithm for determining
anti-windup compensation gain Ec:

Step 1 Given the initial reference set χR =
co{ξ0

1 , ξ
0
2 , · · · , ξ0

p} and E0
c = 0, solve the optimization

problem (25). Denote the solution as (γ0, Q
0, Q0

ij, Z
0
ij),

i, j = 1, 2, · · · , r. Set χR = γ
− 1

2
0 χR.

Step 2 Set Ec with an initial value, k = 1 and
γopt = 1.

Step 3 Solve the optimization problem (25),
then denote the solution as (γk, Q, Qij, Zij), i, j =
1, 2, · · · , r.

Step 4 Let γopt = γkγopt, χR = γ
− 1

2
k χR, X =

(Q

ρ

)−T
,Hij = ZijQ

−1, Pij = ρQ−TQijQ
−1.

Step 5 IF |γk − γk−1| < δ, where δ is a pre-
determined tolerant bound, GOTO Step 7, ELSE GOTO

Step 6.

Step 6 Solve the optimization problem (27), then
set the solution as Ec. Let k = k + 1, GOTO Step 3.

Step 7 IF γk 6 γ0, Ec is a feasible solution
and STOP. ELSE, set Ec with another initial value and
GOTO Step 2.

Remark 1 If the reference set is chosen to be a
ellipsoid defined as (23), then the constraint condition
a) of the optimization problem (27) should be changed
to

Pij 6 γR, i, j = 1, 2, · · · , r.

Remark 2 The optimization result of Algorithm
1 depends on the initial value of the compensation gain
Ec. In general, we select several typical initial values
E0

c , by using Algorithm 1, choose the smallest γopt and
the corresponding Ec as the“optimal”solution of the
optimization problem.

5 A numerical example
Consider the following fuzzy system subject to ac-

tuator saturation:

Rule 1 IF x1 is about 0, THEN{
x(k + 1) = A1x(k) + B1u(k),
y(k) = C1x(k).

(28)

Rule 2 IF x1 is about ±π

2
(|x1| < π

2
), THEN

{
x(k + 1) = A2x(k) + B2u(k),
y(k) = C2x(k),

(29)

where

A1 =

[
1.5 0.5
0.3 −1

]
, B1 =

[
10
1

]
, C1 = [5 1],

A2 =

[
1 0.4
0.4−1.2

]
, B2 =

[
10
0

]
, C2 = [5 1],

and u0 = 15. The membership functions of Rule 1 and
Rule 2 are

p1 = cos x1, p2 = 1− p1.

In the absence of input saturating, we design the follow-
ing dynamic fuzzy controller:

Rule 1 IF x1 is about 0, THEN{
η(k + 1) = Ac(1)η(k) + Bc(1)y(k),
v(k) = Cc(1)η(k),

(30)

Rule 2 IF x1 is about ±π

2
(|x1| < π

2
), THEN
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η(k + 1) = Ac(2)η(k) + Bc(2)y(k),
v(k) = Cc(2)η(k),

(31)

where

Ac(1) = Ac(2) =

[
−20 2.5

2 − 4

]
,

Bc(1) = Bc(2) =

[
2

−0.06

]
,

Cc(1) = Cc(2) = [−1 0.1].

We choose the initial reference set as χR =
[xT(0) ηT(0)]T, where

x(0) = [0.8 0.5]T, η(0) = [0 0]T.

In the absence of anti-windup compensation gain, i.e.

Ec =

[
0
0

]
, applying the optimization problem (25),

we can get λ = 4.77 × 104. In the presence of anti-

windup compensation gain, set the initial value to be

E0
c =

[
0
10

]
. Applying Algorithm 1, we can obtain

λ = 5.01× 104, Ec =

[
−39.52

23.23

]
.

Obviously, the anti-windup compensation gain enlarges

the domain of attraction of the closed-loop system.

We choose a quadratic Lyapunov function V (x) =
xTPx, and set Pij = P and Qij = Q1(i, j =
1, 2, · · · , r) in the optimization problem (25). In the

presence of anti-windup compensation gain, set the ini-

tial value to be E0
c =

[
0
10

]
. By Algorithm 1, we get

λ = 4.46× 104, Ec =

[
−34.00

22.46

]
.

It is easy to see that the quadratic Lyapunov function

approach is more conservative than the fuzzy Lyapunov

function method.

6 Conclusion
In this paper, we have presented the fuzzy Lyapunov

function technique to enlarge the domain of attraction
of the discrete-time T-S fuzzy system subject to actu-
ator saturation. An iteration algorithm is provided to
design the anti-windup compensation gain such that the
domain of attraction is as large as possible. A numerical
example illustrates that the proposed approach is effec-
tive.
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