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Abstract: A class of discrete-time T-S fuzzy systems subject to input saturation is studied by introducing a fuzzy
Lyapunov function. A sufficient condition that ensures the stability at the system origin is derived; and the domain of
attraction may be enlarged by applying a fuzzy anti-windup compensator to the considered system. This method avoids the
difficulty in seeking a common positive-definite matrix P satisfying all fuzzy rules of this system. Moreover, an iterative
optimization algorithm for obtaining the anti-windup compensator gain is given.
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1 Introduction

Lyapunov function approach is one of the most
popular approaches in stability analysis and synthe-
sis. Quadratic functions are often used to be Lyapunov
candidate functions. In[1] piecewise quadratic func-
tions were constructed for Lyapunov functions, how-
ever, this type of Lyapunov function may not be contin-
uously differentiable and its level sets may not be con-
vex. Ref. [2,3] introduced a composite quadratic Lya-
punov function, which is continuously differentiable
and whose level set is the convex hull of a set of el-
lipsoids. Recently, based on a duality theory for lin-
ear differential inclusions, a particular pair of conjugate
Lyapunov functions was presented to study the stabil-
ity of a type of systems with saturation nonlinearities'*!,
and a much weaker condition than that obtained in [5]
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was derived. Ref. [6] presented a systematic and com-
prehensive analysis of a general system with saturation
or deadzone components by using quadratic and non-
quadratic Lyapunov functions, and showed that these
conditions in view of the nonquadratic Lyapunov func-
tions applied were less conservative than the conditions
in view of quadratic Lyapunov functions applied. In[7],
a new parallel distributed compensation(PDC) was pro-
posed to fully take the advantage of fuzzy Lyapunov
function. The new PDC provides a less conservative re-
sults than the ordinary PDC.

In this paper, the anti-windup design for the
discrete-time T-S fuzzy systems by the fuzzy Lyapunov
function is considered. New sufficient conditions that
ensures the stability of the origin of the system is de-
rived using a fuzzy Lyapunov function. The proposed
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method is proved to be less conservative compared to
those derived by using quadratic Lyapunov functions.
Notation: The following notation will be used
throughout the paper. R denotes the set of real num-
bers, R™ the m dimensional Euclidean space, R™*™
the set of all n X m real matrices. To reduce clutter, *

denotes the off-diagonal entries in symmetric matrices.
2 Problem statement

Consider the following discrete-time T-S fuzzy sys-
tem, the ¢-th rule is described as:

Rule i: IF zy(k) is M7 and - - - and z,(k) is M,

THEN

@k +1) = Ajx(k) + Biu(k), (1)

y(k) = Ciz(k), )
where M} (i = 1,2,---,7r,j = 1,2,---,p) is fuzzy

set, r is the number of IF-THEN rules, z; (t), - - , 2, (t)
are the premise variables, (k) € R” is the state vector,
u(k) € R™ is the input vector, y(k) € R™ is the out-
put vector. It is assumed in this paper that the premise
variables do not depend on the input variables w(t).

By using the fuzzy inference method with a single-
ton fuzzifier, product inference, and center average de-
fuzzifier, the fuzzy model (1) can be expressed as the
following:

zk+1)=> Ax(k) + Biu(k)),

= 3)
()ZlZ a;i(z(k))Ciz(k),

=1
where «;(z(k)) is the membership function of the i-th
rule.

To guarantee the stability of the system (3) in the
absence of input saturation, we assume that the follow-
ing fuzzy controller has been designed:

Rule i: IF z(k) is M7 and - - - and z,(k) is M,
THEN
n(k+1) = Aciyn(k) + Bewyy(k),
v(k) = Ceyn(k) + Deayy(k), “)
1=1,2,--- 1.

Then, the fuzzy controller is

T

n(k) = z i (2(k)) (Aeoyn(k) + Bowyy(k)), 5
v(k) = 32 au(2(8)) (Cogyn(k) + Dugayy(K)).

i=1
where 1(k) € R™ is the controller state, y(k) is the
controller input and v(k) is the controller output.

Assume that the actual control input u is subject
to actuator saturation, i.e. u = o(v). The function
o : R™ — R™ is the standard saturation function de-

fined as

o(v)=lo(vi) o(va) -+ o(v)]", (6)
where o(v;) = sgn v; min{|v;|, uoq)}, oy > 0,
1 =12,
weaken the influence of input saturation, an anti-windup

term is added to the controller (5). Then the modified
fuzzy compensator has the form

5 o (=(k)) (Accyn(k) + Bugy
)

,m, are the control bounds. In order to

n(k+1)=3 o y(k))+
Ec(o(v(k)) —v(k)), )

(k) = 3 e (2(k)) (Cugs

i=1

n(k) + Deyy(k)).

Under the above fuzzy modified compensator, the
closed-loop system is

€(k+1) =
ZIZaZ( 2(k))a;(2(k)) (A& (k) + Bio (Fi;€(k))),
i=1j
(®)
where
(k)
§(k) = ;
= niw)
i.— A; 0
Y| Bepy Ci— EcDe5Ci Acjy — EcCeyj)
_ B,
Bi=| . | Fiy = [DenCi Cey)]-
Without loss of generality, we assume that r = 7.
Denote £+ = £(k + 1),€ = £(k),af = au(2(k +

1)), a; = a;(z(k)), the system (8) can be rewritten as
=2 3 iy (A + Bio(Fiyg)). ()
i=1j=1

It is easy to obtain the following lemma.
leen Fy;, H;j € Rmx(ntne) 5 =

ljv

1,2,"' , T, and F' = ZZOQO[J‘FZ‘J‘,Og

i=1j=1

Zal—l For{ € R if x € ﬂ L(H;

=1 i,j=1
o(F;;€) € co{(ExFij + Ey Hi)& + k € [1,2™]},
i,j € [1,7].

Lemma 1

ag, a5 < 1,

), then

Correspondingly, o (

o(F;8) =

F;;€) can be expressed as

om

> m(EvFi + By Hij)E,

k=1
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Vi, j=1,2,---,r, ke[1,2], (10) (Z Zaa] P))E. (14)
where co{-} denotes a convex hull of a set and 0 < " ==
g
1, = 1. N .
e S L2 AT(0)P(a*)Ax(@) — P(a) < 0,7k € [1,2"],
Combme (8) and (10), one obtains (15)
r 2™
= 2 > Za O‘J"?k(AzJ +B; (ExFij+E); Hij))§=  then AV(£) <0
ol With (15), it follows that
; ZZJ ;aiamk/lm& = AT () XT(XT) ' Plat) X ' X Ay (a)— P(a) <0,
2 VEk € [1,2™]. (16)
Z meA(@)g, (1D . .
=1 From Schur complement lemma and the inequality
where (16), we can get
Ay = Ay + B,(EyFy; + E; H, P AT ()X T
o .o (P +) XA(CE) )XPEl(((I)ﬂXT >0,Vke(1,2™].(17)
A(a) = 30 3 aia;(Ay + Bi(EyFy + Ej Hyj)). kLG @
s With the inequality (P (ot )-X)T P~ () (P(a*)
3 Estimation of domain of attraction ~ X) > 0, we obtain
Construct a fuzzy Lyapunov function: XTP ("X > XT 4+ X — P(a®).  (I8)
V(&) =¢"P(a), 12
(§) =& Pla)e . Thus, with (17) and (18), it follows that
h .
o : Pla)  A@X® | ke, om)
P(a) = Z Z XAp(a) XT+X—P(at) |~ o
Theorem 1 Consider the system (11). If there ex- (19)
ist the matrices X, H,;, P;; > 0,4,5 = 1,2,---,r, Therefore,
with appropriate dlmensmns satisfyin LR
pprop ying 3 Z Py (%)T
Pl] A;EkXT > 0 (13) ’L:Tl J:T‘l ~ -
XA”k X + X — P’i’j’ ’ X( alainjk) A
i=1j=1
Vi, 5,1, € [1,r],k € [1,2™], and 2(P(«),p) C LA
(1 L£(H;;), then the closed-loop system (11) is i=1j=1i'=1j'=1
ij=1 .
asymptotically stable at the origin of the system with 'PZ_] A;ijX T >0 (20)
2(P(«), p) contained in the domain of attraction. XAy X"+ X — Py ’
Proof If the inequality (13) is feasible, then for any ke [1 2m] where
T
X +X_-Pi/jl>0 A= XT+X Z Zaz’a'/Pi’j"
forall ', j" € [1,r]. So, X is the nonsingular matrix. ¥=15'=
Choose the Lyapunov candidate (12), then V& € If the inequality (13) holds for any i, j, 7', ;" €

Ly(p) C ﬂﬁ( )

AV(E) = V(D) — V(&) =
3 e (AL (0)P(a®) Ae(0) ~ Pla))é =
énka((é il%ainjk) X

[1,7],k € [1,2™], then AV () < O for any & €
Ly(p) \ {0}. We can conclude that the system (11)
is asymptotically stable at the origin, and 2(P (), p)
is contained in the domain of attraction. The proof is
completed.

Theorem 1 gives a sufficient condition for the level
set Ly (p) to be inside the domain of attraction. In or-
der to obtain the least conservative estimation of domain

of attraction, we may choose the “largest” one of the
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level sets satisfying the conditions of Theorem1. This [ A2 &
problem can be formulated as the following constrained &, Q( QT ( & ) Q)fl QT 20
optimization problem: L p
A\~ 2 é-T
max A\, 21 >0«
P(a)>0,p,H;; gq QQUIQT =
s.t.a) Axr C 2(P(«),p) -2 er
b) the inequalit 13 1 0.
) the inequality (13), & QT HQ-Q,
c) £2(P(a),p) C ; 701 L(H). The inequality (13) is equivalent to
The shape reference set yr may be chosen to be a poly- XflPin*T *1121” k S0 <
hedron, i.c. ApX™ X T4 X1 X'P X T
XR = Co{gla 523 e 7517}' (22) Qlj ( )T 0
_ _ >0,
The set g may also be chosen to be an ellipsoid, i.e. A;Q+Bi(EvFi;Q+E; Zi;) QT +Q—Qiry

Xr={{ €R™™  €TRE <

Since it is obvious that ﬂ Q(P;,p) C 2(P(a),p),

7,7=1

1,R>0}. (23)

we choose ﬂ £2(P,;, p) to be the estimation of the set
1,7=1

Q2(P(«), p). Then, the optimization problem (21) can
be formulated as the following optimization problem:

max A, 24)
P;;>0,p,Hij

s.t.a) Axr C 2(Py;,p), Vi, j € [1,7]
b) the inequality (13),

¢) |hijs)€l < 1,V€ € £2(Py, p),
Vi,j € [l,r],s € [1,m].
Let
@=()"2,=H,0
Zij(s) = hij5)@, Qiz = QT(}ZJ)Q,

Vi, j € [1,r],s € [1,m],

where (s, 2ij(s) 18 the s-th row of the matrices H;

and Z,;, respectively.
Since (Qi; — @)"Q5;' (Qi; — Q) = 0, we have
QQ;'Q" > Q"+ Q —Qy,
Vi, j € [1,r].

If the shape reference set yg is a polyhedron as de-
fined in (22), then Constraint a) is equivalent to

(g <1 e
A2 ¢r
Pij -1
& ()

20

Vi, g1, € [1,r),k € [1,27).

Constraint ¢) is equivalent to

P
hijio) (=2) iy < 1 &
p
hzj(s)Q(QT( ”)Q) 1QTth(s l <

1 'Lj(‘?)Q]
>0
[QThw(S) Qij

L Zijes)
= 0,
Lz‘Tj@ Qi
Vi,j e [l,r],k € [1,2™],s € [1,m)].

Then, the optimization problem (24) can be modi-
fied as the following optimization problem:

min 25
Q>0,Qi;,Z:ij 7 (25

s.t.

2 |7 &
§QT+Q—Qy

b) [_ o Qy O
Ai;Q+Bi(EyFi;Q+E; Zij) QT+Q—Qujr
1 Zi‘(s)

c) 2 =0,

Zijts) Qis ]

Vi, g, i’ 5" € [1,r],k € [1,2™],q € [1,p],s € [1,m],

>0,

where v = A\ 72,
4 Anti-windup compensation design

From the optimization problem (25), we can
see that the constraint b) cannot be an LMI in
Echazij(ivj = 1727"'
implies that we cannot obtain the anti-windup compen-

,7) simultaneously. This

sation gain F. by directly solving an LMI optimization
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problem. However, with all H;; and X fixed, the anti-
windup compensation gain F, can be solved by an LMI
optimization problem as follows

Ao (26)
s.t.
a) (éf;)TPijﬁS -7 <0,
Pi; T
b) | _ LW >0,
XAij‘f'XBi(EkFij‘f'Ek Hij) X +X—P1'/j/

c) Py = v(hije)) " hijis).
Vi, j,i', 3" € [Lr] k€ [1,2"],q € [1,p],s € [1,m].
Let
X12 X22 X12 X22
Xll c Rnxn,Xlg c R’!LXTLC’X22 c Rncxnc’

then the optimization problem (26) is equivalent to

153,11%% (27)
s.t.a) ()T P&y — v <0,
P, AT
b Y >0
) A XT + X _ ]Di’j’ I

c) Py > ’Y(hij(s))Thij(s),
Vi, j,i', 5 € [1,r],k € [1,2™],q € [1,p],s € [1,m],
where A = X A;;+ (X, B;+ X E.)(E, Fy;+E;, Hyj).

Therefore, we give an iterative optimization algo-
rithm for designing the anti-windup compensation gain
E. such that the domain of attraction of the closed-loop
system is as large as possible.

Algorithm 1 TIterative algorithm for determining
anti-windup compensation gain F:

Step 1 Given the initial reference set xyg =
co{&7,£9,--- , &)} and EY = 0, solve the optimization
problem (25). Denote the solution as (o, Q°, QY;, Z})),
,j=1,2,--- 7. SetXR:’y;%XR.

Step 2 Set E, with an initial value, £k = 1 and
Yopt = 1.

Step 3 Solve the optimization problem (25),
then denote the solution as (i, @, Qij, Zij), 4, =
1,2,--- 7.

Q Step 4 Let ’YOpt = ’yk’YOpta XR = fYk_EXRv X =
-T
(;) JHij = Z;Q7 1, Py = pQ TQ;Q "

Step 5 IF |y, — k-1 < J, where ¢ is a pre-
determined tolerant bound, GOTO Step 7, ELSE GOTO

Step 6.

Step 6 Solve the optimization problem (27), then
set the solution as F.. Let k = k£ + 1, GOTO Step 3.

Step 7 IF v, < 7, E. is a feasible solution
and STOP. ELSE, set E. with another initial value and
GOTO Step 2.

Remark 1 If the reference set is chosen to be a
ellipsoid defined as (23), then the constraint condition
a) of the optimization problem (27) should be changed

to
Pij <’YR,Z,]: 1,2,“' ,T.

Remark 2 The optimization result of Algorithm
1 depends on the initial value of the compensation gain
FE.. In general, we select several typical initial values
E?, by using Algorithm 1, choose the smallest 7, and
the corresponding F, as the “optimal” solution of the

optimization problem.

5 A numerical example

Consider the following fuzzy system subject to ac-
tuator saturation:
Rule 1 IF z; is about O, THEN

x(k+1) = Ax(k) + Byu(k),
(28)
y(k) = Ciz(k).
. s T
Rule 2 IF z, is about :i:§(|x1| < 5) THEN
x(k+1) = Asx(k) + Bau(k),
(29)
y(k) = Cax(k),
where
1.5 0.5 10
A = B = =
1 03 —1 y P21 [1 701 [5 1]7
1 0.4 10
A = B = =
? 0.4—1.2] e [0 Ca=15 1,

and up = 15. The membership functions of Rule 1 and
Rule 2 are

pr=cosxy,py =1—p1.
In the absence of input saturating, we design the follow-

ing dynamic fuzzy controller:
Rule 1 IF z; is about 0, THEN

n(k +1) = Acyn(k) + Beyy(k), 3
v(k) = Ceyn(k),
Rule 2 IF z, is about :i:g(|:c1| <Z

), THEN
2
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n(k +1) = Acyn(k) + Beyy(k),

(31)
v(k) = Cezyn(k),
where
—20 2.5
Ac(l) = AC(2) = 9 _4 )
B.1y = Beo) = 2
c(l) — Pec(2) — ~0.06 )

Cc(l) = Cc(?) - [—1 01}

We choose the initial reference set as ygr =
[27(0) nT(0)]", where

z(0) =[0.8 0.5]",7(0) =[0 0]".

In the absence of anti-windup compensation gain, i.e.
0

E. = ol applying the optimization problem (25),

we can get A\ = 4.77 x 10%. In the presence of anti-

windup compensation gain, set the initial value to be

E? = ol Applying Algorithm 1, we can obtain
—39.52
A=5.01x10% E, =
23.23

Obviously, the anti-windup compensation gain enlarges
the domain of attraction of the closed-loop system.

We choose a quadratic Lyapunov function V' (z) =
z"Px, and set P; = P and Q;; = Qi(i,j =
1,2,--+,r) in the optimization problem (25). In the

presence of anti-windup compensation gain, set the ini-

tial value to be E? = . By Algorithm 1, we get

—34.00
22.46

It is easy to see that the quadratic Lyapunov function

A =446 x 10%, E, =

approach is more conservative than the fuzzy Lyapunov

function method.

6 Conclusion

In this paper, we have presented the fuzzy Lyapunov
function technique to enlarge the domain of attraction
of the discrete-time T-S fuzzy system subject to actu-
ator saturation. An iteration algorithm is provided to
design the anti-windup compensation gain such that the
domain of attraction is as large as possible. A numerical
example illustrates that the proposed approach is effec-
tive.
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