航天机电伺服系统的自抗扰控制
Active disturbance rejection control of aerospace electromechanical servo system
摘要点击 241  全文点击 113  投稿时间:2020-02-06  修订日期:2020-08-20
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.00059
  2021,38(1):73-80
中文关键词  机电作动器  自抗扰控制  非线性控制  航天伺服  扰动抑制  蒙特卡洛模拟
英文关键词  electromechanical actuators  active disturbance rejection control  nonlinear control  aerospace servo  disturbance rejection  Monte Carlo simulation
基金项目  
作者单位E-mail
魏泽宇 北京精密机电控制设备研究所 344395979@qq.com 
许文波 北京精密机电控制设备研究所  
张国林 北京精密机电控制设备研究所  
于丹 北京精密机电控制设备研究所  
王贺龙 北京精密机电控制设备研究所  
中文摘要
      航天机电伺服系统作用是接收火箭控制系统的指令信号并带动空气舵或者喷管跟随指令信号运动, 其在 应用上的主要特点是负载特性变化大. 传统的PID算法在航天机电伺服系统上的应用已经比较成熟, 但是在空气舵 或者喷管本身负载特性发生改变时, 传统的PID算法的控制效果会明显下降. 因此, 本文建立了航天机电伺服系统 柔性运动模型, 并提出了将自抗扰控制(ADRC)技术应用到航天伺服系统的控制中, 实现对负载的总扰动进行实时 估计和补偿. 通过仿真和实验发现自抗扰控制器能够应对系统内部参数变化和外部扰动的不确定性. 同时, 自抗扰 控制器对扫频信号具有低频范围内跟随良好, 高频范围内衰减显著的特性.
英文摘要
      The function of the aerospace electromechanical servo system is to receive the command signal of the rocket control system and drive the air rudder or nozzle to track the command signal. The traditional PID (proportional-integraldifferential) algorithm has been mature in the application of aerospace electromechanical servo system, but when the air rudder or nozzle load characteristics change, the ability of the traditional PID algorithm will decline significantly. Therefore, this paper establishes the flexible motion model of the aerospace electromechanical servo system, and proposes the application of the ADRC (active disturbances rejection controller) to the control of the aerospace servo system to realize the real-time estimation and compensation of the total load disturbance. Through simulation and experiment, it is found that the ADRC can deal with the uncertainty of system inner parameters and external disturbance. At the same time, the ADRC has the characteristics of good tracking in the low frequency range and significant attenuation in the high frequency range.