独立驱动的仿鸟扑翼飞行机器人的系统设计与实验
System design and experiment of an independently driven bird-like flapping-wing robot
摘要点击 837  全文点击 299  投稿时间:2020-06-28  修订日期:2020-11-08
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2021.00394
  2022,39(1):12-22
中文关键词  仿生扑翼飞行机器人  独立驱动  自主巡航  系统设计  仿生学
英文关键词  bionic flapping-wing robot  independent drive  autonomous cruise  system design  bionics
基金项目  国家自然科学基金项目(61933001, 61921004, 62061160371), 北京市自然科学基金项目(JQ20026)资助.
作者单位E-mail
贺威 北京科技大学 weihe@ieee.org 
刘上平 北京科技大学  
黄海丰 北京科技大学  
付强 北京科技大学  
孙长银 东南大学  
中文摘要
      扑翼飞行机器人模仿自然界中的飞行生物, 通过扑动翅膀拍打空气驱动飞行. 它们机动性好、飞行效率 高、噪音小, 在某些应用场景比传统的固定翼飞机和旋翼飞机更有优势. 目前扑翼飞行机器人的研究大多集中在机 理研究和理论的建模与控制, 鲜有实现室外的自主飞行, 难以应对复杂的实际应用需求. 在本文中, 设计了一种独 立驱动的仿鸟扑翼飞行机器人USTBird, 通过两个舵机独立驱动左右翅膀可实现无可控尾翼的机动飞行. 通过搭载 自主设计的微型飞控板、GPS以及惯性导航模块, 采用PD控制实现了扑翼飞行机器人的室外自主巡航飞行. 设计了 针对扑翼机器人的轻型两自由云台, 很大程度上消除了机翼扑动飞行引起的图像抖动问题. 针对机身振动和GPS测 量误差带来的位置误差, 采用无迹卡尔曼滤波算法对GPS采集的位置信息进行估计, 提升了位置估计精度. 设计了 面向扑翼飞行机器人的地面站系统. 考虑到扑翼飞行机器人存在的转向滞后问题, 对偏航角设计双闭环分段PD控 制器, 最终实现了在外圆半径40 m和内圆半径10 m的圆环内的自主巡航任务.
英文摘要
      Bionic flapping-wing robots imitate flying creatures in nature which fly by flapping their wings against the air. With good maneuverability, high flight efficiency, and low noise, flapping-wing robots perform better than traditional fixed-wing aircraft and rotorcraft in some application scenarios. At present, most researches on flapping-wing robots focus on mechanism analysis, theoretical modeling, and control design. Few flapping-wing robots have realized the outdoor autonomous flight which makes it difficult to cope with the complex practical application requirements. In this paper, an independently driven bird-like flapping-wing robot named USTBird is designed. The left and right wings are independently driven by two servos to achieve maneuverable flight without a controllable tail. It is equipped with an independently designed flight control board, a GPS module and an inertial navigation module. We adopt PD controller to realize the outdoor autonomous cruising flight of the USTBird. A lightweight two degrees of freedom pan-tilt for the USTBird is designed, which eliminates most of the image oscillating. Aiming at decreasing the position error caused by the vibration of the fuselage and the inaccurate GPS measurement, we use the unscented Kalman filter to estimate the position. A ground station system for the USTBird is designed. Considering the steering lag problem of the USTBird, a double closed-loop segmented PD controller is designed for the yaw angle, and the autonomous cruise mission in the ring with an outer circle radius of 40 m and an inner circle radius of 10 m is finally achieved.