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Abstract
This paper proposes a guaranteed feasible control allocation method based on the model predictive control. Feasible region

is considered to guarantee the determination of the desired virtual control signal using the pseudo inverse methodology and is
described as a set of constraints of an MPC problem. With linear models and the given constraints, feasible region defines a convex
polyhedral in the virtual control space. In order to reduce the computational time, the polyhedral can be approximated by a few
axis aligned hypercubes. Employing the MPC with rectangular constraints substantially reduces the computational complexity. In
two dimensions, the feasible region can be approximated by a few rectangles of the maximum area using numerical geometry
techniques which are considered as the constraints of the MPC problem. Also, an active MPC is defined as the controller to
minimize the cost function in the control horizon. Finally, several simulation examples are employed to illustrate the effectiveness
of the proposed techniques.

Keywords: Control allocation, feasible region, actuator constraints, model predictive control

DOI https://doi.org/10.1007/s11768-019-7231-9

1 Introduction

Many safety critical systems such as aircrafts [1], ships
and underwater vehicles [2] are designed with redun-
dant effectors and actuators. This redundancy could be

employed in order to meet a secondary objective such
as power consumption optimization, maneuverability,
and fault tolerance. Control allocation is an approach to
manage actuator redundancy under various conditions.
The prime objective in a control allocation technique is
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to produce a desired total control effect computed by
the system controller from a set of redundant actuators
such that the actuators’ constraints are satisfied [3,4].

In the last two decades, several methods have been
proposed for the control allocation problem. Most of
the proposed schemes follow a modular control con-
figuration program which divides the control systems
structure into the following two parts: The main con-
troller that provides the specified desired total control
effort (also called the virtual control signal) and the con-
trol allocator unit that maps the total control demand
onto individual actuator settings. The simplest control
allocation scheme is the pseudo inverse approach to
distribute the virtual control signal among the available
actuators [4]. The main drawback of the basic pseudo in-
verse approach is the fact that the actuators constraints
can be easilly violated.

The advanced techniques based on the pseudo in-
verse concept attempt to resolve this problem. These
include the redistributed pseudo inverse method, the
daisy chain scheme, the pseudo inverse correction along
the null space, and the direct allocation method [4]. Ba-
sically, the pseudo inverse solution is calculated first
and if this solution satisfies the actuators constraints, no
further steps are needed. Otherwise, different remedies
are proposed to solve the constraints violation problem.
In the redistributed pseudo inverse method, the con-
trol signal vector is partitioned into the saturated, and
unsaturated elements and the unsaturated elements are
recomputed by solving a reduced problem using the
reduced pseudo inverse to compensate for the satura-
tion effects on the virtual control signal. The redistribu-
tion procedure is repeated until either the desired vir-
tual control signal is generated or no improvements are
achieved in the process continuation [4,5]. In the daisy
chain scheme, actuators are divided into several groups.
Initially, control signals of the first actuators group is
calculated using the reduced pseudo inverse. If the first
group of actuators could produce the desired virtual con-
trol, next groups remain unused. Otherwise, the second
group of actuators is employed to generate the remain-
ing virtual control demand. This procedure is repeated
until either the virtual control signal is satisfied or all of
the actuator groups have been employed [6, 7]. Tohidi
et al. [8] proposed an algorithm to modify the pseudo
inverse solution using the null space. This approach is
based on the fact that each member of the null space
of the control effectiveness matrix could not affect the
virtual control signal whereas it could modify the control

signal vector. In this method, a vector of the null space
is added to the pseudo inverse solution if the solution
does not satisfy the constraints. The corrective term is
calculated such that elements of the control signal which
violate the constraints are forced back to the admissi-
ble region. Zhi et al. [9] presented a robust adaptive
fault tolerant control using a wieghted pseudo inverse
control allocation in the presence of disturbance, un-
modeled dynamics and actuator nonlinearity. The main
controller is a combination of an adaptive control, radial
basis function neural network, and a robust controller.
Although the above mentioned methods are fast and
rather effective, they do not guarantee a feasible solu-
tion for the control allocation problem, even when one
exists.

The direct allocation approach is a constrained con-
trol allocation approach based on scaling of the uncon-
strained problem solution. When the pseudo inverse
solution violates the actuators’ constraints, another vir-
tual control signal with the same direction and a smaller
norm is applied to the system such that the control signal
is located in the attainable space [10, 11]. This method
changes the desired total virtual control which may lead
to performance and stability degradations.

Iterative methods are also widely employed to solve
the control allocation problem. Linear and quadratic pro-
gramming approaches are proposed as control alloca-
tion methodologies. These methods convert the control
allocation problem to the standard optimization formats
and consider actuators constraints. These methods min-
imize a selected linear or quadratic cost function to min-
imize the difference between the produced virtual con-
trol and its desired value [12–14]. Linear and quadratic
programming techniques have been used to manage ac-
tuator constraints in many applications [15–17]. Rajput
et al. [18] considered interaction between actuators and
proposes the control allocation problem as a mixed op-
timization problem.

In addition, some integrated methods are proposed
for control allocation which concurrently analyse the
main controller and the control allocator unit. Fault tol-
erant control scheme using on-line control allocation
based on various types of sliding mode control concepts
are presented in [19–24]. They develop a rigorous de-
sign procedure from a theoretical view and prove closed
loop stability in the presence of some bounded uncer-
tainties. Ji et al. [25] presented the standard H-infinity
criterion to minimize the control effort and the virtual
control error. The integrated methods do not consider
actuators constraints explicitly in their design.
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Control allocation has a growing application in a wide
range of systems. Recently, it has been employed in
unmanned aerial vehicles (UAV) [26], neuroprosthe-
sis [27], and electric vehicles [28].

In this paper, to achieve feasibility, actuator con-
straints are included in the control design through a
feasible region determination procedure that simultane-
ously benefits from the modular and integrated control
allocation strategies. The control allocator unit finds the
feasible region in the virtual control space. The idea pro-
posed in this paper is to consider the feasible region as
the constraints of a set of MPC problems which pro-
duce the desired virtual controls. Generally, the feasible
region could be considered as polyhedral constraints.
The feasibility consideration guarantees generation of a
desired virtual control which maintains systems stability
and performance.

It is possible to replace a polyhedral by its approxi-
mation which includes a few axis aligned hypercubes.
The set of employed model predictive controllers con-
sider the control allocation feasible regions in the ap-
proximated hypercubical form as their control signal
constraints, and produce the desired virtual control to
satisfy the corresponding constraints. This reduces the
computational complexity of the MPC problems, but
may require the solution of several MPC problems to
achieve an accurate approximation. In this paper, the
two dimensional case is studied in detail and two algo-
rithms are employed to find the largest rectangle in the
feasible region.

The paper is structured as follows. The problem state-
ment is given in Section 2. Section 3 presents the pro-
posed methods to design the guaranteed feasible control
allocation using the MPC approach. In Section 4, sim-
ulation results are illustrated to show the performance
of the proposed scheme. Concluding remarks are given
in Section 5. Also, two algorithms are outlined for find-
ing the maximum area rectangle in a polygon in the
appendix.

2 Problem statement

Consider a linear system described by the following
discrete time state-space equations:

⎧
⎪⎪⎨
⎪⎪⎩

x(t + 1) = Ax(t) + Buu(t),

y(t) = Cx(t),
(1)

where x ∈ Rn, u ∈ Rm , and y ∈ Rk are the state vari-
ables, inputs and outputs of the system, respectively.

Also, A ∈ Rn×n, Bu ∈ Rn×m, and C ∈ Rk×n are the state,
input and output matrices, respectively. It is assumed
that the system has input redundancy and therefore the
input matrix is rank deficient:

rank(Bu) = d < m. (2)

The virtual control signal is the total effect of the in-
puts and it is introduced as follows:

v(t) = Bu(t), (3)

where B ∈ Rd×m is called the control effectiveness ma-
trix which is derived from the system structure and is
related to the effectors type, size and location. Combin-
ing (1) and (3) yields the following state space represen-
tation:

⎧
⎪⎪⎨
⎪⎪⎩

x(t + 1) = Ax(t) + Bvv(t),

y(t) = Cx(t)
(4)

and Bv satisties

Bu = BvB. (5)

The admissible space can be defined as follows:

u(t) ∈ Ω ≡ {ui | ui � ui(t) � ui;∀1 � i � m}, (6)

where the constraints bounds ui and ui depend on the
respective actuator health and status.

Control system is divided into two parts, the main
controller and the control allocator unit. The main con-
troller produces the desired virtual control signal in or-
der to meet the primary closed loop specifications such
as stability, set point tracking and disturbance rejection.
The control allocator unit maps the desired virtual con-
trol to the actuators commands. It is assumed that the
actuators are static and if their commands are admissi-
ble with respect to their constraints, u(t) will equal to its
command.

3 The guaranteed feasible control alloca-
tion methodology

This paper proposes a control allocation scheme
which employs the model predictive controllers to guar-
antee that the desired virtual controls are generated such
that the actuators command are admissible.
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3.1 Determining the feasible region

The first step of the method is to determine the feasi-
ble region in the virtual control space.

Definition 1 Feasible region is a subset of the vir-
tual control space. If the desired virtual control signal is
located there, it is guaranteed that the control allocation
unit will map it into the control signal space such that
actuator constraints are not violated.

Let B† denote the pseudo inverse of the matrix B:

F = B† =W−1
I BT(BW−1

I BT)
−1
, (7)

where W I is a weighting matrix which could be the
identity matrix in particular. The solution of the control
allocation problem using the pseudo inverse is

u(t) = Fvd(t) = B†vd(t), (8)

where vd is the desired virtual control. To determine the
feasible region, the following inequalities, which define
a convex polyhedron should be satisfied:

ui � f ivd(t) � ui, ∀i = 1, 2, . . . ,m, (9)

where f i is the ith row of F. There are numerous soft-
wares to show the polyhedral in both hyper plane and
vertex representations such as CDD and the multi para-
metric toolbox (MPT) [29]. For the two dimensional vir-
tual control space, the admissible solution for each in-
equality is a space between two parallel lines denoted
by si1 and si2 which is defined as follows:

⎧
⎪⎪⎨
⎪⎪⎩

si1 : f ivd = ci1,

si2 : f ivd = ci2,
(10)

where ci1 = ui and ci2 = ui. The feasible region of the
control allocation problem is a convex polygon whose
vertices are among the intersection points of the lines
which satisfy all the inequalities in (9). Intersection
points could be determined as follows:

pik, jl =

⎡
⎢⎢⎢⎢⎢⎣

f i

f j

⎤
⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎣
cik

cjl

⎤
⎥⎥⎥⎥⎥⎦ , (11)

where i, j = 1, 2, . . . ,m, i � j and k, l = 1, 2.
In what follows, the algorithm for determining the

feasible polygon region for a two dimensional space is
given.

Algorithm 1 The procedure of determining the fea-
sible region could be expressed as follows:
� Consider the 2m lines given by equations si1 and si2

as (10).
� Determine the intersection points as (11).
� Find the intersection points satisfying (9) for all

1 � i � m.
� The polygon whose vertices are the points found in

the third step is the feasible region.

Fig. 1 shows the feasible region of a given B matrix
and the actuator constraints.

Fig. 1 The feasible region.

3.2 Feasible control allocation using the MPC con-
troller with the polyhedral constraints

If the desired virtual control vector is in the feasi-
ble region, the pseudo inverse solution directly gives
the actuators commands. Therefore, the main controller
should produce the desired value of the virtual control
signal located in the feasible area. The first strategy is
to employ an MPC controller which could consider in-
equalities shown in (9) as its input constraints. The MPC
controller minimizes the following cost function [30]:

J(Vd) =
N∑

j=1
([ŷ(t + j|t) −w(t + j)]TQ[ŷ(t + j|t)

−w(t + j)] + [vd(t + j − 1|t) − v∗d]T

× R[vd(t + j − 1|t) − v∗d]), (12)

where ŷ(t + j|t) is an optimum j-step ahead prediction
of the system output based on the data up to time t, N
is the control horizon, Q and R are the weighting ma-
trices, w(t + j) is the future reference trajectory, and v∗d
is the ideal input value. To put the MPC problem in a
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suitable optimization form, stacked vectors with future
states and control inputs are defined as follows [30]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ(t + 1|t)
ŷ(t + 2|t)
...

ŷ(t +N|t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Vd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vd(t|t)
vd(t + 1|t)
...

vd(t +N − 1|t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V∗d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v∗d(t)

v∗d(t + 1)
...

v∗d(t +N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(t + 1)

w(t + 2)
...

w(t +N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

The predicted states can be rewritten as Y = Hx(t|t)+
SVd where

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA

CA2

...

CAN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CBv 0 · · · 0

CABv CBv · · · 0
...

...
...

CAN−1Bv CAN−2Bv · · · CBv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(14)

Hence, the cost function can be written as follows:

J(Vd) =(Hx(t|t) −W)TQ(Hx(t|t) −W)

+ VT
d(STQS + R)Vd + V∗d

TRV∗d
+ 2(Hx(t|t) −W)QSVd, (15)

where Q and R are the extended weighting matrices.
Solving the following constrained convex quadratic op-
timization problem in the virtual control space yields the
desired virtual control signal:

min
Vd

J(Vd)

subject to ui � f ivd(t + j − 1|t) � ui,

∀i = 1, 2, . . . ,m, ∀ j = 1, 2, . . . ,N − 1. (16)

3.3 Feasible control allocation using the MPC con-
troller with rectangular constraints

Considering the constraints as (16) may lead to a
large computational burden. Replacing the feasible re-
gion polyhedral by an approximated axis aligned hyper-
cube can reduce the number of constraints and make
them simpler and reduces the computational time. In
the two dimensional virtual control space, the feasible
region could be approximated by an axis aligned rect-
angle. It is possible to employ the algorithms of finding

the maximum area rectangle in a polygon described in
the appendix. The derived rectangles based on the algo-
rithms mentioned in the appendix are shown in Fig. 2.
Note that the area of the second and fourth derived
rectangles equal to zero.

One conservative strategy is to consider the largest
rectangle among the four rectangles which are found
based on the algorithms mentioned in the appendix as
the control signal constraints of an MPC controller. The
MPC controller solves the following optimization prob-
lem where the cost function is defined as (15):

min
Vd

J(Vd)

subject to vi � vd(t + j − 1|t) � vi; (17)
∀i = 1, 2, ∀ j = 1, 2, . . . ,N − 1,

where vi and vi, i = 1, 2 are the lower and upper bands
of the x and y coordinates given by the largest rectangle.
The advantage of this strategy is that it is computation-
ally simpler than (16), but it is conservative and leads
to reduced performance, since the rectangle is an inner
approximation of the polygon.

Fig. 2 Maximum area rectangles in the feasible region.

Algorithm 2 The following steps are proposed to
implement the feasible control allocation based on the
MPC controller:
� Determine the feasible region of the control alloca-

tion problem.
� Find the largest axis aligned rectangle inscribed in

the feasible polygon region.
� Design the MPC controller constrained by the con-
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trol signal within a given rectangle.
� In each sample time:

a) Calculate the desired virtual control signal using
the MPC strategy.

b) Map the desired virtual control to the actuator
commands using the pseudo inverse (7) and (8).

It should be noted that the first three steps are exe-
cuted only for initialization.

3.4 Feasible control allocation using the multiple
MPC controllers

In Fig. 2, it can be clearly observed that by selecting
any rectangle, a significant part of the feasible polygon
region will be neglected. This problem could decrease
the controller performance due to the virtual control sig-
nal being too restricted. In order to enlarge the covered
area of the feasible region approximation, a multiple
MPC strategy is proposed, where each calculated rect-
angle is considered as the constraints of a separate MPC
controller. Therefore, a larger area within the polygon
region will finally be covered. Plant dynamics and cost
function parameters remain unchanged while the con-
trol signal constraints are derived from the determined
rectangles for l = 1, 2, . . . ,Nr. Each controller solves an
optimization problem as follows [30]:

min
Vdl

J(Vdl)

subject to vil � vdl(t + j − 1|t) � vil,

∀i = 1, 2, ∀ j = 1, 2, . . . ,N − 1, (18)

where vil and vil are specified by coordinates of the
lth rectangle and Nr is the number of rectangles with
non-zero areas. At each sample time, all controllers are
evaluated and their corresponding cost functions are
compared with the other cost functions. Then the MPC
controller corresponding to the minimum cost function

is selected as the active controller and its corresponding
virtual control signals will be sent to the control allocator
unit. The active controller index is denoted by σ(t). The
dwell time concept in switching between the controllers
is considered for closed loop considerations, where the
selected controller should be active for at least τd units
of time and where τd is called the dwell time [31].

Algorithm 3 The following steps are performed to
implement the feasible control allocation methodology
based on the multiple MPC controller strategy:
� Determine the feasible region of the control alloca-

tion problem.
� Find Nr axis aligned rectangles in the feasible poly-

gon region.
� Design Nr MPC controllers by the control signal

constraints defined by the rectangles.
� In each sample time:

a) Calculate the desired virtual control signal and
the cost function of each MPC controller.

b) Select the best virtual control which has the min-
imum cost function. The controller is switched only if
the new active controller improves the cost function
value with the hysteresis parameter h. Also, the selected
controller remains active for at least τd time units.

c) Map the chosen desired virtual control to the
actuator commands using the pseudo inverse (7) and
(8).

Structure of the proposed algorithm is shown in Fig. 3.
The switching control supervisor unit selects the active
controller by considering the dwell time and the hystere-
sis. Also, the feasible control allocation unit determines
the feasible region and introduces the corresponding
rectangles to the MPC controllers for constraints gener-
ation. The computation time can be reduced since the
MPC controllers can be evaluated in parallel simple box
constraints.

Fig. 3 Structure of the feasible control allocation using the multiple MPC strategy.
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4 Simulation results

In this section, simulation results are presented to
show the effectiveness of the proposed methodologies.
The CVX toolbox [32] is employed to solve the optimiza-
tion problems.

4.1 Example 1

In this example, the following methods are employed
for a comparitative study:

1) The feasible control allocation (FCA): An MPC con-
troller is employed as the main controller that considers
the feasible region as the polyhedral input constraints.

2) MPC with PAN: An unconstrained MPC and the
pseudo inverse along the null space (PAN) methodol-
ogy [8] are used as the main controller and the control
allocator unit, respectively.

3) MPC with quadratic programming (QP): An uncon-
strained MPC and the quadratic programming strategy
are used as the main controller and the control allocator
unit, respectively.

4) LQ with quadratic programming: A linear
quadratic(LQ) optimal control and the quadratic pro-
gramming strategy [13] are used as the main controller
and the control allocator unit, respectively.

5) LQ with RPI: A linear quadratic(LQ) optimal control
and the redistributed pseudo inverse (RPI) strategy [5]
are used as the main controller and the control allocator
roles, respectively.

Consider the following linearized state space model
[33]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.543 0.013 0 0.978 0

0 −0.12 0.221 0 −0.9661

0 −10.52 −0.997 0 0.6176

2.62 −0.003 0 −0.506 0

0 0.708 −0.0939 0 −0.213

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −4.24 4.24 1.487

1.653 −1.27 −1.27 0.0024

0 −0.28 0.28 −0.88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bv =

⎡
⎢⎢⎢⎢⎢⎣
02×3

I3

⎤
⎥⎥⎥⎥⎥⎦ , C = [03×2 I3],

u = [−5 − 3 − 3 − 3]T, u = [2 3 3 3]T.

(19)

Under the given condistions, the different methods have
a similar performance and they appropriately manage

the actuators. As is shown in Table 1, employing the
LQ controller instead of the MPC decreases the compu-
tational burden significantly. In order to quantitatively
compare the results, Table 1 presents the computational
time and the cost function value for the methods. The
cost function is defined as follows:

Js =

Tend∑

t=0
((y(t) −w(t))TQ(y(t) −w(t)) + u(t)TRu(t))

Tend
.

(20)

Table 1 Example 1: Methods comparison.

Method Cost function Computational time (s)

MPC with FCA 5.71 0.08
MPC with PAN 5.71 0.076
MPC with QP 5.71 0.081
LQ with QP 5.74 0.016
LQ with RPI 5.73 5.27×10−4

In the next simulation, the upper and lower bounds of
the 4th actuator are tightened (e.g., due to the actuator
fault) as follows:

u = [−5 − 3 − 3 − 1]T, u = [2 3 3 1]T. (21)

In this case, closed loop systems which do not consider
the feasibility concept became unstable. Instability has
occurred due to the discrepancy between the desired
and the actual virtual control signals which appeared
because of lack of feasibility consideration. As is shown
in Fig. 4, using the feasible control allocation preserves
closed loop stability and only the transient performance
is degraded. There is no discrepancy between the de-
sired and the actual virtual control signals as shown in
Fig. 4 (b) Hence, it is observed that using the feasible
region information in the main controller could extend
the stability region and achieve a better performance.
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Fig. 4 Example 1: The feasible MPC method. (a) System out-
puts. (b) Virtual control signals. (c) Control signals.

4.2 Example 2

In the second example, three methods are employed
for comparison study: 1) feasible control allocation us-
ing the MPC controller with polyhedral constraints, 2)
feasible control allocation using the single MPC con-
troller with rectangular constraints, and 3) feasible con-
trol allocation using the multiple MPC controllers with
rectangular constraints. Consider the following linear

model of an electric vehicle [34]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎡
⎢⎢⎢⎢⎢⎣
0.3348 −0.0277

0.0927 0.2436

⎤
⎥⎥⎥⎥⎥⎦ ,

Bv =

⎡
⎢⎢⎢⎢⎢⎣
0.0609 −0.0022

0.0073 0.0537

⎤
⎥⎥⎥⎥⎥⎦ ,

C =

⎡
⎢⎢⎢⎢⎢⎣
1 0

0 1

⎤
⎥⎥⎥⎥⎥⎦ .

(22)

Also, the control effectiveness matrix and the actuator
upper and lower limits are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B=

⎡
⎢⎢⎢⎢⎢⎣
5.4012 5.4012 0 0 0 0

51.2 −54.4 −0.0015 −0.0015 −0.0015 −0.0015

⎤
⎥⎥⎥⎥⎥⎦ ,

u= [−0.1 − 0.05 − 1 − 1 − 1 − 0.1]T,

u= [0.1 0.05 1 1 1 0.1]T.

(23)

Fig. 5 depicts the results of employing the feasible
control allocation using an MPC controller with the poly-
hedral constraints. As is shown in Fig. 5 (a), this scheme
leads to the desired transient and steady state responses.
Also, there is no discrepancy between the desired virtual
and actual control signals as shown in Fig. 5 (b).
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Fig. 5 Example 2: The feasible region method using an MPC
controller with polyhedral constraints. (a) System outputs. (b)
Virtual control signals. (c) Control signals.

For the feasible control allocation with a single MPC
controller, the largest rectangle found in the feasible re-
gion of this example shown Fig. 2 is considered as the
constraints of an MPC controller. It is obvious that a
large area of the feasible region is ignored by consider-
ing only the largest rectangle and it causes steady state
error in the second output as is depicted in Fig. 6 (a). A
particular problem is that positive values of the desired
virtual control signals are strongly restricted as is shown
in Fig. 2. Note that it could be seen in Fig. 6 (b) that the
generated and the desired virtual signals are identical
which is due to applying a part of the feasible region as
the input constraints of the MPC problem.

Fig. 6 Example 2: The MPC controller method. (a) System
outputs. (b) Virtual control signals. (c) Control signals.

For the multiple MPC controller scheme both rect-
angles shown in Fig. 2 are considered. Results of ap-
plying multiple control with the dwell time are shown
in Fig. 7. As is seen in Fig. 7 (a), enlarging the feasible
region by considering two rectangles improves the con-
trol performance. Also, the difference between the vir-
tual and actual control signals equals zero. The active
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controller is switched when it is necessary, as is shown
in Fig. 7 (d). Table 2 shows the average running time of
the proposed methods to compare their computational
burden. Using the multiple MPC controller scheme with
rectangular constraints which employs parallel process-
ing decreases running time of the control procedure
in each sample time while it does not cause an unac-
ceptable performance. It should be mentioned that the
computational times are presented only for comparison
and they can be decreased substantially in real time im-
plementations.

Fig. 7 Example 2: The multiple MPC controllers method. (a)
System outputs. (b) Virtual control signals. (c) Control signals.
(d) Switching signal.

Table 2 Comparison of the running time of
the presented methods.

FCA method Computational time (s)

MPC with polyhedral constraints 0.38
MPC with rectangular constraints 0.21
Multiple MPC 0.23

5 Conclusions

This paper proposes a guaranteed feasible control al-
location methodology. The feasible region is determined
by characterizing the polyhedral feasible region of the
pseudo inverse solution. Then, the feasible region is in-
troduced to the main controller as the constraints of an
MPC problem. Another approximated method is pre-
sented for decreasing computational time where several
axis aligned hypercubes are considered as an approxi-
mation of the feasible region. A set of MPC controllers
solved using parallel processing are employed as the
main controllers where each of the given hypercubes
is considered as constraints in the corresponding MPC
controller. Then, switching control is used to choose the
most appropriate controller in each step having the low-
est cost and satisfying dwell time specifications. In the
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case of two dimensional virtual control space, an algo-
rithm is employed to find the maximum area rectangles
inscribed in the feasible polygon region. Simulation re-
sults are used for comparison studies and to show that
computational cost can be reduced with the approxi-
mate method.
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Appendix
a. The maximum area rectangle principle

In the two dimensional virtual control space, the feasible
region can be generally characterized by a convex polygon. To
develop a guaranteed feasible control allocation strategy with
lower computational complexity, a maximum area rectangle
(MAR) which lies in the convex polygon of the feasible re-
gion is identified. To derive this MAR the algorithm developed
in [35] is employed. This mathematical algorithm has been
used in several engineering applications such as the wire-
less sensor network [36]. The algorithm takes the polygon
vertices and yields an axis-aligned rectangle in the polygon
which has the maximum area. To briefly present the MAR
algorithm, some basic definitions are given below. Consider
Q,Q′ ∈ R2, Q = (x, y), Q′ = (u, v) with x < u and y < v.
Then R = Rect(Q; Q′) is the rectangle with the lower left cor-
ner given by Q and the upper right corner given by Q′. Area
of the rectangle is denoted by area(R) = (u − x)(v − y). Let P
be a bounded convex polygon with n vertices and denote its
boundary by δP. Also, the corners of a rectangle indicated by
the lower left, lower right, upper left and upper right are de-
noted by LL(R),LR(R),UL(R) and UR(R), respectively. Also,
the southeast, southwest, northeast and northwest parts of
the polygon are denoted by SE, SW,NE, and NW, respec-
tively. Note that the four parts are not necessarily disjoint. The
maximum area rectangle could have two or three corners on
δP , and two separate algorithms are presented in [35] to find
the above two possible rectangles.
a1. MAR with at least three vertices on the boundary

Let xl be the minimum x-coordinate of a vertex of P. Con-
sider xNW(xSW) as the maximum x-coordinate of a vertex on
NW(SW), and xr = min(xNW, xSW). Let S(x) be the vertical
line at x, xl � x � xr, and let y1 and y2 be the y-coordinates
of the intersections of S(x) and P. Consider ui as the x-
coordinate of the horizontal projection of yi onto NE ∪ SE,
i = 1, 2. Define x′ = min(u1, u2). Also, consider the rectangle
R(x) = Rect((x, y1), (x′, y2)).

Definition a1 A function f (x) is called almost strictly
bitonic on [xi, xj], if there exist xk, xm ∈ [xi, xj] such that f (x)

is strictly increasing on [xi, xk], strictly decreasing on [xm, xj]
and constant on [xk, xm].

Theorem a1 area(R(x)) is continuous and almost strictly
bitonic on [xl, xr].

Algorithm a1 The procedure of finding the maximum area
rectangle with at least 3 corners on the boundary of the poly-
gon is summarized as follows:
� Find that vertex (x1, y1) of SW which halves SW with re-

spect to the number of vertices and its right neighbour (x2, y2).
� Compute the corresponding rectangle R(x1), R(x2) and

determine the following alternatives:
a) If area(R(x1)) > area(R(x2)), then search should be

followed in [xl, x2].
b) if area(R(x1)) < area(R(x2)), then search should be

followed in [xl, xr].
c) if area(R(x1)) = area(R(x2)), then iteration should be

stopped.
� If only two adjacent vertices of SW are left, a binary search

should be done.
a2. MAR with two vertices on the boundary

Consider the maximum area rectangle M that has exactly
two diagonally opposed corners on δP. Only the cases that
LL(M) ∈ SW and UR(M) ∈ NE will be discussed here. Let
xl and xr be defined as above, x ∈ [xl, xr] and (x, y) be the
projection of x onto SE. Then, MR(x) is the maximum area
rectangle (not necessary included in P) with lower left corner
(x, y) and upper right corner on NE.

Theorem a2 [35] area(MR(x)) is continuous and almost
strictly bitonic on [xl, xr].

Algorithm a2 [35] The procedure of finding the maximum
area rectangle with exactly two corners on the boundary of the
polygon is summarized as follows:
� Find x as the x-coordinate of that vertex which halves

[xl, xr] with respect to the number of vertices on SW.
� Compute MR(x) by a binary search on NE.
� If both UL(MR(x)) and LR(MR(x)) are outside of P, stop

the algorithm. Because it is proved that no MR(x′) could be
found such that it is totally contained in P, for any x′ ∈ [xl, xr].

As indicated in Algorithms a1 and a2, two rectangles could
be obtained which have a corner on SW. According to the
algorithms, it is possible to determine another two rectangles
that their lower right corners are located on SE. It should be
noted that some of these rectangles could have zero area.
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