Skip to main content
Log in

Stability and weighted sensitivity analysis of robust controller for heat exchanger

  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This study presents a parametric system identification approach to estimate the dynamics of a chemical plant from experimental data and develops a robust PID controller for the plant. Parametric system identification of the heat exchanger system has been carried out using experimental data and prediction error method. The estimated model of the heat exchanger system is a time-delay model and a robust PID controller for the time-delayed model has been designed considering weighted sensitivity criteria. The mathematical background of parametric system identification, stability analysis, and H weighted sensitivity analysis have been provided in this paper. A graphical plot has been provided to determine the stability region in the (Kp,Ki), (Kp,Kd) and (Ki,Kd) plane. The stability region is a locus dependent on parameters of the controller and frequency, in the parameter plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Stephanopoulos. Chemical Process Control: An introduction to theory and Paractice. Englewood Cliffs: Prentice Hall, 1984.

    Google Scholar 

  2. M. Kano, M. Ogawa. The state of the art in chemical process control in Japan: Good practice and questionnaire survey. Journal of Process Control, 2010, 20(9): 969–982.

    Article  Google Scholar 

  3. H. Takatsu, T. Itoh, M. Araki. Future needs for the control theory in industries-report and topics of the control technology survey in Japanese industry. Journal of Process Control, 1998, 8(5): 369–374.

    Article  Google Scholar 

  4. M. Bauer, I. K. Craig. Economic assessment of advanced process control-a survey and framework. Journal of Process Control, 2008, 18(1): 2–18.

    Article  Google Scholar 

  5. A. O'Dwyer. Handbook of PI and PID Controller Tuning Rules. 3rd ed. London: Imperial College Press, 2009.

    Book  MATH  Google Scholar 

  6. O. Garpinger, T. Hagglund, K. J. Astrom. Criteria and tradeoffs in PID design. IFAC Proceedings Volumes, 2012, 45(3): 47–52.

    Article  Google Scholar 

  7. A. G. Alexandrov, M. V. Palenov. Adaptive PID controllers: State of the art and development prospects. Automation and Remote Control, 2014, 75(2): 188–199.

    Article  MathSciNet  Google Scholar 

  8. F. Schrodel, S. K. Manickavasagam, D. Abel. A comparative overview of different approaches for calculating the set of all stabilizing PID controller parameters. IFAC-PapersOnLine, 2015, 48(14): 43–49.

    Article  Google Scholar 

  9. F. Schrodel, M. Abdelmalek, D. Abel. A comparative overview and expansion of frequency based stability boundary mapping methods for time delay systems. IFAC-Papers Online, 2016, 49(10): 229–234.

    Article  Google Scholar 

  10. R. Shah, B. Thonon, D. Benforado. Opportunities for heat exchanger applications in environmental systems. Applied Thermal Engineering, 2000, 20(7): 631–650.

    Article  Google Scholar 

  11. C. Gilmour. Application of heat exchangers in chemical plants. Industrial & Engineering Chemistry, 1960, 52(6): 465–467.

    Article  Google Scholar 

  12. A. Larowski, M. Taylor. Systematic procedure for selection of heat exchangers. Proceedings of the Institution of Mechanical Engineers-Part A: Power and Process Engineering, 1983, 197(1): 51–69.

    Google Scholar 

  13. J. C. Pacio, C. A. Dorao. A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics, 2011, 51(7): 366–379.

    Article  Google Scholar 

  14. A. Sodja, B. Zupancic, J. Sink. Some aspects of the modeling of tube-and-shell heat-exchangers. Proceedings of the 7th International Modelica Conference, Como, Italy: Linkoping University Electronic Press, 2009: 716–721.

    Chapter  Google Scholar 

  15. A. Michel, A. Kugi. Accurate low-order dynamic model of a compact plate heat exchanger. International Journal of Heat and Mass Transfer, 2013, 61: 323–331.

    Article  Google Scholar 

  16. M. Fratczak, P. Nowak, J. Czeczot, et al. Simplified dynamical input-output modeling of plate heat exchangers-case study. Applied Thermal Engineering, 2016, 98: 880–893.

    Article  Google Scholar 

  17. H. Zhang, S. Weng, M. Su. Dynamic modeling and simulation of distributed parameter heat exchanger. Proceedings of the ASME Turbo Expo 2005, New York: AMSE, 2005: 327–333.

    Google Scholar 

  18. A. Simorgh, A. Razminia, V. I. Shiryaev. Data-driven identification of a continuous type bioreactor. Energy Sources-Part A: Recovery, Utilization, and Environmental Effects, 2019: DOI 10.1080/15567036.2019.1649750.

    Google Scholar 

  19. P. Zhou, P. Dai, H. Song, et al. Data-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmaking. IET Control Theory & Applications, 2017, 11 (14): 2343–2351.

    Article  MathSciNet  Google Scholar 

  20. J.-S. Zeng, C.-H. Gao, H.-Y. Su. Data-driven predictive control for blast furnace ironmaking process. Computers & Chemical Engineering, 2010, 34(11): 1854–1862.

    Article  Google Scholar 

  21. E. W. Jacobsen, S. Skogestad. Identification of ill-conditioned plants-a benchmark problem. The Modeling of Uncertainty in Control Systems. R. S. Smith, M. Dahleh, eds. Berlin, Heidelberg: Springer, 1994: 367–376.

    Chapter  Google Scholar 

  22. A. Jimenez-Gonzalez, M. Adam-Medina, M. Franco-Nava, et al. Grey-box model identification of temperature dynamics in a photobioreactor. Chemical Engineering Research and Design, 2017, 121: 125–133.

    Article  Google Scholar 

  23. H. Habbi, M. Kidouche, M. Zelmat. Data-driven fuzzy models for nonlinear identification of a complex heat exchanger. Applied Mathematical Modelling, 2011, 35(3): 1470–1482.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Jonsson, O. P. Palsson. An application of extended Kalman filtering to heat exchanger models. Journal of Dynamic Systems, Measurement and Control, 1994, 116(2): 257–264.

    Article  MATH  Google Scholar 

  25. M. Galrinho, C. Rojas, H. Hjalmarsson. A weighted least-squares method for parameter estimation in structured models. Proceedings of the 53rd IEEE Conference on Decision and Control, New York: IEEE, 2014: 3322–3327.

    Chapter  Google Scholar 

  26. Y. Zhao, B. Huang, H. Su, et al. Prediction error method for identification of LPV models. Journal of Process Control, 2012, 22(1): 180–193.

    Article  Google Scholar 

  27. S. Gupta, R. Gupta, S. Padhee. Parametric system identification and robust controller design for liquid-liquid heat exchanger system. IET Control Theory & Applications, 2018, 12(10): 1474–1482.

    Article  MathSciNet  Google Scholar 

  28. N. Tan. Computation of stabilizing PI and PID controllers for processes with time delay. ISA transactions, 2005, 44(2): 213–223.

    Article  Google Scholar 

  29. M. T. Soylemez, N. Munro, H. Baki. Fast calculation of stabilizing PID controllers. Automafica, 2003, 39(1): 121–126.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Tan, I. Kaya, C. Yeroglu, et al. Computation of stabilizing PI and PID controllers using the stability boundary locus. Energy Conversion and Management, 2006, 47(18/19): 3045–3058.

    Article  Google Scholar 

  31. J. Fang, D. Zheng, Z. Ren. Computation of stabilizing PI and PID controllers by using Kronecker summation method. Energy Conversion and Management, 2009, 50(7): 1821–1827.

    Article  Google Scholar 

  32. R. Matusu, R. Prokop. Computation of robustly stabilizing PID controllers for interval systems. Springer Plus, 2016, 5(1): DOI 10.1186/s40064-016-2341-z.

    Google Scholar 

  33. J. Oravec, M. Bakosova, A. Meszaros, et al. Experimental investigation of alternative robust model predictive control of a heat exchanger. Applied Thermal Engineering, 2016, 105: 774–782.

    Article  Google Scholar 

  34. L. Pekar, R. Prokop. Algebraic robust control of a closed circuit heating-cooling system with a heat exchanger and internal loop delays. Applied Thermal Engineering, 2017, 113: 1464–1474.

    Article  Google Scholar 

  35. S. Sujoldzic, J. M. Watkins. Stabilization of an arbitrary order transfer function with time delay using PI and PD controllers. Proceedings of the American Control Conference, Minneapolis: IEEE, 2006: 2427–2432.

    Google Scholar 

  36. S. Sujoldzic. Stabilization of An Arbitrary Order Transfer Function with Time Delay Using PI, PD and PID Controllers. Ph.D. dissertation. Wichita: Wichita State University, 2005.

    Google Scholar 

  37. T. Emami. A Bridge from Stability to Robust Performance Design of PID Controllers in the Frequency Domain. Ph.D. dissertation. Wichita: Wichita State University, 2009.

    Google Scholar 

  38. K. Batselier, P. Dreesen, B. De Moor. Prediction error method identification is an eigenvalue problem. IFAC Proceedings Volumes, 2012, 45(16): 221–226.

    Article  Google Scholar 

  39. M.-T. Ho, A. Datta, S. Bhattacharyya. Control system design using low order controllers: constant gain, PI and PID. Proceedings of the American Control Conference, Albuquerque: IEEE, 1997: 571–578.

    Google Scholar 

  40. M.-T. Ho, A. Datta, S. Bhattacharyya. A linear programming characterization of all stabilizing PID controllers. Proceedings of the American Control Conference, Albuquerque: IEEE, 1997: 3922–3928.

    Google Scholar 

  41. J. Ackermann, D. Kaesbauer. Design of robust PID controllers. Proceedings of the European Control Conference, Porto, Portugal: IEEE, 2001: 522–527.

    Google Scholar 

  42. N. Tan. Computation of stabilizing PI-PD controllers. International Journal of Control, Automation and Systems, 2009, 7(2): 175–184.

    Article  Google Scholar 

  43. T. Emami, J. M. Watkins. A unified approach for robust stability design of PID controllers. Proceedings of the American Control Conference, Baltimore: IEEE, 2010: 3926–3931.

    Google Scholar 

  44. Y. K. Lee, J. M. Watkins. Determination of all stabilizing fractional-order PID controllers that satisfy a weighted sensitivity constraint. Proceedings of the 51st IEEE Conference on Decision and Control, HI: IEEE, 2012:254–259.

    Google Scholar 

  45. Daisy: STADIUS's Identification Database: http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html.

  46. S. Bittanti, L. Piroddi. Non linear identification and control of a heat exchanger: a neural network approach. Journal of the Franklin Institute, 1997, 334(1): 135–153.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapna Gupta.

Additional information

Sapna GUPTA received Bachelor’s degree of Technology in Electronics and Communication Engineering from Rajasthan Technical University, Kota, India in 2012. She received the Master’s degree of Technology in Electronic Instrumentation & Control from University college of Engineering, Rajasthan Technical University, Kota, India in 2014. Currently, she is pursuing the Ph.D. degree from Rajasthan Technical University, Kota, India in the Electronics, Instrumentation and Control.

Rajeev GUPTA obtained his B.E. (Electrical Engineering) from University of Rajasthan in 1986. He obtained his M.Tech. (Control and Instrumentation Engineering) and Ph.D. from Indian Institute of Technology, Bombay in 1995 and 2004, respectively. He is currently working as Professor and Head of Department of Electronics Engineering, Rajasthan Technical University, Kota, India. His research interests are in power system stabilizers, periodic output feedback, model reduction methods, PSO, fuzzy control and soft computing and intelligent control.

Subhransu PADHEE received the Bachelor's degree of Technology in Applied Electronics and Instrumentation Engineering from Biju Patnaik University of Technology, Rourkela, Odisha, India in 2007. He received the Master's degree of Engineering in Electronic Instrumentation and Control from Thapar University, Patiala, India in 2011. He received the Ph.D. degree from National Institute of Technology Rourkela, Rourkela India in 2018 in the area of power electronics, instrumentation and control. Currently, he is working as an Assistant Professor in Department of Electrical and Electronics Engineering of Aditya Engineering College, Surampalem, Andhra Pradesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Gupta, R. & Padhee, S. Stability and weighted sensitivity analysis of robust controller for heat exchanger. Control Theory Technol. 18, 56–71 (2020). https://doi.org/10.1007/s11768-020-9136-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-020-9136-z

Keywords

Navigation