Skip to main content
Log in

On extended state based Kalman filter for nonlinear time-varying uncertain systems with measurement bias

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

This paper addresses the state estimation for a class of nonlinear time-varying stochastic systems with both uncertain dynamics and unknown measurement bias. A novel extended state based Kalman filter (ESKF) algorithm is developed to estimate the original state, the uncertain dynamics and the measurement bias. It is shown that the estimation error of the proposed algorithm is bounded in the mean square sense. Also, the estimation of the measurement bias asymptotically converges to its true value, such that the influence of measurement bias is eliminated. Furthermore, the asymptotic optimality of the estimation result is proved while the uncertain dynamics approaches to a constant vector. Finally, a simulation study for harmonic oscillator system model is provided to illustrate the effectiveness of proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luenberger, D. G. (1966). Observers for multivariable systems. IEEE Transactions on Automatic Control, 11(2), 190–197.

    Article  MathSciNet  Google Scholar 

  2. Kalman, R. E. (1959). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45.

    Article  MathSciNet  Google Scholar 

  3. Han, J. (1995). A class of extended state observers for uncertain systems. Control and Decision, 10(1), 85–88.

    Google Scholar 

  4. Gao, Z. (2003). Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the American Control Conference (pp. 4989–4996). Denver, CO, USA.

  5. Xue, W., Huang, Y., & Gao, Z. (2016). On ADRC for non-minimum phase systems: canonical form selection and stability conditions. Control Theory and Technology, 14(3), 199–208.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S., Bai, W., Hu, Y., Huang, Y., & Gao, Z. (2020). On the conceptualization of total disturbance and its profound implications. Science China Information Sciences, 63(2), 129201.

    Article  MathSciNet  Google Scholar 

  7. Huang, Y., & Han, J. (2000). Analysis and design for the second order nonlinear continuous extended states observer. Science Bulletin, 45(21), 1938–1944.

    Article  MathSciNet  Google Scholar 

  8. Zhao, Z., & Guo, B. (2018). A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Transactions on Automatic Control, 63(1), 211–218.

    Article  MathSciNet  MATH  Google Scholar 

  9. Zheng, Q., Gaol, L.Q., & Gao, Z. (2007). On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics. In Proceedings of the 46th IEEE Conference on Decision and Control (pp. 3501–3506). New Orleans, LA, USA.

  10. Yang, X., & Huang, Y. (2009). Capabilities of extended state observer for estimating uncertainties. In Proceedings of the American Control Conference (pp. 3700–3705). St Louis, MO, USA.

  11. Sira-Ramírez, H., Linares-Flores, J., García-Rodríguez, C., & Contreras-Ordaz, M. A. (2014). On the control of the permanent magnet synchronous motor: an active disturbance rejection control approach. IEEE Transactions on Control Systems Technology, 22(5), 2056–2063.

    Article  Google Scholar 

  12. Huang, Y., & Xue, W. (2014). Active disturbance rejection control: methodology and theoretical analysis. ISA Transactions, 53(4), 963–976.

    Article  MathSciNet  Google Scholar 

  13. Zhu, E., Pang, J., Sun, N., Gao, H., Sun, Q., & Chen, Z. (2014). Airship horizontal trajectory tracking control based on active disturbance rejection control (ADRC). Nonlinear Dynamics, 75(4), 725–734.

    Article  MathSciNet  Google Scholar 

  14. Qiu, D., Sun, M., Wang, Z., Wang, Y., & Chen, Z. (2014). Practical wind-disturbance rejection for large deep space observatory antenna. IEEE Transactions on Control Systems Technology, 22(5), 1983–1990.

    Article  Google Scholar 

  15. Zheng, Q., & Gao, Z. (2018). Active disturbance rejection control: some recent experimental and industrial case studies. Control Theory and Technology, 16(4), 301–313.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, J., Ren, B., & Zhong, Q.-C. (2016). UDE-based trajectory tracking control of piezoelectric stages. IEEE Transactions on Industrial Electronics, 63(10), 6450–6459.

    Article  Google Scholar 

  17. Sun, L., Li, D., Zhong, Q., & Lee, K. Y. (2016). Control of a class of industrial processes with time delay based on a modified uncertainty and disturbance estimator. IEEE Transactions on Industrial Electronics, 63(11), 7018–7028.

    Article  Google Scholar 

  18. Soffker, D., Yu, T., & Mller, P. C. (1995). State estimation of dynamical systems with nonlinearities by using proportional-integral observer. International Journal of Systems Science, 26(9), 1571–1582.

    Article  MATH  Google Scholar 

  19. Sira-Ramírez, H. (2018). From flatness, GPI observers, GPI control and flat filters to observer-based ADRC. Control Theory and Technology, 16(4), 249–260.

    Article  MathSciNet  Google Scholar 

  20. Schrijver, E., & van Dijk, J. (2002). Disturbance observers for rigid mechanical systems: equivalence, stability, and design. Journal of Dynamic Systems, Measurement, and Control, 124(4), 539–548.

    Article  Google Scholar 

  21. Hu, Q., Li, B., & Qi, J. (2014). Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation. Aerospace Science and Technology, 39, 13–21.

    Article  Google Scholar 

  22. Yang, J., Li, S., Sun, C., & Guo, L. (2013). Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Transactions on Aerospace and Electronic Systems, 49(2), 1263–1275.

    Article  Google Scholar 

  23. Li, S., Yang, J., Chen, W.-H., & Chen, X. (2014). Disturbance Observer-based Control. Boca Raton: CRC Press.

    Google Scholar 

  24. Chen, W., Yang, J., Guo, L., & Li, S. (2016). Disturbance-observer-based control and related methods – an overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095.

    Article  Google Scholar 

  25. Bai, W., Xue, W., Huang, Y., & Fang, H. (2018). On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems. Science China Information Sciences, 61(4), 042201.

    Article  MathSciNet  Google Scholar 

  26. Xue, W., Zhang, X., Sun, L., & Fang, H. (2020). Extended state filter based disturbance and uncertainty mitigation for nonlinear uncertain systems with application to fuel cell temperature control. IEEE Transactions on Industrial Electronics, 67(12), 10682–10692.

    Article  Google Scholar 

  27. Zanetti, R., & Bishop, R. H. (2012). Kalman filters with uncompensated biases. Journal of Guidance Control and Dynamics, 35(1), 327–335.

    Article  Google Scholar 

  28. Bembenek, C., Chmielewski, T.A., & Kalata, P.R. (1998). Observability conditions for biased linear time invariant systems. In Proceedings of the American Control Conference (pp. 1180–1184). Philadelphia, PA, USA.

  29. Zhao, S., Duncan, S. R., & Howey, D. A. (2017). Observability analysis and state estimation of lithium-ion batteries in the presence of sensor biases. IEEE Transactions on Control Systems Technology, 25(1), 326–333.

    Article  Google Scholar 

  30. Friedland, B. (1969). Treatment of bias in recursive filtering. IEEE Transactions on Automatic Control, 14(4), 359–367.

    Article  MathSciNet  Google Scholar 

  31. Keller, J. Y., & Darouach, M. (1997). Optimal two-stage Kalman filter in the presence of random bias. Automatica, 33(9), 1745–1748.

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, L., Lv, M., Niu, Z., & Rao, W. (2014). Two-stage cubature Kalman filter for nonlinear system with random bias. In International Conference on Multisensor Fusion and Information Integration for Intelligent Systems. Beijing, China.

  33. Zhang, X., Xue, W., Fang, H., Yang, J., & Li, S. (2020). Extended state based Kalman filter for uncertain systems with bias. IFAC-PapersOnLine.

  34. Julier, S.J., & Uhlmann, J.K. (1997). A non-divergent estimation algorithm in the presence of unknown correlations. In Proceedings of the American Control Conference (pp. 2369–2373). Albuquerque, NM, USA.

  35. Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory (pp. 234–235). New York: Academic Press.

    MATH  Google Scholar 

  36. Guo, L. (1992). Shi Bian Sui Ji Xi Tong (Time-varying Stochastic Systems) (pp. 36–38). Changchun: Jilin Science and Technology Press (In Chinese).

    Google Scholar 

  37. Wu, J., Elser, A., Zeng, S., & Allgöwer, F. (2016). Consensus-based distributed Kalman-Bucy filter for continuous-time systems. IFAC-PapersOnLine, 49(22), 321–326.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partly supported by National Key R&D Program of China (No. 2018YFA0703800), the National Nature Science Foundation of China (Nos. 11931018, 61633003-3) and the Beijing Advanced Innovation Center for Intelligent Robots and Systems (No. 2019IRS09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchao Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xue, W. & Fang, HT. On extended state based Kalman filter for nonlinear time-varying uncertain systems with measurement bias. Control Theory Technol. 19, 142–152 (2021). https://doi.org/10.1007/s11768-021-00034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-021-00034-2

Keywords

Navigation