Skip to main content
Log in

An adaptive series control for an interior permanent magnet synchronous motor with actuator compensation

  • Research Article
  • Published:
Control Theory and Technology Aims and scope Submit manuscript

Abstract

An adaptive series speed control system for an interior permanent magnet synchronous motor (IPMSM) drive is presented in this paper. This control system consists of a current and a speed control loop, and it is intended to improve the drive’s speed tracking performance as well as to compensate for voltage distortions caused by non-ideal characteristics of the drive’s actuator, which is a voltage source inverter (VSI). To achieve these goals, a simple model that captures these characteristics of the VSI is developed and embedded in the motor’s electrical model. Then, based on the resulting model, an adaptive proportional-integral (PI) control for the current loops is designed, allowing for state regulation and actuator compensation. Additionally, to improve the drive’s speed tracking performance, a proportional-model-reference adaptive controller (MRAC) is designed for the speed loop. Techniques from machine learning are used for designing the MRAC to effectively address nonlinearities and uncertainties in the speed dynamic. Finally, simulation results are presented to illustrate the outstanding performance of the proposed multi-loop controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hao, Z., Zhang, Q., Fujimoto, K. (2015). Numerical approach for nonlinear optimal control problems based on double generating functions. In: 54th IEEE Conference on Decision and Control (CDC), pp. 3218–3223. Osaka, Japan. https://doi.org/10.1109/CDC.2015.7402702

  2. Ghafari Kashani, A. R., Faiz, J., & Yazdanpanah, M. J. (2010). Integration of non-linear hinf and sliding mode control techniques for motion control of a permanent magnet synchronous motor. IET Electric Power Applications, 4(4), 267–280. https://doi.org/10.1049/iet-epa.2009.0108

    Article  Google Scholar 

  3. Xia, C., Ji, B., & Yan, Y. (2015). Smooth speed control for low-speed high-torque permanent-magnet synchronous motor using proportional integral resonant controller. IEEE Transactions on Industrial Electronics, 62(4), 2123–2134. https://doi.org/10.1109/TIE.2014.2354593

    Article  Google Scholar 

  4. Xu, B., Zhang, L., & Ji, W. (2021). Improved non-singular fast terminal sliding mode control with disturbance observer for pmsm drives. IEEE Transactions on Transportation Electrification, 7(4), 2753–2762. https://doi.org/10.1109/TTE.2021.3083925

  5. Grcar, B., Cafuta, P., Znidaric, M., & Gausch, F. (1996). Nonlinear control of synchronous servo drive. IEEE Transactions on Control Systems Technology, 4(2), 177–184. https://doi.org/10.1109/87.486344

    Article  Google Scholar 

  6. Zhou, C., Quach, D.-C., Xiong, N., Huang, S., Zhang, Q., Yin, Q., & Vasilakos, A. V. (2015). An improved direct adaptive fuzzy controller of an uncertain pmsm for web-based e-service systems. IEEE Transactions on Fuzzy Systems, 23(1), 58–71. https://doi.org/10.1109/TFUZZ.2014.2315675

    Article  Google Scholar 

  7. Azizur Rahman, M., Milasi, R. M., Lucas, C., Araabi, B. N., & Radwan, T. S. (2008). Implementation of emotional controller for interior permanent-magnet synchronous motor drive. IEEE Transactions on Industry Applications, 44(5), 1466–1476. https://doi.org/10.1109/TIA.2008.2002206

    Article  Google Scholar 

  8. Kim, K. H. (2009). Model reference adaptive control-based adaptive current control scheme of a pm synchronous motor with an improved servo performance. IET Electric Power Applications, 3(1), 8–18. https://doi.org/10.1049/iet-epa:20080030

    Article  Google Scholar 

  9. Qi, L., Bao, S., & Shi, H. (2013). Permanent-magnet synchronous motor velocity control based on second-order integral sliding mode control algorithm. Transactions of the Institute of Measurement and Control, 37(7), 875–882. https://doi.org/10.1177/0142331213495886

    Article  Google Scholar 

  10. Li, S., & Liu, Z. (2009). Adaptive speed control for permanent-magnet synchronous motor system with variations of load inertia. IEEE Transactions on Industrial Electronics, 56(8), 3050–3059. https://doi.org/10.1109/TIE.2009.2024655

    Article  Google Scholar 

  11. Qi, L., & Shi, H. (2013). Adaptive position tracking control of permanent magnet synchronous motor based on rbf fast terminal sliding mode control. Neurocomputing, 115, 23–30. https://doi.org/10.1016/j.neucom.2012.11.018

    Article  Google Scholar 

  12. Lin, C. H. (2014). Hybrid recurrent wavelet neural network control of pmsm servo-drive system for electric scooter. International Journal of Control, Automation and Systems, 12(1), 177–187. https://doi.org/10.1007/s12555-012-0190-2

    Article  Google Scholar 

  13. Guo, L., & Parsa, L. (2012). Model reference adaptive control of five-phase ipm motors based on neural network. IEEE Transactions on Industrial Electronics, 59(3), 1500–1508. https://doi.org/10.1109/TIE.2011.2163371

    Article  Google Scholar 

  14. Butt, C. B., & Rahman, M. A. (2013). Untrained artificial neuron-based speed control of interior permanent-magnet motor drives over extended operating speed range. IEEE Transactions on Industry Applications, 49(3), 1146–1153. https://doi.org/10.1109/TIA.2013.2253533

    Article  Google Scholar 

  15. Munoz, A. R., & Lipo, T. A. (1999). On-line dead-time compensation technique for open-loop pwm-vsi drives. IEEE Transactions on Power Electronics, 14(4), 683–689. https://doi.org/10.1109/63.774205

    Article  Google Scholar 

  16. Park, D. M., & Kim, K. H. (2014). Parameter-independent online compensation scheme for dead time and inverter nonlinearity in ipmsm drive through waveform analysis. IEEE Transactions on Industrial Electronincs, 61(2), 701–707. https://doi.org/10.1109/TIE.2013.2251737

    Article  Google Scholar 

  17. Sepe, R. B., & Lang, J. H. (1994). Inverter nonlinearities and discrete-time vector current control. IEEE Transactions on Industrial Applications, 30(1), 62–70. https://doi.org/10.1109/28.273622

    Article  Google Scholar 

  18. Mohamed, Y. A. R. I. (2007). Design and implementation of a robust current-control scheme for a pmsm vector drive with a simple adaptive disturbance observer. IEEE Transactions on Industrial Electronics, 54(4), 1981–1988. https://doi.org/10.1109/TIE.2007.895074

    Article  Google Scholar 

  19. Mohan, N., Undeland, T. M., & Robbins, W. P. (2003). Power Electronics Converters, Applications and Design (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  20. Milasi, R. M., Lynch, A. F., & Li, Y. W. (2013). Adaptive vector control for voltage source converters. Control Theory Applications, IET, 7(8), 1110–1119. https://doi.org/10.1049/iet-cta.2011.0785

    Article  MathSciNet  Google Scholar 

  21. Reger, J., Ramírez, H.S., Fliess, M. (2005). On non-asymptotic observation of nonlinear systems. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 4219–4224. Seville, Spain. https://doi.org/10.1109/CDC.2005.1582824

  22. Morales, R., Somolinos, J. A., & Sira-Ramírez, H. (2014). Control of a DC motor using algebraic derivative estimation with real time experiments. Measurement, 47, 401–417. https://doi.org/10.1016/j.measurement.2013.09.024

    Article  Google Scholar 

  23. Ioannou, P. A., & Sun, J. (1995). Robust Adaptive Control. Upper Saddle River: Prentice-Hall Inc.

    MATH  Google Scholar 

  24. Morimoto, S., Sanada, M., & Takeda, Y. (1994). Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives. IEEE Transactions on Industry Applications, 30(6), 1632. https://doi.org/10.1109/TIA.1994.350318

    Article  Google Scholar 

  25. Morimoto, S., Sanada, M., & Takeda, Y. (1994). Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator. IEEE Transactions on Industry Applications, 30(4), 920–926. https://doi.org/10.1109/28.297908

    Article  Google Scholar 

  26. Antonello, R., Carraro, M., & Zigliotto, M. (2014). Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control. IEEE Transactions on Industrial Electronics, 61(9), 5086–5093. https://doi.org/10.1109/TIE.2013.2278518

    Article  Google Scholar 

  27. Wang, C., Hill, D. J., Ge, S. S., & Chen, G. (2006). An iss-modular approach for adaptive neural control of pure-feedback systems. Automatica, 42(5), 723–731. https://doi.org/10.1016/j.automatica.2006.01.004

    Article  MathSciNet  MATH  Google Scholar 

  28. Sanner, R. M., & Slotine, J. J. E. (1992). Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 3(6), 837–863. https://doi.org/10.1109/72.165588

    Article  Google Scholar 

  29. Khadraoui, S., Fnaiech, M. A., Nounou, H. N., Nounou, M. N., Guzinski, J., Abu-Rub, H., Datta, A., & Bhattacharyya, S. P. (2016). Measurement-based control approach for tuning pid controllers: application to induction machines. Journal of Control and Decision, 3(3), 179–196. https://doi.org/10.1080/23307706.2016.1153436

    Article  MathSciNet  Google Scholar 

  30. Wang, C., Hill, D. J., Ge, S. S., & Chen, G. (2006). An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica, 42(5), 723–731. https://doi.org/10.1016/j.automatica.2006.01.004

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Naderi Lordejani.

Appendix

Appendix

1.1 Proof of Lemma 1

Following the work [30], we take a Lyapunov approach to prove this lemma. Consider the Lyapunov function candidate

$$\begin{aligned} V_e(t)=\dfrac{1}{2}e_r^2(t). \end{aligned}$$

The time derivative of this function along the speed tracking error dynamic (37) is given by

$$\begin{aligned} \dot{V}_e(t)&=-a_me_r^2(t)+g_{\lambda }\Big (-k_1e_r^2(t)\\&\quad +\tilde{W}^\mathrm{T}(t)S(z)e_r(t) - \varepsilon (z) e_r(t)\Big ). \end{aligned}$$

Therefore, we can show that we have

$$\begin{aligned} \begin{aligned} \dot{V}_e(t)&\le -\big (a_m+\dfrac{1}{2}\bar{r}k\big )e_r^2(t)\\&\quad +\dfrac{1}{2}g_{\lambda }\Big (ke_r^2(t)-\dfrac{{{\varepsilon ^{2}(z)}}}{{\eta _1 }}-\dfrac{{s^{*2} \tilde{W}^\mathrm{T}(t)\tilde{W}(t)}}{\eta _2}\Big ), \end{aligned} \end{aligned}$$
(43)

where \(k=k_1-\eta _1/2-\eta _2/2\) for any arbitrary scalars \(\eta _1>0\) and \(\eta _2>0\), and \(\bar{r}>0\) is a lower bound on \(g_\lambda \). It is noted that the inequalities

$$\begin{aligned}&- e_r\varepsilon \le \dfrac{{\eta _1}{e_r^2}}{2} + \dfrac{\varepsilon ^{*2}}{2\eta _1 },\end{aligned}$$
(44)
$$\begin{aligned}&\tilde{W}^TS(z)e_r \le \dfrac{{\eta _2}{e_r^2}}{2} + \dfrac{s^{*2} {\tilde{W}}^\mathrm{T}\tilde{W}}{2 \eta _2} \end{aligned}$$
(45)

have been used to arrive at (46). Now, the inequality (46) implies that for

$$\begin{aligned} \mid e_r\mid >\dfrac{\mid \varepsilon (z)\mid }{\sqrt{k\eta _1}}+\dfrac{s^{*} \sqrt{\tilde{W}^\mathrm{T}\tilde{W}}}{\sqrt{k\eta _2}}, \end{aligned}$$

it can be guaranteed that

$$\begin{aligned} \dot{V}_e(t) \le -\Big (a_m+\dfrac{1}{2}\bar{r}k\Big )e_r^2(t), \end{aligned}$$
(46)

implying the input-to-state stability of the error dynamic (37) with the input-to-state gain functions as in (39).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lordejani, S.N., Milasi, R.M. An adaptive series control for an interior permanent magnet synchronous motor with actuator compensation. Control Theory Technol. 20, 392–407 (2022). https://doi.org/10.1007/s11768-022-00107-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11768-022-00107-w

Keywords

Navigation