Tennessee-Eastman过程的学习型案例推理故障诊断方法
Fault diagnosis method using learning case-based reasoning for Tennessee-Eastman process
摘要点击 100  全文点击 177  投稿时间:2016-09-24  修订日期:2017-05-23
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2017.60710
  2017,34(9):1179-1184
中文关键词  TE过程  故障诊断  案例推理  学习型伪度量  案例检索
英文关键词  TE process  fault diagnosis  case-based reasoning  learning pseudo metric  case retrieval
基金项目  国家自然科学基金项目(61374143), 北京市自然科学基金项目(4152010)资助.
学科分类代码  
作者单位E-mail
严爱军 北京工业大学信息学部自动化学院 yanaijun@bjut.edu.cn 
王英杰 北京工业大学信息学部自动化学院  
王殿辉 Department of Computer Science and Computer Engineering,La Trobe University  
中文摘要
      为了提高Tennessee-Eastman (TE) 过程的故障诊断准确率, 本文研究一种学习型伪度量(learning pseudo metric, LPM)代替距离度量的案例检索方法, 并建立了TE过程的案例推理(case-based reasoning, CBR)故障诊断模 型. 首先建立LPM度量准则并对LPM模型进行训练, 其次度量目标案例与每一个源案例的相似度, 从中检索与目标 案例相似的同类案例, 再采用多数重用原则从同类案例中决策出目标案例的解, 最后通过TE过程的运行数据对该 方法的性能进行测试, 并与典型的CBR和BP(back-propagation)神经网络和支持向量机等方法进行对比, 表明本文方 法能有效提高故障诊断准确率, 在实际化工过程中具有一定的推广应用价值.
英文摘要
      To diagnose the fault in the Tennessee-Eastman (TE) process more accurately, a learning pseudo metric (LPM)-based case retrival method is proposed to replace distance measure retrieval method and a case-based reasoning (CBR) fault diagnosis model of TE process is established. Firstly, the LPM metrics are established to train the LPM model. Then, the similarity between the target case and each source case is measured to find the same type of cases as the target case. Next, the solution of the target case is obtained based on the majority of reuse principle. Finally, the running data of TE process are used to carry out a performance test and a comparison experiment. The results show that the proposed LPM-based CBR method is superior to traditional CBR, back-propagation (BP) neural network and support vector machine method and significantly improves the accuracy of the fault diagnosis. It has a promotional value for fault diagnosis in the actual chemical process.