引用本文:马昕,李珂,张承慧,孙芸馨.多级压缩空气储能系统变工况的优化运行控制[J].控制理论与应用,2019,36(3):436~442.[点击复制]
MA Xin,LI Ke,ZHANG Chen-hui,SUN Yun-xin.Off-design optimal control of multistage compressed air energy storage system[J].Control Theory and Technology,2019,36(3):436~442.[点击复制]
多级压缩空气储能系统变工况的优化运行控制
Off-design optimal control of multistage compressed air energy storage system
摘要点击 2799  全文点击 944  投稿时间:2018-06-21  修订日期:2018-11-28
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2018.80460
  2019,36(3):436-442
中文关键词  压缩空气储能,最优控制,以电定热,以热定电,变工况运行
英文关键词  Compress Air energy storage system, Optimal control, Following the electric load (FEL), Following the thermal load (FTL), Various operation conditions
基金项目  国家自然科学基金重大国际(地区)合作研究项目(61320106011);国家自然科学基金项目(61573223);国家自然科学基金重点项目(61733010)
作者单位E-mail
马昕 山东大学 max_sdu@126.com 
李珂* 山东大学  
张承慧 山东大学 zchui@sdu.edu.cn 
孙芸馨 山东大学  
中文摘要
      多级绝热压缩空气储能系统以压缩空气储能及热存储技术为基础,具备冷、热、电多种能量存储及供给能力。在多变的复杂工况下,系统能否高效运行,取决于内部能量能否合理分配、系统与负荷间的多能调配是否达到整体最优。本文以储热罐容量为基础,针对系统在不同运行模式下的负荷状况提出了一种针对多级绝热压缩空气储能联供系统变工况输出运行控制策略。首先利用热力学方法分析压缩空气储能系统工作过程,建立系统模块化模型。其次根据系统负荷需求,在“以电定热”及“以热定电”两种工作模式下,分别以储热热量消耗量最小及输出电功最大为优化目标建立优化模型,求解得到不同工况下系统各部件运行参数。以1MW多级绝热压缩空气储能系统为例,进行优化求解。该控制策略有效的解决了多级绝热压缩空气储能系统在变工况下的内部能量调配、系统内部运行参数选取的问题,为实现综合能量源系统高效运行提供指导。
英文摘要
      The multistage adiabatic compressed air energy storage system (MCAES) which is based on compressed air energy storage (CAES) and thermal energy storage (TES) technology, has a variety of energy storage and supply capabilities such as cold, heat and electricity. Under highly variable conditions, the efficient operation of the system depends on the rational allocation of internal energy and the overall optimization of multi-energy deployment between systems and loads. Based on the capacity of TES, this paper presents an output operation control strategy for MCAES under different operating conditions. Firstly, the working process of compressed air energy storage system was analyzed by thermodynamics method, and a modular system model was established. According to the system load demand, the optimization model is established with the minimum heat storage heat consumption and the maximum output power respectively under following the electric load (FEL) and following the thermal load (FTL) operation condition, and different solutions are obtained. Finally, a case of MCAES validated the effectiveness of this optimal method. This control strategy effectively solves the problem of internal energy allocation and internal system operating parameter selection of MCAES under variable operating conditions, and provides guidance for the efficient operation of the integrated energy source system.