引用本文:蔺君,何英姿,黄盘兴.基于改进分段Gauss伪谱法的带推力高超声速 飞行器再入轨迹规划[J].控制理论与应用,2019,36(10):1662~1671.[点击复制]
LIN Jun,HE Ying-zi,HUANG Pan-xing.Powered hypersonic vehicle reentry trajectory optimization based on improved multi-phase Gauss spectral method[J].Control Theory and Technology,2019,36(10):1662~1671.[点击复制]
基于改进分段Gauss伪谱法的带推力高超声速 飞行器再入轨迹规划
Powered hypersonic vehicle reentry trajectory optimization based on improved multi-phase Gauss spectral method
摘要点击 2277  全文点击 944  投稿时间:2018-09-09  修订日期:2018-12-31
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2019.80678
  2019,36(10):1662-1671
中文关键词  高超声速飞行器  再入轨迹优化  分段高斯伪谱法  多脉冲轨迹规划  推力
英文关键词  hypersonic vehicles  reentry trajectory optimization  multi-phase Gauss peudospectral method  multiimpulse trajectory optimization  thrust
基金项目  国家自然科学基金
作者单位E-mail
蔺君* 北京控制工程研究所 linjbuaa@outlook.com 
何英姿 北京控制工程研究所  
黄盘兴 北京控制工程研究所  
中文摘要
      再入轨迹规划是高超声速飞行器领域的热点问题, 已吸引了众多国内外专家的关注. Gauss伪谱法及以分段Gauss伪谱法是解决轨迹规划问题的一类有效工具. 然而, 发动机多次点火熄火导致推力不连续以及点火时刻控制输入的连续性要求是带推力高超声速飞行器再入轨迹优化面临的新挑战. 本文将问题简化为多脉冲再入轨迹规划问题, 基于改进分段Gauss伪谱法生成满足多条件约束的最优再入轨迹. 通过设置分段Gauss伪谱法连续性条件,确保飞行器状态与控制输入在分段点处连续衔接. 通过无动力自由再入与带推力再入算例对改进分段高斯伪谱法进行说明, 仿真结果也表明, 改进分段高斯伪谱法可有效求解带推力高超声速飞行器再入轨迹规划.
英文摘要
      Reentry trajectory optimization is a hot topic of hypersonic vehicle, and has gained more and more attentions of the expert. Gauss pseudospectral method(GPM) and multi – phase Gauss pseudospectral method (MGPM) have been demonstrated as effective tools to solve the trajectory optimization with multi-constraints. However, thrust discontinuity caused by multiple ignition on and off and the requirement of control input continuity at ignition time are new challenges to powered hypersonic vehicle reentry trajectory optimization. In this paper, the problem is simplified to a multi–impulse reentry trajectory optimization problem, and a multi-condition constraint reentry trajectory is generated based on improved multi–phase Gauss pseudospectral method. The continuity conditions of MGPM are set to ensure the continuous connection of the states and control between each pair of phases. Numerical examples for reentry trajectory optimization in free flight and powered are used to demonstrate the proposed technique. Simulation results also show the feasible application of improved MGPM in powered reentry trajectory optimization.