引用本文:王萍,刘姿玚,陈虹,郭洪艳.基于时滞特性分析的车辆主动扩稳优化控制[J].控制理论与应用,2020,37(6):1253~1259.[点击复制]
WANG Ping,LIU Zi-yang,CHEN Hong,GUO Hong-yan.Optimal control of vehicle active stability system based on time delay characteristic analysis[J].Control Theory and Technology,2020,37(6):1253~1259.[点击复制]
基于时滞特性分析的车辆主动扩稳优化控制
Optimal control of vehicle active stability system based on time delay characteristic analysis
摘要点击 1762  全文点击 770  投稿时间:2019-02-13  修订日期:2019-10-07
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.90085
  2020,37(6):1253-1259
中文关键词  时滞补偿  相平面  模型预测控制  主动扩稳
英文关键词  time delay compensation  phase plane  MPC controller  active stability control
基金项目  国家重点研发计划项目(2018YFB0104805), 国家自然科学基金项目(61790564), 吉林省科技发展计划项目(20180101326JC)资助.
作者单位E-mail
王萍 吉林大学 wangping12@jlu.edu.cn 
刘姿玚 吉林大学  
陈虹 吉林大学  
郭洪艳* 吉林大学  
中文摘要
      在危险工况下, 主动转向与差动制动的协同作用是有效避免车辆失稳情况过早发生的重要手段, 然而执行 机构的响应滞后导致系统响应精度下降, 甚至造成稳定性恶化. 针对上述问题, 本文分析了各控制输入通道的时滞 特性, 提出了基于时滞补偿的车辆主动扩稳优化控制方法. 首先, 建立包含控制输入时滞的车辆系统二自由度动力 学模型; 其次, 应用随机算法设定各控制输入通道的随机时滞, 依据 – ˙ 相图辨识出满足车辆稳定性条件的时滞边 界; 然后以跟踪期望横摆角速度和质心侧偏角为控制目标, 设计了可同时补偿多通道多尺度时滞的主动扩稳模型 预测控制器; 最后, 基于veDYNA仿真软件, 在不同工况下验证了该控制器的有效性. 结果表明, 本文提出的控制整 体框架对各个控制输入通道的有界时滞变化具有自适应性, 使得横摆角速度更好地跟踪上期望值, 且质心侧偏角相 轨迹在相平面的稳定边界内, 达到了主动扩稳的目的.
英文摘要
      Under dangerous conditions, the synergistic effect of active steering and differential braking can avoid the premature occurrence of vehicle instability effectively. However, the system response accuracy will decline and even the stability will deteriorate due to the response delay of the actuator. Aiming at the above problems, this paper analyzes the time-delay characteristics of each control input channel, and proposes an optimization control method for active stability expansion of vehicles based on time delay compensation. Firstly, the two-degree-of-freedom model including control input time-delay is established. Secondly, random algorithm is applied to set the random time delay of each control input channel, and the time delay boundary satisfying the condition of vehicle stability is identified according to the phase of – ˙ . Then, an active augmented stability model predictive controller is designed to track the desired yaw rate and the sideslip angle. Finally, based on veDYNA, the effectiveness of the controller is verified under different conditions. The control overall framework proposed in this paper is adaptive, so that the yaw rate better tracks the expected value, and the side-slip angle phase is within the stable boundary of the phase plane, achieved the purpose of actively expanding steadily.