大型风机主导机械动态的智能灰箱建模及其线性状态空间表征
Intelligent grey-box modeling and linear state-space representation of dominating mechanical dynamics for large-scale wind turbine
摘要点击 30  全文点击 20  投稿时间:2019-05-08  修订日期:2020-03-19
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2019.90328
  2020,37(6):1260-1269
中文关键词  风力发电  主导机械动态  分段仿射模型  智能灰箱参数辨识  联合状态空间模型
英文关键词  wind power generation  dominating mechanical dynamics  piece-wise affine model  intelligent grey-box parameter identification  joint state-space model
基金项目  国家自然科学基金项目(51906064), 北京市科技计划项目(Z181100005118005), 中央高校基本科研业务费专项资金项目(2019MS024)资助.
作者单位E-mail
潘晨阳 华北电力大学 kattypcy@ncepu.edu.cn 
胡阳 华北电力大学 panchenyang@ncepu.edu.cn 
奚芸华 华北电力大学  
中文摘要
      随着风电发展逐渐从量的扩张过渡为质的提高阶段, 风机精细化控制日益受到重视, 而风机动态的合理建 模是其重要基础. 本文研究了风机主导机械动态建模并建立其完整的状态空间表征. 首先, 分析了风机子系统特性, 针对气动特性建立气动转矩的分段仿射模型, 用于表征气动系统的静态特性. 然后, 系统地制定了智能灰箱参数辨 识步骤, 对于多入多出的传动系统设立加权优化目标进行辨识, 以获取其蕴含物理意义的状态空间模型, 与气动模 型合并得到联合状态空间模型. 最后, 依托FAST的5 MW风机模型进行仿真, 验证了建模策略的有效性, 仿真结果 展现了构建的联合模型对实际动态特性较好的拟合效果.
英文摘要
      As the development of wind power gradually changes from quantitative expansions to qualitative improvements, more attention has been paid to the fine control of wind turbines, and reasonable modeling of wind turbine dynamics is an important foundation. The dominating mechanical dynamics modeling of wind turbines is studied and its complete state-space representation is established in this paper. Firstly, the characteristics of wind turbine subsystems are analyzed and the piece-wise affine model of the aerodynamic torque is built in terms of aerodynamic characteristics, which is utilized to characterize the static characteristics. Then, the intelligent grey-box parameter identification procedure is systematically formulated. With regard to the multi-input multi-output drive-train system, the weighted optimization objective is utilized for identification to acquire its state-space model with the physical meaning, which is combined with aerodynamic model to form the joint state-space model. Finally, based on the simulation of 5 MW wind turbine model in FAST, the modeling strategy is verified, and the results show the constructed joint model can achieve a good fitting effect for the actual dynamic characteristics.