关于新型冠状病毒肺炎一类基于CCDC统计数据的 随机时滞动力学模型
Some novel statistical time delay dynamic model by statistics data from CCDC on novel coronavirus pneumonia
摘要点击 163  全文点击 190  投稿时间:2020-02-12  修订日期:2020-04-02
查看全文  查看/发表评论  下载PDF阅读器
DOI编号  10.7641/CTA.2020.00069
  2020,37(4):697-704
中文关键词  新型冠状病毒肺炎, 时滞动力学模型, 随机时滞动力学模型, 疫情预测.
英文关键词  Novel Coronavirus Pneumonia, time delay dynamic model, statistical time delay dynamic model, Outbreak prediction
基金项目  
学科分类代码  
作者单位E-mail
邵年 复旦大学数学科学学院 16307130024@fudan.edu.cn 
陈瑜 上海财经大学数学学院  
程晋 复旦大学数学科学学院  
陈文斌 复旦大学数学科学学院 wbchen@fudan.edu.cn 
中文摘要
      科学地预测新型冠状病毒肺炎疫情发展趋势对疫情防控至关重要. 本文对中国疾病预防控制中心(CCDC)发布的\cite{cdc}的数据进行了分析 , 给出了关于 新型冠状病毒肺炎的一些可能的统计模型:传播链中连续病例的发病时间间隔分布、 感染至发病的时间间隔分布和发病至住院的间隔时间三个分布, 并形成了感染至确诊的时间间隔分布表达. 结合CCDC统计数据和程晋团队的时滞动力学模型(TDD-NCP模型), 我们发展了新的随机时滞动力学模型(Fudan-CCDC模型), 并给出了参数反演结果与疫情分析.
英文摘要
      Scientific prediction of the development trend of the novel coronavirus pneumonia epidemic is very important for epidemic prevention and control. This paper analyzes the data released by the Centers for Disease Control and Prevention (CCDC) and provides several statistical models of novel coronavirus pneumonia including the explicit probability distributions on: the time interval between infection and illness onset; the interval between two illness onsets in successive cases in a transmission chain; the time from illness onset to hospitalization. As a result, the distribution of time elay from infection to hospitalization can be formulated. Combining the time-delay model (TDD-NCP) proposed by Jin Cheng’s group with the statistical data from CCDC, we propose a statistical time-delay model (Fudan-CCDC) and present some numerical results on parameter identification and outbreak predictions.